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Abstract—Classroom discourse provides rich evidence of how
learners articulate and connect concepts, yet most discourse
analysis remains offline due to the cost of transcription and
manual coding. This paper addresses the practical systems prob-
lem of maintaining an interpretable representation of conceptual
structure from a stream of instructional utterances under online
constraints. We present a prototype pipeline that constructs an
evolving entity–relation knowledge graph by using large language
models for utterance normalization and schema-constrained ex-
traction of concept entities and directed relations. To control
redundancy under repeated updates, the pipeline incrementally
consolidates semantically equivalent entities via embedding-based
candidate generation with optional context-aware verification,
and filters low-information relations to retain readable structure.
We evaluate feasibility in a reproducible replay-based setting and
report online measurements of final graph size, end-to-end update
latency, and LLM call counts. We further study component
contributions through an ablation suite aggregated over three
random seeds.

Index Terms—Classroom discourse, streaming analytics,
knowledge graphs, large language models, entity and relation
extraction.

I. INTRODUCTION

Instructional talk in classrooms and tutoring sessions reveals
how learners frame claims, introduce concepts, and revise
explanations during interaction. Discourse-centric learning an-
alytics and discourse analytics therefore treat language as a
primary trace of learning processes [1], [2]. For instructors,
however, discourse only becomes actionable when it can be
summarized into a representation that remains legible within
a class period. This need is consistent with the teacher-
facing analytics and classroom orchestration literature, which
emphasizes timely, compact views for inspection and reflection
during ongoing activities [3]–[5].

In practice, classroom discourse analysis is still predom-
inantly offline. Manual transcription and qualitative coding
are costly, and results rarely feed back into instruction while
interaction is unfolding [6], [7]. Although educational text
mining has improved scalability, many pipelines assume post-
hoc processing or curated written artifacts [8]. Streaming in-
structional discourse introduces additional systems constraints:
utterances are often ill-formed, content evolves over time,
and naively accumulating extracted concepts quickly yields
redundant and cluttered outputs. Consequently, the core chal-

lenge is not only extracting concepts, but also maintaining an
interpretable structure under repeated updates.

Large language models (LLMs) provide a practical mecha-
nism for normalizing noisy language and extracting structured
entities and relations with limited task-specific training [9]–
[11]. In educational contexts, LLMs have shown promise for
classroom dialogue analysis, while reliability and evaluation
remain central concerns [12]. In an online setting, direct LLM
extraction can still overwhelm users: overlapping mentions,
near-synonyms, and generic relations accumulate rapidly un-
less explicit redundancy control is built into the update loop.

This paper presents a prototype system for streaming knowl-
edge graph construction and visualization from classroom
discourse. The system processes utterances in update batches,
performs LLM-based normalization and schema-constrained
extraction, and maintains a compact evolving graph through
incremental entity consolidation and relation filtering. The
design targets general instructional discourse settings (e.g., tu-
toring, group discussion, seminar interaction) where utterances
arrive continuously and compactness is required for inspec-
tion. To enable controlled observation of online behavior, we
evaluate feasibility using a replayable discourse stream and
report online measurements of graph size outcomes, end-to-
end update latency, and cost proxies.

Contributions. This paper makes the following contribu-
tions:
• A streaming pipeline that applies LLM-based normal-

ization and structured extraction of concept entities and
directed relations from instructional discourse streams.

• An incremental consolidation mechanism that merges se-
mantically equivalent entities and filters low-information
relations to control redundancy under repeated updates,
while preserving evidence links for inspection.

• A reproducible replay-based evaluation and ablation suite
(multi-seed aggregation) that characterizes online behav-
ior in terms of final graph size, update latency, and LLM
call counts.

II. RELATED WORK

A. Classroom Discourse Analytics

Discourse analytics and discourse-centric learning analytics
study how learning processes can be inferred from interaction



traces, including classroom discussion [1], [2]. A recurring
requirement is that discourse-derived information should be
summarized in forms that remain interpretable under class-
room time constraints. This requirement is closely connected
to the classroom orchestration and teacher-facing analytics
literature, where compact representations support monitoring
and reflection during activities [3]–[5]. Most discourse analyt-
ics pipelines, however, are developed and evaluated in offline
settings and do not explicitly address online maintenance
under repeated updates.

NLP-based approaches have been surveyed as practical tools
for educational discourse modeling, while noting persistent
challenges such as domain sensitivity, annotation cost, and
evaluation reliability [7], [8]. More recently, LLMs have been
evaluated for classroom dialogue analysis, indicating potential
but also underscoring the need for careful constraints and
validation [12]. In contrast to offline analysis and post-hoc
summarization, our focus is the systems problem of sustaining
a compact representation under continuous updates, where
redundancy control and provenance become first-order design
requirements.

