
When API Keys Leak: Securing AI Services with
Post-Quantum Proof-of-Possession

Sunwoo Lee, Hyuk Lim, and Seunghyun Yoon
Korea Institute of Energy Technology (KENTECH), Republic of Korea

{sunwoolee, hlim, syoon}@kentech.ac.kr

Abstract—API keys remain the de facto authentication mecha-
nism for AI services, yet modern software supply chains routinely
expose them through container images, build artifacts, and
automation pipelines. In AI platforms, a single leaked key often
acts as a high-privilege machine identity enabling access to
model inference, retrieval pipelines, and tool integrations, turning
credential exposure into an enterprise-scale security incident.
We propose a leak-resilient authentication architecture that
preserves existing provider APIs while preventing unauthorized
use under realistic client-side key leakage. Our design enforces
post-quantum proof-of-possession at an organizational gateway
and combines workload identity, KMS-backed non-exportable
signing, DPoP-bound OAuth tokens, and gateway-side verification
before provider API key injection. The architecture removes
provider API keys and private signing keys from leak-prone
client artifacts and breaks the direct path from artifact leakage to
provider-side abuse. We describe the end-to-end system design
and an evaluation methodology based on realistic key leakage
and replay scenarios in AI service settings.

Index Terms—API Key Leakage, AI Service Security, Post-
quantum cryptography, Key Management System, ML-DSA.

I. INTRODUCTION

API keys remain the de facto authentication mechanism for
AI services because they are simple to deploy and widely
supported. At the same time, modern software supply chains
frequently expose these keys through container images, CI/CD
pipelines, and configuration artifacts [1], [2]. When an API
key is used as a bearer credential, disclosure allows any
party holding the string to replay requests until the key is
revoked. The impact is especially severe in contemporary AI
platforms. A single key often functions as a high-privilege
machine identity that authorizes not only model inference
but also retrieval-augmented generation (RAG) resources, tool
invocations, and internal service integrations. As a result, key
exposure can lead to unauthorized data access, tool misuse,
and cost-bearing abuse even without exploiting software vul-
nerabilities. Preventive controls such as secret scanning and
policy enforcement help, but they do not eliminate supply-
chain leakage in practice, so a robust design must remain
secure even when client-side artifacts are exposed.

This paper proposes a leak-resilient authentication archi-
tecture for AI services that preserves provider compatibility
while preventing unauthorized use under realistic key leakage
scenarios. The design introduces an organizational gateway
that mediates access to external AI providers, and the provider
API key is stored and used only at the gateway. Provider-
facing interfaces remain unchanged and continue to accept

conventional API-key-based requests, but client-side artifacts
do not embed provider API keys. Instead, each invocation to
the gateway includes a proof-of-possession that demonstrates
control over a signing key associated with the requesting
service and the request context, and includes freshness infor-
mation to prevent replay. The gateway verifies the proof and
forwards the request only after successful validation, using
the provider API key on behalf of the client. This breaks
the direct path from artifact leakage to provider-side abuse
while maintaining operational compatibility with existing AI
providers.

We instantiate proof-of-possession using post-quantum dig-
ital signatures to provide long-term robustness and to align
with emerging standards. Our implementation builds on
OAuth 2.0 [3] and the Demonstrating Proof-of-Possession
(DPoP) mechanism [4], and replaces classical signatures with
NIST-standard post-quantum signatures (ML-DSA) [5]. In
deployments that require stronger key isolation, the signing
key can be protected by hardened key management such as
key management system (KMS) so that private key material is
not embedded in container images and can be centrally rotated
and audited. Our contributions are summarized as follows:

• We characterize API key leakage as a first-class threat in
AI service deployments and analyze its amplified impact
due to AI-specific integrations such as RAG pipelines and
tool invocations.

• We design a deployable, gateway-mediated post-quantum
proof-of-possession architecture that preserves legacy
API-key-based AI provider interfaces while preventing
unauthorized use under client-side key leakage.

• We implement and evaluate the approach under realistic
key leakage and replay scenarios, quantifying security
benefits and deployment overhead in an AI service set-
ting.

II. PROPOSED FRAMEWORK

A. Problem: Bearer Token Vulnerabilities
Many AI services rely on bearer-style API keys in

Authorization headers. This practice exhibits two weak-
nesses: possession of the key string suffices for authentication,
allowing any party with a leaked key to replay requests until
revocation; and API keys are often long-lived and broadly
scoped, amplifying exposure impact.

