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Abstract—In simultaneous localization and mapping (SLAM),
accumulated drift error caused by odometry noise and inefficient
loop closure detection is inevitable limitation for frameworks
such as 2D Cartographer. In recent studies researchers have
introduced ultra-wideband (UWB) to Cartographer and other
SLAM frameworks to alleviate drift accumulation issue, when
using a dense UWB anchor deployment. However, this UWB
infrastructure could be unsuitable for large facilities like long
corridors and industrial plants where the drift occurs most. In
response to such an issue, this paper proposes a resource-efficient
localization framework that tightly couples UWB ranging with
Cartographer through a zone-based single anchor deployment
using an Al-enhanced drift control strategy. The proposed system
employs a hierarchical processing chain consisting of signal
validation, Kalman filtering, exponential smoothing, and two
additional components: a Smart Anomaly Detector for adaptive
confidence assignment and a Drift Predictor for boosting Al
correction. Experiments conducted on a trajectory of approx-
imately 144 m trajectory demonstrate an 85.50% reduction in
mean drift and an 84.82% improvement in RMSE relative to the
pure Cartographer, along with a 52.37% performance gain over
the pure UWB-Cartographer fusion.

Index Terms—Ultra-wideband (UWB), Cartographer, SLAM,
sensor fusion, indoor localization, anomaly detection.

I. INTRODUCTION

Indoor mobile robot operating strictly depends on the
SLAM for enabling autonomous navigation, mapping, and
situational awareness. Google Cartographer has proven to be
one of the most popular SLAM frameworks for 2D LiDAR-
based mapping in real-time [1]. However, due to wheel
slippage, sensor noise, and a lack of loop-closure chances,
Cartographer and other odometry-driven SLAM systems suf-
fer from cumulative longitudinal drift in long corridor-like
environments and large open facilities [2], [3]. This drift
increases uncontrollably over long trajectories in the absence
of trustworthy external references, reducing map consistency
and localization accuracy.

Because of its excellent multipath resilience, durability
under non-line-of-sight situations, accurate time-of-flight rang-
ing and ultra-wideband (UWB) localization has been thor-
oughly studied as an external absolute location reference
for indoor robotics [4], [5]. Previous UWB-assisted SLAM
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techniques that integrate range-based constraints into pose-
graph optimization have shown significant drift reduction [6],
[7]. Nevertheless, the majority of current systems depend on
dense anchor installations to guarantee favorable geometric
observability and continuous coverage [8], [9]. Particularly
in large-scale settings like industrial buildings, warehouses,
extensive corridors and dense infrastructure greatly raises
hardware costs, installation effort, calibration complexity and
long-term maintenance strain [10].

Odometry, LiDAR, inertial sensors, and external positioning
systems have all been included in recent multi-sensor fusion
studies to increase SLAM robustness [11]-[13]. Although
most of these methods improve performance, they are limited
in their capacity to adjust to changing motion dynamics, signal
quality and environmental variables since they rely on static
confidence assumptions and fixed fusion parameters [14].
Furthermore, few current frameworks specifically address how
to decrease UWB hardware deployment burden across long,
open-loop trajectories while maintaining robust drift-bounding
capacity [15].

In order to overcome these difficulties, this study suggests a
resource-efficient UWB-SLAM fusion framework that tightly
integrates UWB ranging with 2D Cartographer using Al-
enhanced drift control and a zone-based single-anchor tech-
nique. The environment is divided into longitudinal zones,
where only one anchor is actively fused at a time, rather than
requiring extensive anchor coverage. This solution preserves
enough geometric constraints to limit drift while significantly
lowering deployment costs and infrastructure complexity. The
proposed architecture uses two lightweight AI components,
in contrast to traditional fixed-gain fusion techniques: (i)
a Smart Anomaly Detector that uses statistical consistency,
rate-of-change behavior, and short-term stability to assign
adaptive confidence scores to UWB measurements, and (ii) a
lightweight Long Short-Term Memory (LSTM) network that
uses temporal sensor patterns to determine the best fusion
weights. The LSTM, with two hidden layers of 32 and 16 units
(about 1,500 trainable parameters), continually adjusts to drift
velocity, signal quality, and motion dynamics throughout a 10-
timestep prediction window by learning from data to forecast
when and how strongly to apply UWB adjustments.
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Fig. 1: Long corridor floor plan.