B. Knowledge Graphs in Education

Knowledge graphs provide a general framework for rep-
resenting entities and relations and have been widely used
to integrate heterogeneous knowledge sources [13]. In educa-
tional applications, knowledge graphs have been constructed
from learning resources to support downstream tasks such as
recommendation and assessment; KnowEdu is a representative
system [14]. Graph-based learner modeling has also leveraged
concept graphs as structured priors, for example in graph-
based knowledge tracing where concept dependencies are
encoded as edges [15]. These lines of work typically assume
batch construction or the availability of a predefined concept
structure.

Graph representations have also been used to support
qualitative inspection of knowledge structure derived from
text. For example, [16] proposed a graphical interface for
exploring knowledge structures extracted from text, and con-
cept map generation pipelines have identified concepts and
linking phrases to visualize semantic structure [17]. While
these approaches demonstrate the utility of graph-based rep-
resentations for inspection, they commonly operate on offline
corpora and do not emphasize incremental maintenance under
a discourse stream. Our setting differs in that the representation
must be refreshed repeatedly under latency constraints, where
uncontrolled redundancy directly degrades usability.

C. Extraction from Noisy Discourse

Spoken discourse contains disfluencies, fragments, and seg-
mentation ambiguity; utterance-level processing is common in
dialogue and discourse analysis [18], [19]. Information extrac-
tion from such data is challenged by noise and propagation of
upstream errors. LLMs offer a flexible mechanism for nor-
malization and structured extraction of entities and relations
with limited task-specific training [9]–[11]. In educational

contexts, LLM-based analysis has been studied, but reliability
and evaluation remain central concerns [12].

In streaming settings, extraction quality alone is insufficient:
repeated updates introduce redundancy, and representations
can become rapidly cluttered without explicit consolidation
and filtering. This motivates integrated designs that combine
structured extraction with incremental entity consolidation,
relation filtering, and evidence linking so that the resulting
graph remains compact and inspectable over time.

III. SYSTEM OVERVIEW

We model instructional discourse as a time-ordered stream
of utterances. At update step t, the system processes a newly
formed batch Bt and maintains an evolving knowledge graph
Gt = (Vt, Et), where nodes represent consolidated concept
entities and edges represent directed semantic relations ex-
tracted from discourse.

The prototype is implemented as an online loop with a
fixed update cadence. Each update step consists of: (1) batch
formation and storage of utterances with metadata (time,
speaker/channel), (2) LLM-based normalization and schema-
constrained extraction of concept entities and relations, (3) in-
cremental consolidation (entity merging and relation filtering)
to control redundancy, and (4) graph update and visualization
with evidence links for inspection. The pipeline is topic-
agnostic in the sense that it relies on strict output schemas and
similarity-based consolidation; adaptation to specific subjects
is performed through prompt templates and filter lists rather
than retraining.

Figure 1 summarizes the end-to-end flow and highlights two
design choices that are central in streaming settings: (i) the
update loop enforces bounded work per step through batch
formation, and (ii) extracted structures retain provenance links
to supporting utterances for inspection. An optional retrieval
channel can inject course-material context into the LLM stage,
but the experiments in this paper focus on the core online loop.

IV. ONLINE KNOWLEDGE GRAPH CONSTRUCTION

This section describes the online update pipeline that con-
verts a discourse stream into an evolving knowledge graph.
The system is designed to (i) bound work per update step, (ii)
control redundancy under repeated updates, and (iii) preserve
evidence links for inspection.

A. Batch Formation

Incoming utterances are grouped into update batches Bt

using a fixed cadence (every ∆ seconds) and an optional
maximum count per batch. This design bounds computation
and supports repeated refresh under online constraints. For
multi-speaker or multi-channel streams, the system may use
an alternating policy (a fixed number of utterances per channel
per update) to prevent a single channel from dominating the
incremental graph.



Fig. 1: End-to-end pipeline for streaming knowledge graph construction from classroom discourse. The optional course-material
channel (top) provides retrieved context to the LLM stage, while the main online loop (bottom) constructs and updates an
entity–relation knowledge graph for instructor-facing inspection.

B. Normalization, Entity Recognition, and Relation Extraction

At each update step, the system applies a two-stage LLM
workflow: (i) normalization and (ii) structured extraction.

Normalization. Given Bt, the model rewrites ill-formed
utterances into minimally well-formed sentences while pre-
serving semantic intent. The normalization stage targets com-
mon artifacts of spontaneous discourse (fragments, repairs,
informal phrasing) and produces normalized sentences B̂t

with provenance (channel and time). Normalized sentences are
stored to support incremental processing and evidence linking.

Concept entities. From B̂t, the system identifies salient
concept entities. Here, “entities” refer to domain-relevant
concept phrases rather than conventional NER types (e.g.,
person/location). Entities are constrained to short noun phrases
to support stable graph nodes under repeated updates.