Leakage frequently occurs through software supply chains.
When API keys are embedded in container images via con-



figuration files or environment variables, publishing the image
to a public registry discloses replayable credentials. Figure 1
illustrates this attack path: an adversary obtains a published
image, extracts the embedded key through image inspection,
and replays API requests to abuse the AI service. Internet-scale
measurements confirm that credential leakage in container
images is widespread [1].

Trust model. Our design confines ML-DSA private keys to
a KMS boundary, avoiding embedding in container images or
client artifacts. Clients authenticate using organization-issued
workload identities and delegate signing to the KMS via
remote APIs. The gateway and authorization server validate
proof-of-possession using registered public keys with fresh-
ness and request-binding checks, while private keys remain
non-exportable and centrally manageable.

Threat model. We focus on supply-chain leakage where
adversaries extract embedded provider API keys from pub-
lished container images, and replay-oriented misuse where
stolen bearer credentials are reused from arbitrary locations.
We assume TLS between system components. Attackers may
reuse stolen tokens or replay observed requests from logs or
compromised endpoints, but cannot forge ML-DSA signatures
without accessing private keys protected by the KMS bound-
ary. Compromise of the authorization server, KMS infrastruc-
ture, or workload identity roots is outside our scope.

Authorization: Bearer hf_xxx

Anyone with key = Access

ResponseClient Container AI Service

Problem: API key leaked from container → FULL API access!

Fig. 1: Problem - Bearer tokens leak from container images

B. Solution: KMS-based Signing with Workload Identity

We propose a gateway-mediated architecture that enforces
proof-of-possession for all client invocations while preserving
unmodified AI provider interfaces. Workload identity autho-
rizes bootstrap and signing privileges, and a KMS-backed
signing service ensures that private key material remains non-
exportable and is never embedded in container images or
client-side artifacts.

Architecture components. The design consists of four
components: Identity Issuer, KMS, Authorization Server, and
Gateway. The Identity Issuer issues short-lived workload cre-
dentials (ML-DSA signed JWTs) that are used only to authen-
ticate to internal control-plane services. The KMS verifies these
credentials via ML-DSA signature verification, generates non-
exportable ML-DSA keypairs, and provides remote signing
APIs; clients obtain public keys and opaque key handles,
while private keys remain confined to the KMS boundary. The
Authorization Server verifies DPoP proofs and issues DPoP-
bound OAuth 2.0 access tokens, binding tokens to the client

public key via RFC 7800 confirmation claims (cnf.jkt).
The Gateway verifies ML-DSA DPoP proofs with freshness
and request binding and, upon successful verification, injects
the provider API key and forwards requests to external AI
providers.

Security properties. The architecture removes provider API
keys from leak-prone client artifacts and prevents their direct
reuse by requiring valid proof-of-possession at the gateway.
Private ML-DSA signing keys are non-exportable and confined
to the KMS boundary. Workload credentials are short-lived
and distinct from PoP signing keys, so they cannot be used
to generate DPoP proofs. Each request includes a fresh nonce
and request-binding fields to prevent replay and cross-endpoint
misuse. We instantiate PoP using NIST-standard ML-DSA
(FIPS 204), enabling post-quantum-resistant authentication
throughout the system.

AI Service

API Key:
Bearer hf_xxx

Client Container Gateway

key_handle
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Fig. 2: Proposed multi-component authentication architecture
with KMS-based signing and gateway-enforced PoP

C. Protocol Instantiation

We implement our design using OAuth 2.0 [3] with DPoP
request proofs [4]. The architecture comprises an Identity
Issuer for workload authentication, a KMS-backed signing
service that manages non-exportable ML-DSA keys, an Au-
thorization Server that issues DPoP-bound access tokens, and
a Gateway that verifies DPoP proofs and injects provider API
keys to access unmodified external AI providers. Tokens are
bound to the client public key using RFC 7800 confirmation
claims (cnf.jkt) [6].

D. Protocol Design

Protocol overview. The protocol proceeds in three phases:
Phase 0 for workload bootstrap and KMS key registration,
Phase 1 for DPoP-bound token acquisition, and Phase 2 for
gateway-mediated API requests with fresh DPoP proofs.

Notation. Table I summarizes the entities, identifiers, cryp-
tographic materials, and token/proof fields used in the protocol
description. We use jti as the per-proof nonce for replay
detection.