This work proposes a zone-based UWB-Cartographer fu-
sion framework with the following key contributions:

1) Zone-Based Anchor Selection: In order to minimize
infrastructure costs, only one anchor is selected based on
longitudinal position that is active at any given moment.

2) Al-Enhanced Processing: A Smart Anomaly Detector
provides context-aware confidence scores while a Drift
Predictor performs proactive drift control.

3) Authority Architecture: UWB functions as a bounded
soft constraint, while Cartographer’s transform is abso-
lute for both pose and direction.

4) Proven Performance: Up to 85.50% drift reduction and
84.82% RMSE improvement over pure Cartographer.

II. RELATED WORK

For indoor mobile robots, many SLAM and fusion frame-
works have been developed, especially in GNSS-denied envi-
ronments. For portable indoor mapping and tracking, Nguyen
et al. thoroughly assessed a number of ROS-based 2D LiDAR
SLAM algorithms, such as Cartographer, Gmapping, and Hec-
tor SLAM [16]. Their findings demonstrate that Cartographer
provides good real-time performance and mapping quality,
but they also show that scene geometry and loop-closure
opportunities have a significant impact on performance, which
highlights the necessity for extra absolute references in long,
feature-sparse settings.

UWRB is frequently combined with LiDAR in tightly con-
nected frameworks and has been extensively investigated as
such an external reference. Liu et al. suggested a low-cost map-
ping system that uses graph optimization to combine UWB and
short-range 2D LiDAR, where LiDAR loop closure refines the
map and UWB anchors offer global constraints [17]. Although
their method relies on several anchors and does not specifically
target lengthy corridor-like trajectories, it focuses on lowering
hardware costs without sacrificing mapping accuracy. In order
to reject poor UWB data, Chen et al. introduced an enhanced
closely connected UWB/LiDAR-SLAM system with non-line-
of-sight (NLOS) identification using LiDAR point clouds [18].

Although they showed notable improvements in positioning
accuracy in GNSS-denied environments, the focus is on dense
infrastructure and NLOS handling instead of reducing the
number of anchors over long open-loop courses.

UWB-LiDAR fusion has been used for high-precision object
tracking in addition to robot localization. Li ef al. presented
LUGOT, a LiDAR-UWB object-tracking framework that uses
a customized fusion technique to jointly exploit LIDAR point
clouds and UWB ranging to achieve centimeter-level precision
and zero ID switches [19]. LUGOT shows the potential of
UWB-LiDAR fusion to deliver reliable, high-accuracy spatial
awareness in congested interior situations, despite focusing on
moving-object tracking rather than robot position estimation.

Instead of using dense multi-anchor coverage or only
NLOS-focused filtering, our method specifically focuses on
long and featureless corridor navigation with 2D Cartographer
and aims to reduce UWB infrastructure by using a zone-based
single-anchor strategy along with Al-enhanced, context-aware
weighting of UWB constraints.

III. SYSTEM ARCHITECTURE

A. Experimental Environment

All experiments carried out in a straight indoor hallway
runway that was roughly 72 m long overall. The robot travels
a complete out-and-back trajectory, including a turnaround
area at the far end of the corridor, beginning and ending at
the same spot (Start/End point). The corridor is a difficult
environment for pure LiDAR-based Cartographer since it is
primarily feature-sparse over its length, with parallel walls and
few unique geometric landmarks.

As shown in Fig. 1, four UWB anchors (A, B, C, and
D) are placed along the corridor in fixed locations within
the global map frame. The corridor is roughly divided into
longitudinal segments by the placement of anchors: Anchor B
in the start region, Anchor A in the first middle segment,
Anchor C toward the far middle segment, and Anchor D
near the turnaround area. Using the zone-based single-anchor



strategy, only one anchor is actively fused at a time based on
the robot’s longitudinal location.

