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Abstract—Private 5G deployments often coexist in shared
spectrum, motivating accurate yet lightweight prediction of
received/interference power for inter-operator interference co-
ordination. We propose a hybrid interference estimator for sub-
6 GHz private 5G that combines a site-general empirical baseline
with site-specific corrections derived from public geospatial data.
The estimator integrates (i) an empirical baseline anchored to
dominant distance dependence, (ii) a CNN-MLP residual correc-
tion using satellite imagery and 3D city maps, and (iii) a blockage-
aware attenuation term for NLOS links computed from 3D city-
map geometry, incorporating diffraction and proximity-reflection
effects. To avoid a fully black-box model, the learning component
estimates only the site-specific residual AP relative to the
baseline, while distance dependence and blockage-induced NLOS
propagation are retained in the physical/empirical components.
Outdoor measurements show that the proposed method reduces
the underestimation rate (OVRT) while maintaining or improving
RMSE/MAE/STD compared with conventional approaches, at
practical computational cost.

I. INTRODUCTION

Because private 5G deployments often coexist in shared
spectrum, network planning requires inter-operator interfer-
ence coordination. A key input to coordination is the predicted
received power (or path loss) over a service area, which
determines separation distances, guard margins, and candidate
deployment locations. In practice, received power is frequently
predicted using lightweight, site general models that ignore
local obstructions; conservative separation distances are then
imposed, reducing spectrum efficiency [1]. High-fidelity meth-
ods such as ray tracing can improve accuracy by explicitly
modeling interactions with buildings and terrain, but they incur
substantial computational cost and are often impractical for
large-scale or iterative planning. Conversely, many empirical
models capture distance-dependent path-loss trends but require
site-specific calibration to reflect local morphology and block-
age conditions [2].

This paper addresses the accuracy—efficiency gap by com-
bining data-driven and physics-based components. Specif-
ically, we improve prediction accuracy without excessive
overhead by integrating (i) an empirical baseline anchored
to the dominant distance dependence, (ii) a learned residual

correction that injects site-specific environmental factors in-
ferred from satellite imagery and 3D city maps, and (iii) a
blockage-aware attenuation model computed from 3D city-
map geometry for NLOS links, incorporating diffraction and
proximity-reflection effects. By using public geospatial data
and lightweight computations, the proposed approach targets
practical deployment scenarios where many candidate links
must be evaluated under limited computation budgets.

II. PROPOSED METHOD
A. Overview: Processing Flow for LOS and NLOS Links

Fig. 1 first classifies each TX-RX link as LOS or NLOS
using only 2D footprint intersection tests and 3D height
lookups in the city map. After the classification, received
power is estimated by selecting one of the following branches:
« LOS branch We estimate the LOS received power
by an ML-assisted empirical model. An extended-Hata
baseline captures the dominant distance dependence,
while a CNN-MLP predicts RU-specific residual param-
eters (AC, A«) from RU-surrounding imagery and 3D-
map-derived height features. The corrected path loss is
Lest <d> :ALbase(d) + ALpred(d)’ yielding PTA,LOS(d) =
Prirp — Lest (d). R

e NLOS branch We start from the LOS estimate P, 1,0s
and explicitly model blockage-induced excess attenua-
tion. Using 3D map geometry, we search a diffraction
path around obstructing objects and compute the single
knife-edge diffraction loss J(v). In addition, we op-
tionally add a proximity reflection gain GG, when non-
blocking structures exist near the receiver. The NLOS
received power is then P, nios = Prros — J(v) + G,

This design keeps the computation lightweight: LOS relies
on a fixed baseline plus an RU-conditioned residual model,
while NLOS adds only map-derived diffraction/reflection
terms when blockage is detected.

B. LOS/NLOS Classification with 3D Maps

Our method first determines whether the target estimation
point is in LOS or NLOS with respect to the RU. We



project the TX-RX segment onto 2D and test intersections
with building footprints; for each intersection at distance
ratio @ € (0,1), we compare the path height z(«) with the
building height H(«). LOS holds if z(a) > H(a) for all
intersections; otherwise NLOS. This requires only polygon—
segment tests and height lookups; the complexity is O(Ny)
with N, intersected footprints.
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Fig. 1. Lightweight LOS/NLOS classification using 3D city maps.