TABLE I: Notation used in the protocol description

Symbol/Term Meaning

Entities

C Client (service workload)
I Identity Issuer
K Key Management System (KMS)
A Authorization Server
G Gateway
P External AI Provider

Workload identity and key material

JWT_w Short-lived workload identity JWT issued by I
workload_id Workload identity asserted in JWT_w
key_handle Opaque handle referencing a non-exportable ML-DSA

private key in K
(pkdsa, skdsa) PoP public/private keypair (skdsa stays inside K)
jkt SHA-256 thumbprint of pkdsa used for token/proof

binding

Tokens and proofs

client_id OAuth 2.0 client identifier registered at A
T DPoP-bound access token (contains cnf.jkt)
P DPoP proof JWT (signed via KMS)

DPoP claims

htm, htu HTTP method and URI bound to P
iat, jti Issued-at time and nonce (replay key)
ath Token hash claim: SHA256(T )

Provider credential

API_key Provider API key stored and used only at G

Phase 0 - Workload Identity and KMS Registration.
Figure 3 illustrates the initial registration phase in which con-
tainers obtain delegated signing capability without receiving
private keys.

A container requests a workload identity JWT from
the Identity Issuer using (namespace, service acct) creden-
tials, and the Identity Issuer verifies the authorization pol-
icy and issues a workload identity JWT (JWTw) signed
with ML-DSA-44. The container sends JWTw to the KMS
/keygen endpoint to request key registration, and the KMS
fetches the Identity Issuer’s JWKS, verifies the ML-DSA-
44 signature, validates claims, and checks the kms:keygen
permission. The KMS generates an ML-DSA-44 keypair
(pkdsa, skdsa) with skdsa stored exclusively in KMS, asso-
ciates the generated key_handle with the corresponding
workload_id, computes jkt = SHA256(pkdsa), and re-
turns (key_handle,jkt, pkdsa) to the container. The con-
tainer subsequently registers (JWTw,jkt, pkdsa) with the Au-
thorization Server and obtains a client_id. The Gateway
is configured to recognize the binding between client_id
and cnf.jkt so that subsequent DPoP proofs can be verified
and provider API keys can be injected only after successful
validation. This ensures containers never possess provider API
keys or private signing keys, and only hold public information
and opaque handles required for delegated signing.

Phase 1 - Token Acquisition. Figure 4 illustrates the token
acquisition flow with KMS signing delegation.

Client Identity
Issuer KMS

1. POST /token
{namespace,
service_acct}

Check
authorized
workload

2. JWT (ML-DSA signed)

3. POST /keygen
{workload_token: JWT}

4. Verify JWT:
  + Fetch JWKS
  + ML-DSA verify
  +Check claims

5. Generate ML-DSA 
    keypair for DPoP   
    (SK stays in KMS)6. {key_handle, jkt,

dpop_public_key}

Fig. 3: Phase 0 - Bootstrap with Workload Identity

The client (service workload) creates a DPoP JWT header
(e.g., {typ : “dpop+jwt”, alg : “ML-DSA-44”}) and claims
{jti, htm, htu, iat} for the token endpoint, then sends a sign-
ing request (key_handle, payload) to the KMS /sign
endpoint. The KMS validates the previously issued work-
load identity JWT, including signature and expiration, ver-
ifies key_handle ownership, and signs the payload with
ML-DSA-44 using the KMS-resident private key; the KMS
then returns the ML-DSA-44 signature. The client sends
the DPoP JWT and JWTw to the Authorization Server
/token endpoint, using JWTw for workload authentication
and client_id for client identification. The Authorization
Server verifies JWTw using the Identity Issuer public keys and
checks that JWTw corresponds to the registered client_id
and cnf.jkt binding. The Authorization Server issues an
access token with cnf.jkt binding to the client’s public key
and sets token_type=“DPoP”.

Phase 2 - API Request. Figure 5 illustrates the API
request flow. The client (service workload) creates fresh DPoP
JWT claims including ath = SHA256(access token) to bind
the proof to the specific access token and sends a signing
request with (key_handle, payload) to the KMS /sign
endpoint. The KMS validates the previously issued workload
identity JWT, verifies the kms:sign permission, and returns
an ML-DSA-44 signature. The client constructs the request to
the Gateway with an Authorization: DPoP <token>
header containing the DPoP-bound access token and a DPoP:



Client KMS Auth
Server

1. Create DPoP JWT
    { alg: "ML-DSA-44",
      jti, htm, htu, iat}

2. POST /sign
    {key_handle,
      payload}

3. Sign with ML-DSA
    sig = ML-DSA.Sign
            (sk, payload)

4. {signature}

5. POST /token
    DPoP: <ml-dsa-jwt>

6. Verify ML-DSA
    DPoP signature

7. Issue token
    with cnf.jkt binding

8. {access_token, token_type, "DPoP"}

Fig. 4: Phase 1 - Token Acquisition with KMS Signing

<ml-dsa-jwt> header containing the fresh signed proof. At
request time, the Gateway verifies the ML-DSA-44 signature
using the registered public key, checks jti uniqueness via
a replay cache, validates the ath binding to prevent token
substitution, and confirms the cnf.jkt match with the access
token. The Gateway injects the provider API key (managed
per tenant at the gateway) and proxies the request to the
AI provider using bearer authentication, and the AI service
processes the request and returns the response via the Gateway
to the client.