B. Hardware Architecture

The proposed system is implemented on ROS2 (Robot
Operating System 2), and the hardware architecture of the
system is structured as shown in Fig. 2.
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Fig. 2: Hardware architecture of the robot system

The proposed UWB-Cartographer robot system has been
implemented with two different units. One of them is the
raspberry pi 4 which is connected to all the sensors (LiDAR,
Odometry and UWB). Another unit (Laptop) is responsible
for running Cartographer and visualizing the map building and
navigation through Rviz.

C. Software Architecture

The proposed UWB-Cartographer robot system architec-
ture consists of a tightly coupled UWB-Cartographer fusion
node that runs in mobile robot equipped with a UWB tag,
LiDAR, and wheel odometry. The node receives two main
input streams: (i) raw UWB distances from multiple anchors
deployed along the corridor, and (ii) the map to base_link
transform from Cartographer, which provides the current robot
pose at 20 Hz. At startup, the fusion node loads the fixed
positions of all UWB anchors in the global map frame and
initializes per-anchor filtering states.

On the UWB side, raw distance measurements from the cur-
rently active anchor pass through a hierarchical preprocessing
pipeline. First, a range validation stage removes physically im-
plausible measurements based on the minimum and maximum
distance defined in the anchors’ position and range setup in the
UWB-Cartographer node package. The remaining samples are
filtered by a scalar Kalman filter to suppress noise and spikes,
followed by exponential smoothing that enforces temporal
consistency in the distance signal. In order to determine
confidence scores [20], the Smart Anomaly Detector is applied
to assess the measurements’ statistical consistency, short-term
stability, and rate of change. The resulting pair is stored in
an internal processed UWB data buffer associated with the
corresponding anchor.
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Fig. 3: Software architecture of the proposed Al based
UWB-—Cartographer fusion pipeline.



For diagnostic and zone selection purposes, the node con-
tinuously accesses Cartographer’s TF (Transform Tree) to
determine the robot’s present position. The odometry system
publishes odom to base_link (raw wheel encoder data), the
cartographer publishes map to odom (drift-corrected global
frame), and TF automatically combines them to generate map
to base_link, which gives the robot’s current posture estimate.
Crucially, the fusion node only uses the TF position for zone
identification and drift computation; it never directly affects
this posture. The zone detection function uses the TF pose to
determine the active longitudinal zone based on the robot’s
x-coordinate. It also applies special handling for turnaround
regions (extended zones at path endpoints) and verifies zone
transitions in accordance with sequential path constraints (for
bidirectional travel between anchors). The optimal anchor for
the current zone is then chosen by the node, provided that the
zone-appropriate anchor has current, correct data. The node
ensures safe degradation to TF-only operation by publishing
an empty landmark list instead of using faulty data if the
necessary anchor is unavailable or its data is stale .

The node uses a multi-stage pipeline to process raw UWB
distance measurements for valid anchors: range validation fil-
ters physically impossible readings, a Kalman filter eliminates
transient spikes, exponential smoothing lowers high-frequency
noise and a Smart Anomaly Detector assigns confidence scores
based on rate-of-change analysis and statistical consistency.
The geometric drift is the difference between the robot’s TF
position and the position suggested by the UWB distance circle
around the anchor’s known location that can be calculated
using this processed distance in conjunction with the TF
pose. The main novelty of this approach is that drift modifies
landmark trust rather than immediately correcting position.
Drift lowers landmark weight in baseline mode (low trust if
high drift). The LSTM Drift Predictor generates an adaptive
gain factor ai_boost in Al mode by analyzing drift history,
drift velocity, robot speed, and context (such as turnaround
vs. straight course). In situations where high drift reflects
TF error rather than UWB error (such as wheel slide during
turnarounds), the LSTM suitably increases correction strength
and, on the other hand, decreases weight during transient
spikes (such as anchor swaps).

A base scaling factor (increased during turnarounds), the
Smart Anomaly Detector’s confidence score, drift-based ad-
justment (1.0 - drift/5m), distance-dependent attenuation (1.0
- distance/20m), transition smoothing (ramped over 10 cy-
cles during anchor switches), and the Al-derived ai_boost
(0.3-2.0x) are all included in the final landmark weight. This
weight and the fixed world-frame position of the anchor con-
stitute a landmark constraint that is submitted to Cartographer
using the /landmark topic. The actual fusion is then carried
out by Cartographer’s pose-graph optimizer, which treats the
TF estimate (via wheel odometry and scan matching) and
the UWB landmark constraint (anchor position + measured
distance + weight) as distinct observations of the robot’s
pose. Higher landmark weights bring the solution closer to
the UWB-implied position when the optimizer uses weighted

least-squares minimization to combine these inputs. Because
Cartographer’s optimizer automatically resolves conflicts be-
tween odometry, scan matching and UWB constraints based
on their relative weights and spatial consistency, this method
guarantees smooth, globally-consistent fusion without position
discontinuities.