C. Received Power in LOS: Machine Learning Assisted Em-
pirical Model

1) Inputs and Metadata: Inputs for training and inference
are: (i) field measurements (RU ID, receiver coordinates,
and Reference Signal Received Power(RSRP)[dBm)]), (ii) RU
metadata (e.g., RU ID, system category, RU location, transmit
power, antenna gain, etc.), (iii) RU-surrounding satellite/aerial
imagery, and (iv) a 3D city model around the RU. These are
obtained from: (i) PCTEL Gflex scanning-receiver measure-
ments, (ii) licensing information and RU catalog specifications,
(iii) aerial photographs provided by the Geospatial Information
Authority of Japan (GSI), and (iv) PLATEAU 3D city models.

2) Distance-Dependent Trend: Fixed Extended-Hata Base-
line: The dominant distance dependence is preserved by
an extended Hata model without any environment-category
correction. Training and inference always use this baseline as
the anchor. The baseline path-loss model is

Lpase(d) = 46.3 4 33.910g, (famz) — 13.8210g,o(hs) — a(hy)

+ (44.9 — 6.5510g 4 (hs)) 10g 10 (dikm ) "
where fyu, is the carrier frequency in MHz, dy,, is the
TX-RX distance in km, h; is the RU antenna height, A, is
the receiver antenna height, and a(h,) is the receiver-height
correction term.

3) Residual Definition in the Path-Loss Domain: Measured
RSRP is mapped to measured path loss as

Lmeas = Pt:v - RSRPmeaS~ (2)

The learning target is the excess loss (residual) over the
baseline:

- j;base- (3)

This decomposition keeps distance dependence in the baseline
and assigns environment dependence to the residual.

4) Extraction of Environmental Features: For each RU,
we construct a 4-channel tile by combining RU-surrounding
satellite imagery (RGB) with a depth/height channel derived
from the 3D city map (e.g., building height above ground).
The tile is reshaped and normalized. A CNN acts as an
environment feature extractor: it compresses the 4-channel

ALtrue = Lmeas

tile into a compact embedding vector that summarizes site
characteristics (e.g., building density, vegetation/open areas
visible in imagery, and 3D obstruction patterns captured by
the depth/height channel).
5) Training: The ML module predicts RU-specific param-
eters gy = [AC, Aqa]. The residual is modeled as
ALpred(d) =AC+ A« logw (dkm)7 4)
where AC' is an RU-specific bias and A« adjusts the residual
slope versus log-distance. Measurement points are grouped by
RU, and train/validation splits are performed at the RU level.
CNN+MLP parameters are optimized to minimize the MAE
between ALpeq and ALy over all measurement points.
Training is repeated for 60—100 epochs and the best model

is saved.
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Fig. 2. Training process of the ML-assisted empirical model.

6) Inference: Corrected Path-Loss Estimation: Given satel-
lite imagery, the 3D city model, and RU metadata around the
target site, the model estimates (AC, A«). For any distance
d»

Lest (d) = i’base(d) + ALpred (d)7 (5)

and the LOS received power is estimated as

ﬁr,LOS(d) = Prirp — Lest(d), (6)

where Prirp denotes the RU EIRP. In this paper, we evaluate
P, using RSRP.

This yields a predicted curve (path loss / received power)
as a function of distance.
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Fig. 3. Inference process of the ML-assisted empirical model.

D. Received Power in NLOS: Blockage-Aware Attenuation
Model

1) Path Estimation: For obstructing objects, we compute
the shortest TX—RX path that passes along the object edges
while remaining unblocked.
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Fig. 4. Search diffraction path around obstructing objects.

2) Blockage-Induced Effects: We add the ITU-R single
knife-edge diffraction loss J(r) and a proximity reflection gain

G,

| d \ffrag}»l‘i‘i‘w point~

dominant path

P.npos = Prros — J(v) + Gy, @)

where ﬁr,LOS is the received-power estimate from the LOS
model.

Let dy,ds be the distances from the knife-edge to TX/RX
and h the clearance above the straight line joining TX and RX
(negative if below). With wavelength A, the Fresnel diffraction
parameter is [3]:

\F h/di + ds
d1 d2 Vdida

The knife-edge diffraction loss J(v
by:
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Fig. 5. Knife-edge diffraction model.

Empirically, reflections correlate with nearby wall distance;
we add G, when non-blocking structures exist within 10 m of
the RX (e.g., G, = +5dB).

III. EXPERIMENTS
A. Setup and Metrics

Outdoor trials used multiple experimental private-5G sta-
tions (Exp.) and multiple base stations of a commercial
private-5G service (Com.) in an urban area. A PCTEL Gflex
logged RSRP at each location with position and RU ID.
TX power, antenna gains/heights, and other RU parameters
were taken from operator-provided information and licensing
information; these were provided as metadata together with
the system type, and kept consistent within each system.