Directed relations. The system extracts directed semantic
relations among entities and represents each relation as a
triple (h, r, t). Relation predicates are constrained to concise
directional phrases (e.g., maximum three words) to reduce am-
biguity and facilitate online consolidation. Generic predicates
(e.g., is, has, relates to) are discouraged at extraction time and
may be removed during filtering.

Output schema and validation. Extraction returns a
machine-parseable structure:

entities = [e1, e2, . . .], relations = [(h, r, t), . . .].

Outputs are schema-validated and failures are logged. In our
evaluation suite, we did not observe JSON parse failures across
runs.

C. Incremental Consolidation and Relation Filtering

Streaming extraction produces redundant entities due to
lexical variation and repeated mentions. The system therefore
consolidates entities and filters relations incrementally.

Candidate generation. For each newly extracted entity,
merge candidates are generated using (i) lexical normalization
(case folding, plural/singular normalization, and unambiguous
abbreviations) and (ii) embedding-based similarity against
existing canonical entities. Candidate generation limits veri-
fication cost under streaming constraints.

Optional verification and canonicalization. Ambiguous
candidates can be verified using bounded local context (e.g.,
recent sentences) to avoid over-merging distinct concepts.
When a merge is applied, the system assigns a canonical label
and rewires incident relations to the canonical node. Canonical
labels are selected using brevity and conventional usage.

Relation filtering. Relations are normalized to enforce
consistent direction and reduce duplication. Low-information
predicates are filtered to control clutter. When multiple rela-
tions occur between the same node pair within a short window,
the system retains a reduced set of representative relations to
preserve readability under repeated updates.

D. Graph Update and Rendering

After consolidation, new nodes and edges are appended
to Gt. The visualization encodes provenance (e.g., channel-
specific vs. shared concepts) and emphasizes salient nodes
using a composite centrality score.

We compute a weighted sum of PageRank, degree centrality,
and betweenness centrality on the current snapshot [20], [21]:

score(v) = w1 PR(v) + w2 Deg(v) + w3 Bet(v), (1)



Algorithm 1 Online update for streaming knowledge graph
construction

1: Input: new batch Bt (utterances with timestamps, channel
ids)

2: Output: updated graph Gt = (Vt, Et)
3: B̂t ← NORMALIZE(Bt)
4: (Et,Rt)← EXTRACTENTITIESANDRELATIONS(B̂t)
5: Generate merge candidates via lexical rules and embed-

ding similarity
6: Optionally verify and apply merges; canonicalize entity

labels
7: Normalize/filter relations; rewire relations to canonical

entities
8: Update Vt and Et incrementally; compute salience scores
9: Render updated graph with provenance-aware styling and

evidence links

where w1 + w2 + w3 = 1 and each centrality is linearly
rescaled to [0, 1] per snapshot before aggregation. In our
experiments, we use (w1, w2, w3) = (0.60, 0.25, 0.15) as a
default. For efficiency, we compute betweenness centrality
only when the number of nodes is at most 250; otherwise
we set Bet(v) = 0. Node size and label emphasis follow
score(v), and nodes/edges retain links to supporting utterances
for inspection.

V. PROTOTYPE EVALUATION

This section evaluates the online behavior of the prototype
under a controlled replay stream. We focus on feasibility-
oriented metrics (final graph size, end-to-end update latency,
and LLM call counts) and study component contributions via
ablations.

A. Replay Protocol

We construct a replay stream from an IBM Project Debater
corpus [22] using the topic “We should ban cosmetic surgery”.
Utterances are processed using a fixed-size alternating batch
policy (a small number of utterances per channel per update),
resulting in 14 update steps under the default configuration. To
account for stochastic variation, we repeat each variant with
three random seeds.

In this corpus, labels indicate whether a sentence contains
an argumentative statement for the topic rather than encoding
pro/con stance. Accordingly, the channel identifiers in our
replay are treated as synthetic channels for balanced batch-
ing and provenance-aware visualization, not as ground-truth
debate stances.

B. Qualitative Evolution

Fig. 2 shows three snapshots of the evolving knowledge
graph at early, mid, and late update steps (steps 3, 8, and
14). The snapshots illustrate how new concepts enter the
graph as the stream progresses, how previously introduced
concepts persist, and how incremental consolidation helps
control redundancy under repeated updates.

C. Ablation Suite

We evaluate the contribution of major components
through an ablation suite: (i) disabling normalization
(no_normalization), (ii) disabling LLM merge verifi-
cation while keeping embedding-based candidate generation
(no_llm_merge_verify), (iii) disabling relation filtering
(no_relation_filter), and (iv) disabling pruning in the
visualization stage (no_pruning).

Fig. 3 summarizes final graph size, update latency, and total
LLM call counts (mean±std over seeds). Fig. 4 provides a
qualitative view of relation quality by comparing frequently
observed predicates with and without relation filtering.