E. Security Properties

Our architecture protects against credential leakage, token
theft, and unauthorized access. We formalize the security
guarantees as follows:

No provider API keys and no private signing keys in
containers. Let (skdsa, pkdsa) denote the ML-DSA keypair
used for proof-of-possession, where skdsa is non-exportable
and stored exclusively in the KMS. Let C denote container
image storage, M volatile process memory, and H KMS
storage. Define the sensitive credential set

K = {skdsa,API key}, (1)
C ∩K = ∅, (2)
M ∩K = ∅, (3)
skdsa ∈ H. (4)

The above conditions state that neither provider API keys nor
private PoP signing keys appear in container images (C) or

Client KMS Gateway AI Service

1. Create fresh DPoP JWT

2. POST /sign

3. {ML-DSA signature}

4. GET /api/resource
    Authorization: DPoP <token>
    DPoP: <ml-dsa-jwt>

5. Verify:
  + ML-DSA sig
  + jti not reused
  + ath matches
  + cnf.jkt matches

6. Proxy

7. API Response

Fig. 5: Phase 2 - API Request with Fresh DPoP Proof

in process memory (M ), while private signing keys remain
confined to the KMS storage (H) as non-exportable material.
Here, API key denotes the provider-issued API key stored
only at the gateway. Containers retain only public information
and opaque handles required for delegated signing, such as
key_handle, pkdsa, and configuration metadata. Leakage of
container images therefore exposes no usable credentials for
direct provider-side API abuse.

Workload identity binding. Let h denote a key handle,
m a message, and τ a workload identity token. We write
Sign(h,m) to denote a KMS signing request on message m
using the key referenced by handle h. A KMS signing request
is rejected unless τ is valid and authorized for h under the
KMS access-control policy. Here, Auth(τ, h) denotes that τ
is unexpired and grants permission to use h. For any adversary
A attempting KMS operations:

¬Auth(τ, h) =⇒ Sign(h,m) is rejected, (5)
Sign(h,m) succeeds =⇒ Auth(τ, h). (6)

Thus, possession of a key handle alone is insufficient to
invoke KMS signing. Short-lived identity tokens further limit
exposure.

Token binding with proof-of-possession. Let T denote an
access token bound to the PoP public key pkdsa via cnf.jkt.
For any adversary A holding a stolen token, a successful
request implies that A can generate a valid PoP proof under
pkdsa. Here, P denotes a PoP proof (e.g., a DPoP proof), and
Verifypkdsa

(P ) denotes successful verification under pkdsa with
the required freshness and request-binding checks.

ValidRequest(T ) =⇒ ∃P s.t. Verifypkdsa
(P ) = 1. (7)



In our architecture, producing such a proof requires invoking
KMS signing with an authorized workload identity token and
the corresponding key handle. Without KMS access and a
valid workload identity, stolen tokens are unusable. Replay
is prevented via jti uniqueness and ath binding to T .

Request binding and replay protection. Each PoP proof
binds to request context (htm, htu, ath, jti). Here, VerifyG(P )
denotes successful verification of the PoP signature and key
binding (including cnf.jkt), together with validation of
request-binding fields. For any proof P , let n := jti denote
its nonce stored in the replay cache:

VerifyG(P ) ∧ n ∈ ReplayCache =⇒ Reject,
(8)

VerifyG(P ) ∧ htm 6= actual method =⇒ Reject,
(9)

VerifyG(P ) ∧ ath 6= SHA256(T ) =⇒ Reject. (10)

These checks block replay, cross-endpoint, and token-
substitution attacks.

Quantum resistance. PoP and workload-identity signa-
tures are instantiated with ML-DSA, providing post-quantum
security consistent with NIST FIPS 204. Forging workload
identities or PoP proofs therefore requires breaking ML-
DSA. Unlike bearer-token systems, access in our architecture
requires a valid workload identity, KMS-mediated signing, and
per-request cryptographic proof, with automatic expiration and
revocation points at multiple layers.

F. Results

We evaluated security by implementing traditional bearer
token authentication and our KMS-based approach against
HuggingFace AI services. Figure 6a and Figure 6b illustrate
the architectural differences.