In particular, during long, open-loop corridor lengths where
wheel odometry accumulates error and scan matching offers
little correction, the outcome is an updated robot trajectory and
map with dramatically decreased drift. The technique achieves
robust drift correction while preserving stability during tran-
sient anomalies by adaptively weighting UWB landmarks
based on learnt drift patterns instead of directly overriding
TF placements.

D. Zone-Based Anchor Selection

The environment is partitioned into four longitudinal zones
which is defined on the base of anchors. Each anchor’s zone
is defined by the anchor’s name itself. For example, Zone B
is within 18m range from the anchor’s position in the world
map. Same method is applied to fix Anchor A, C and D’s
zone too. This method of binding the range with anchors’
position favors choosing data from nearest anchor instead of
some random anchor. Zones for the anchors are:

1) Zone B: x < 18 m (near turnaround)

2) Zone A: 18m < x < 36 m

3) Zone C: 36 m <z < 54m

4) Zone D: 54m < zx, (far turnaround)

Zone boundary oscillation is prevented with a 20-cycle
cooldown (simls at 20Hz) between anchor transitions, which
is cut in half for responsiveness during turnarounds.

E. Authoritative Pose and Drift

Cartographer’s transform is the authoritative pose estimate
at all times:

-Probot = Pcarto == P(xcano,ycarto)a (1)

where Zcao and Yearo are the Cartesian coordinates that we
get from the Cartographer’s TF data. Then we use them as
robot’s coordinates.

The disagreement between Cartographer and UWB is quanti-
fied as a scalar drift:

drift = || Peario — Pawb

I 2

where P, is the UWB-implied robot position obtained by
projecting the smoothed UWB range along the line from the
anchor to Py Intuitively, drift measures how far the SLAM
estimate has deviated from the external UWB reference. Large
values indicate that Cartographer has accumulated significant
error along the trajectory.

FE. Drift Predictor

To react not only to the current drift but also to its trend, a
drift velocity is estimated over a sliding time window:
drlftt — driftt_N

Vdri =, 3
drift tftN ( )



where drift; is the current drift at time ¢, drift,_ is the drift
N samples earlier, and ¢y is the corresponding timestamp.
The parameter N controls the temporal horizon over which
the change is evaluated. A positive vg;ife indicates that drift is
growing over time (the SLAM estimate is gradually diverging
from UWB), whereas a negative vgr indicates that drift is
being reduced. This quantity is used by our AI model to
decide when to strengthen or weaken the contribution of UWB
landmarks in the pose graph.

G. Landmark Weight

Each UWB measurement is converted into a landmark
constraint with an adaptive weight

W = Wpase * € * Wdistance * Wtransition * @boost s 4

here wyye 1s a global scaling factor that sets the overall impor-
tance of UWB constraints relative to LiDAR and odometry.
The term ¢ € [0.7,1.0] is a confidence score produced by
the Smart Anomaly Detector. It decreases when the UWB
signal appears noisy, inconsistent, or unstable, and remains
close to 1.0 for clean and reliable measurements. The factor
Wgistance 1Mplements distance-dependent attenuation, so that
anchors exert weaker influence when the robot is far away,
which reduces over-constraining effects in distant regions. The
factor Wyansiion Modulates the weight during zone transitions,
damping the impact of UWB when the active anchor changes
in order to avoid sudden jumps at zone boundaries. Finally,
aipoost € [0.3,2.0] is an adaptive correction factor predicted
by a two-layer LSTM network trained on expert demonstra-
tion data. The LSTM receives 10-timestep sequences of four
UWRB distance features, confidence score, geometric drift (TF-
UWRB position discrepancy) and drift velocity from which it
learns context-dependent correction strategies. The network
boosts weights to 1.8-2.0x when high drift coincides with
wheel slip conditions (turnarounds, low speed), suppresses to
0.3-0.5x during transient spikes from anchor switches, and
maintains 1.0x during stable operation. This temporal pattern
recognition enables proactive drift correction based on learned
scenarios rather than reactive threshold rules, with the output
clipped to ensure pose-graph optimization stability.