For the ML-assisted empirical component (LOS), RU-
centric 4-channel tiles were formed by concatenating aerial
RGB imagery and a height (depth) tile derived from
PLATEAU CityGML [4]. Tiles were cropped around each
RU, resized, and normalized. Training/validation used RU-
level LOEOCYV (leave-one-environment-out cross-validation),

v < —0.78,

holding out all samples of one RU to test generalization to
unseen sites.

For blockage-aware attenuation in NLOS, 3D city-model
data were converted to 2D building footprints with height
attributes, aligned to the measurement coordinates, and used
for LOS/NLOS judgment and blockage-impact calculations
(e.g., diffraction and reflection).

Metrics are RMSE, MAE, and STD of the prediction
error (dB), and the measured-over-estimate ratio (measured
/ estimated).

#{i|pr,i<Pr,i}

OVRT(%) = 100 i

(10)

Smaller OVRT is preferable for interference protection. Base-
lines: the Ministry of Internal Affairs and Communications
(MIC) private-5G model [1] and ITU-R P.1411 [5].

B. Results: LOS Path-Loss Estimation by an ML-Assisted
Empirical Model

We collected measurements in 10 environments and eval-
uvated the ML-assisted empirical model using RU-level
LOEOCY, holding out all samples of one RU for testing and
training on the remaining RUs. The ML component learns
only the excess loss relative to a fixed baseline, ALtye =
(P —RSRPeas) — Liase, from RU-centric 4-channel images
(aerial RGB + depth/height from PLATEAU CityGML) and
RU meta features.

Fig. 6 shows results for one of our RU sites - Fuda3NS,
illustrating that the model compensates for an RSRP shift due
to catalog—deployment mismatches and captures changes in
the attenuation curve across site conditions.

Across the 10 environments (N = 9604 samples), Ta-
ble I summarizes the RU-level LOEOCV results: the mean
MAE improved from 37.04dB (extended Hata without en-
vironment correction) to 7.57dB (ML-assisted), and MAE
improved in 9/10 environments, ranging from —2.16dB to
+39.14 dB. In contrast, the mean OVRT increased from 1.07%
to 48.13% (decreased only in 2 environments), consistent with
the baseline’s positive bias being reduced toward near-zero
bias by ML (Table I). Therefore, interference-protection use
requires a conservative margin (e.g., a validation-calibrated
global offset). The results suggest that many system type—Com
RUs exhibit a substantial mismatch between the licensed (or
nominal) transmit power and the actual radiated power. Even
without environmental inputs, the ML model can estimate this
mismatch, which appears to be a major contributor to the MAE
reduction.



TABLE I
PER-ENVIRONMENT LOEOCYV RESULTS OF THE ML-ASSISTED EMPIRICAL MODEL (LOS).

Env. System N  MAEpase MAEwmT, AMAE  AMAE[%] OVRThase OVRT ML, AOVRT
[dB] [dB] [dB] [%] [%] (pp]

Chofu2 Com. 1184 34.96 6.99 27.97 80.0 0.0 68.4 68.4
Fuda3EW Com. 574 50.61 11.48 39.14 71.3 0.0 2.6 2.6
Fuda3NS Com. 880 46.99 9.16 37.83 80.5 0.0 224 224
Fuda4 Com. 1018 27.18 9.83 17.35 63.8 0.0 88.8 88.8
Fuda6 Com. 1757 38.62 6.28 32.33 83.7 0.0 35.6 35.6
Kojimal Com. 1378 39.67 8.81 30.85 71.8 0.0 9.5 9.5
Kojima3 Com. 2636 35.01 5.78 29.23 83.5 0.0 70.3 70.3
Kyutech Exp. 29 12.37 8.89 3.48 28.2 6.9 41.4 34.5
NICTKoganeil Exp. 67 8.16 10.31 -2.16 -26.5 65.7 62.7 -3.0
UEC Exp. 81 7.05 5.00 2.05 29.0 70.4 39.5 -30.9
Overall 9604 37.04 7.57 29.47 79.6 1.1 48.1 47.1

TABLE II
%0 Measured STATISTICS AT UEC (NLOS).
i Model RMSE[dB] _ MAE[dB] STD[dB] _ OVRT[%]

a0 Proposed 7.57 5.87 5.58 17.1

gg_sR/%]fcl)]S) 26.01/590 2533/447 592/585 0/435
601 MIC 6.60 5.12 5.87 715

RSRP [dBm]

—80 1

—100 1

-120

0 20 40 60 80 100 120
Distance from RU [m]

Fig. 6. Estimated vs. measured RSRP at Fuda3NS (LOS).