TABLE II: Security comparison across authentication methods

Scenario Authentication Result
Traditional API key directly HTTP 200

(bearer token) (Vulnerable)
Proposed KMS-signed DPoP HTTP 200

(zero secrets) (Authenticated)

Traditional approach vulnerabilities. Figure 6a demon-
strates current practice: clients embed API keys in container
environment variables or configuration files, and container
inspection via docker inspect exposes API keys in plain-
text. Once stolen, these keys grant unlimited access until
manual revocation, and the mechanism provides no crypto-
graphic proof of legitimate ownership. As a result, bearer token
authentication may succeed with HTTP 200 while providing
zero protection against leakage.

Proposed architecture security. Figure 6b illustrates our
zero-secret design: containers possess only non-secret artifacts
such as key handle, public key, and endpoint configuration,
so container inspection reveals zero API keys or private
keys. All signature operations are delegated to KMS with
workload identity validation, and DPoP proofs bind to specific

request contexts with nonce-based replay protection. At the
Gateway, cryptographic proofs are validated before injecting
the provider API key, such that legitimate requests succeed
with HTTP 200 only after multi-layer verification.

G. Runtime Overhead

Our architecture adds minimal cryptographic overhead to
AI service requests. We measured performance across three
phases on Intel x86 64 with Ubuntu 22.04 LTS.

Bootstrap overhead (one-time). Table III shows initial
registration costs totaling approximately 20ms for network
round-trips plus 82µs for ML-DSA-44 keypair generation in
KMS. This one-time cost is negligible for container lifecycle
(hours to days).

TABLE III: Bootstrap overhead (one-time per container)

Component Operation Time
Identity Issuer JWT request ∼5 ms
KMS JWT verify + KeyGen ∼5 ms

(ML-DSA-44 KeyGen) (0.082 ms)
Auth Server Client register ∼5 ms
Gateway DPoP key register ∼5 ms
Total Bootstrap ∼20 ms

Token acquisition overhead (per-session). Table IV re-
ports that per-session token acquisition adds approximately
10 ms. Most of this overhead comes from network latency to
the KMS; the signing and verification computations contribute
0.606 ms and 0.315 ms, respectively.

TABLE IV: Token acquisition overhead (per-session)

Component Operation Time
Client DPoP JWT creation 0.002 ms
Client → KMS Network + Sign ∼5 ms

(ML-DSA-44 Sign) (0.606 ms)
Auth Server JWT parse + Verify 0.316 ms

(ML-DSA-44 Verify) (0.315 ms)
Auth Server Token generation 0.001 ms
Total (crypto only) 0.921 ms
Total (with network) ∼10 ms

API request overhead (per-request). Table V reports
per-request costs: 0.917 ms for cryptographic processing and
approximately 5 ms for KMS network latency.

TABLE V: API request overhead (per-request)

Component Operation Time
Client SHA-256 (ath) 0.001 ms
Client DPoP JWT creation 0.002 ms
Client → KMS Network + Sign ∼5 ms

(ML-DSA-44 Sign) (0.606 ms)
Gateway JWT parse + Verify 0.316 ms

(ML-DSA-44 Verify) (0.311 ms)
Total (crypto only) 0.917 ms
Total (with network) ∼6 ms

Overhead analysis. The per-request overhead is primarily
driven by network latency to the KMS. The cryptographic



(a) Traditional bearer token (vulnerable to leakage)
(b) Proposed KMS-based architecture with no provider API keys
and no private signing keys in containers

Fig. 6: Comparison of authentication architectures

component is 0.917 ms, of which ML-DSA-44 signing con-
tributes 0.606 ms and verification accounts for the remainder.

Impact on AI services. On HuggingFace, where an API
call has a 50 ms baseline, the end-to-end overhead is approx-
imately 6 ms. For inference workloads with latencies in the
200–2000 ms range, this additional cost becomes marginal in
practice. With token caching enabled, the overhead reduces to
0.917 ms, which is below 1% for most workloads.

Comparison. Bearer tokens introduce no additional over-
head but provide no protection against credential leakage.
In contrast, our architecture adds approximately 6 ms while
enabling zero-secret containers, proof-of-possession, replay
protection, and quantum resistance.

III. CONCLUSION

We presented a leak-resilient authentication framework for
AI services that removes provider API keys and private
PoP signing keys from client-side artifacts. The framework
enforces gateway-mediated proof-of-possession using KMS-
backed ML-DSA signing and does not require changes to
provider-side interfaces. We evaluated a prototype with Hug-
gingFace and found that extending the approach to addi-
tional providers is primarily a gateway-side integration effort.
Overall, the results support practical leak-resilient AI service
authentication with limited overhead.
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