IV. RESULTS ANALYSIS

A. Performance Comparison

In this study, we evaluate three variants of the SLAM
system: (1) the pure Cartographer (Baseline), (2) Cartographer
enhanced with UWB sensor fusion (UWB-Enhanced), and (3)
our proposed Cartographer-UWB system with Al-driven drift
correction (Proposed).

TABLE I: Performance Comparison (in meters)

Metric Baseline | UWB-Enhanced | Proposed
Mean Drift 4.15 1.26 0.60

Std Dev 2.84 1.60 0.47
Max Drift 10.36 6.11 2.31

RMSE 5.03 2.05 0.76

For safe navigation and precise mapping in our indoor
corridor environment, we consider a mean position drift of
less than 1.0 m to be acceptable. Our test corridor is 2.54 m
wide, so keeping mean localization drift below 1.0 m ensures
the robot remains within the corridor and preserves sufficient
lateral clearance to both walls for safe navigation and docking
in our setup. Under this criterion, the Proposed fusion (mean
drift 0.60 m, max drift 2.31 m) is acceptable, whereas the
Baseline configuration (mean drift 4.15 m) is not.

B. Aggregate Metrics and Improvements

Key improvements are:

1) UWB-Enhanced vs. Baseline: 69.56% mean drift reduc-
tion.

2) Proposed vs. UWB-Enhanced: 85.50% mean drift and
85.88% RMSE reduction.

3) Proposed vs. UWB-Enhanced: 52.37% additional mean
drift reduction.

C. Drift comparison
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Fig. 4: Drift comparison overtime. Top: direct drift comparison
over time for all three configurations. Middle: drift reduction
of UWB-Enhanced relative to Baseline (positive is better).
Bottom: drift reduction of Proposed relative to Baseline.

Drift over time for Cartographer without UWB, the basic
UWB-—Cartographer fusion, and the proposed Al-based fusion
are compared in Fig. 4. The top plot demonstrates that the
baseline fusion substantially mitigates these errors, while the



“Baseline” case accumulates huge drift peaks above 9 m. For
nearly the whole run, the Proposed approach keeps drift at
minimal levels. Drift reduction in comparison to the “Base-
line” is expressed in the lower subplots, showing that the
Proposed fusion routinely produces positive and significantly
greater reductions than the Baseline.

D. Map comparison

Pure Cartographer

Cartographer with
UWB and Al

{_arf_\ [

Fig. 5: Map generated in the proposed robot system without
and with UWB and AL

The map in Fig. 5 was generated in the environment shown
in Fig. 1 using Cartographer and visualized in Rviz. In Fig. 5
we can see the difference between pure Cartographer and
Cartographer with UWB and Al generated map, which proves
that drift reduction also affects the map generation as our
system is capable of correcting drift accumulation in real
time. This ultimately improves the map quality by reducing
overlapped issue and generates clearer map.

V. CONCLUSION

This research developed a resource-efficient UWB-SLAM
fusion system that uses a lightweight Al model and a zone-
based single-anchor method to tightly integrate UWB range
with 2D Cartographer. The UWB-Enhanced method decreases
mean drift from 4.15 m to 1.26 m (a 69.56% improvement) and
RMSE from 5.03m to 2.04 m (an 80.18% improvement) when
compared to pure Cartographer, according to experiments
conducted in a 72m feature-sparse corridor. In addition to
lowering drift standard deviation by 83.45%, the proposed
system also reduces mean drift to 0.60m and RMSE to
0.76 m, which represent gains over the baseline of 85.50% and
84.82%, respectively. These findings demonstrate that zone-
based single-anchor deployment, in conjunction with drift
prediction and adaptive anomaly detection, may successfully
constrain longitudinal drift in the absence of dense UWB
infrastructure, enhancing long-corridor SLAM accuracy and
consistency.
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