C. Results: NLOS Received-Power the

Blockage-Aware Attenuation Model

Estimation by

We evaluate the blockage-aware attenuation model under
NLOS conditions at the UEC campus (RU height: 1.55 m). The
NLOS received power is computed by adding diffraction loss
and a proximity-reflection gain to the LOS estimate, explicitly
capturing blockage-dependent attenuation. As shown in Fig. 7
and Table II, the proposed method improves RMSE/MAE/STD
versus the MIC model and reduces OVRT (71.5% — 17.1%),
implying fewer underestimations and safer interference coor-
dination with smaller guard margins. Compared with ITU-
R P.1411, RMSE/MAE are lower at UEC NLOS, while OVRT
is not consistently reduced.
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Fig. 7. Estimated vs. measured RSRP at UEC (NLOS).

IV. EVALUATION

A. Contribution of Input Modalities to ML Performance

To investigate the contribution of the input data used by
the ML model, we compared the MAE among the following
settings: (i) without ML, (ii) with no environmental imagery
(NoIlmage), (iii) with only building-height imagery (Depth),
(iv) with only RGB imagery (RGB), and (v) with both RGB
and depth imagery (RGBD). The results are shown in Fig. 8.

Compared with the ML model without environmental im-
agery (Nolmage), the MAE change introduced by adding
RGBD imagery ranged from a best-case improvement of
1.9 dB to a worst-case degradation of —1.1 dB, indicating that
the environmental information was not effectively exploited for
some RUs. In contrast, the results suggest that many system
type-Exp RUs show a consistent MAE improvement in the
order of: without ML, Nolmage ML, and RGBD-input ML.
Relative to Nolmage ML, the MAE improvement gained by
RGBD imagery was up to 7.4 dB and at least 0.8 dB. These
results suggest that challenges remain in selecting and ensuring
the quality of the input data provided to the model.
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Fig. 8. Comparison of MAE across input modality settings (without ML,
Nolmage, Depth, RGB, and RGBD).



B. Computational Cost Comparison

Table III summarizes, for each scenario, the end-to-end run-
time of the proposed model (Python, single CPU thread) and
Remcom Wireless InSite’s X3D ray tracing (RTX 4070 SU-
PER, 0.25° angular resolution, up to six reflections and one
diffraction). Although X3D ray tracing is GPU-accelerated, it
still incurs approximately 3 x 102 to 5 x 103 times higher com-
putational cost than the proposed model in our experiments.

TABLE III

TOTAL RUNTIME OF THE PROPOSED MODEL AND WIRELESS INSITE X3D
RAY TRACING, AND THEIR RATIO.

Scenario Ngist  Proposed [ms] ~ X3D RT [ms]
Kyutech LOS 103 11.34 3.67x103
5 x 103 18.15 8.69%103

10 23.77 21.09%103

UEC LOS 103 10.71 11.56x103
5 x 102 17.45 56.26x103

10% 24.98 126.44x103

UEC NLOS 103 11.98 427x10°
5 x 102 21.24 13.92x103

104 32.14 39.64x103

C. Discussion on OVRT and Conservative Margin

According to the experimental results, although the pro-
posed method reduces the overall prediction error, the under-
estimation rate, denoted by OVRT [%], increases, which is
insufficient from an interference-mitigation perspective. This
behavior stems from the training objective, which is designed
to minimize the mean absolute error (MAE). Figure 9 com-
pares the predicted and measured values (i.e., the ground-truth
values) obtained by the proposed method and the conventional
Hata model. From this comparison, it is confirmed that the
proposed method reduces outlier-like errors while exhibiting
an approximately symmetric error distribution centered around
the ground-truth values regardless of the received power level.
Therefore, when a conservative design is required, introducing
a margin of 10-20 dB can reduce OVRT.
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Fig. 9. Estimated vs. measured (ground-truth) RSRP.

V. CONCLUSION AND FUTURE WORK

We proposed a lightweight hybrid interference estimator
for Sub-6 GHz private 5G by combining an extended-Hata
baseline, an ML-based residual correction from RU-centric
RGB-+height tiles, and a 3D-map-based blockage model for
NLOS. LOEOCYV over 10 environments (N = 9604) reduced
the mean MAE from 37.04dB to 7.57dB. For NLOS at
UEC, the blockage model reduced OVRT from 71.5% to
17.1% versus the MIC model. Future work includes calibrating
conservative margins for interference safety and extending the
blockage modeling and validation.
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