D. Measurements

We measure the following online metrics under replay:
• Final graph size: number of canonical nodes and edges

after consolidation and filtering at the end of the replay
stream.

• Update latency: end-to-end time per update step (nor-
malization, extraction, consolidation, rendering).

• LLM cost proxy: total LLM call counts per run (nor-
malization, extraction, and optional verification).

• Compactness proxy: compression ratio C = Mraw/|V |,
where Mraw is the total number of extracted entity
mentions before consolidation and |V | is the number of
canonical entities in the final graph.

The experimental logs additionally store auxiliary metrics
(e.g., per-step growth traces, predicate statistics, and evidence
support sizes), enabling deeper analysis beyond the scope of
this compact report.

E. Key Observations

Table I summarizes the ablation results, and Fig. 3 visualizes
the corresponding trends. First, normalization is the dominant
cost lever. Disabling normalization reduces both end-to-end
update latency and the number of LLM calls, and it yields
a smaller final graph. We treat no_normalization as an
efficiency-oriented ablation, since reduced normalization can
also lower semantic coverage.

Second, disabling LLM-based merge verification
(no_llm_merge_verify) reduces total LLM calls with
little change in latency. This suggests that normalization and
extraction dominate runtime in the current configuration. The
smaller graph under embedding-only consolidation indicates
more aggressive merging, which improves compactness but
may increase over-merging risk.

Third, relation filtering is important for readability under
repeated updates. When filtering is disabled, the final graph be-
comes denser and latency increases. Fig. 4 shows that filtering
suppresses generic predicates and shifts the distribution toward
more informative relations, reducing clutter in the rendered
graph.

Finally, disabling pruning (no_pruning) increases latency
without materially changing the stored graph size, consistent
with pruning primarily affecting visualization-stage cost rather
than extraction and consolidation.



(a) Early stage. (b) Mid stage. (c) Late stage.

Fig. 2: Replay-based demonstration of time-evolving knowledge graph snapshots under the topic “We should ban cosmetic
surgery” at early/mid/late update steps (step 3/8/14).

(a) Final nodes (mean±std). (b) Update latency (mean±std). (c) LLM calls (mean±std).

Fig. 3: Ablation suite summary (mean±std across seeds 41/42/43).

TABLE I: Ablation summary (mean±std across seeds). Latency: seconds per update. Calls: total LLM calls per run. Compr:
raw entity mentions (pre-consolidation) divided by final canonical entities.

Variant Final Nodes Final Edges Lat (s) Calls (total) Compr

baseline 308.3 ± 1.7 310.3 ± 3.4 26.5 ± 1.8 216.7 ± 2.6 1.45 ± 0.00
no_llm_merge_verify 295.0 ± 3.7 310.3 ± 4.0 25.5 ± 1.1 186.0 ± 2.9 1.53 ± 0.01
no_normalization 269.7 ± 2.6 260.7 ± 2.9 17.7 ± 1.0 115.3 ± 1.2 1.41 ± 0.02
no_pruning 309.7 ± 2.1 310.3 ± 3.1 29.4 ± 2.0 218.7 ± 5.0 1.45 ± 0.02
no_relation_filter 323.7 ± 4.6 334.7 ± 5.2 28.6 ± 1.9 215.7 ± 4.8 1.43 ± 0.01

(a) baseline (b) no_relation_filter

Fig. 4: Top predicates with and without relation filtering.

VI. LIMITATIONS AND FUTURE WORK

This work reports a prototype pipeline and a controlled
replay-based evaluation rather than a classroom-wide im-
pact study. First, extraction quality depends on the stability
of normalization and schema-constrained output; errors can
propagate to consolidation. Second, consolidation introduces
a trade-off between compactness and fidelity, and different
thresholds and verification policies may change the resulting
graph structure. Third, our replay uses a debate corpus and

synthetic channels for controlled streaming; evaluating authen-
tic classroom audio transcripts and validating whether channel-
specific and shared concept patterns align with instructional
interpretations remain important next steps. Finally, deploy-
ment in real instructional settings requires careful handling of
consent, privacy, and data retention.

Beyond the debate replay setting, the pipeline is applicable
to other instructional discourse streams where utterances ar-
rive continuously and compactness is needed for inspection.
Future work includes evaluation on classroom and tutoring
data, teacher-in-the-loop studies, and systematic adaptation of
prompts and filtering configurations across subject domains.

VII. CONCLUSION

We presented a prototype pipeline for streaming knowledge
graph construction and visualization from classroom discourse
using LLM-based normalization and structured extraction. The
system maintains a compact evolving graph through incremen-
tal entity consolidation and relation filtering, while preserving
evidence links for inspection. Using a reproducible replay-
based setup, we characterized online behavior through final



graph size, update latency, LLM call counts, and an ablation
suite aggregated across three seeds.
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