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Abstract—Deep underground mining demands monitoring systems
with ultra-low latency and high communication resilience—requirements
poorly met by cloud-dependent wireless sensor networks (WSNs). This
paper presents NeXNet, an AI-driven Edge-IoT framework that addresses
critical challenges of real-time hazard detection in communication-limited
environments. NeXNet integrates two key innovations: (i) 8-bit quantized
1D-CNN Edge-AI model for on-node MCU inference and (ii) self-healing
LoRa mesh protocol for adaptive, fault-tolerant routing. Results show
reduction in alert latency from 6.5 secs to 0.4 secs, while maintaining
> 90% packet delivery ratio (PDR) within 15 secs after node failure.
NeXNet thus provides low-power, resilient and time-critical monitoring
framework that significantly improves underground mine safety.

Index Terms—Edge-IoT sensing, Airflow Pattern, Hazard Prediction,
Deep Canadian Mining

I. INTRODUCTION

UNDERGROUND mining plays a vital role in Canada’s econ-
omy, yet deep-mine environments present severe safety risks

related to ventilation, hazardous gas accumulation, and structural
instability. Poor airflow, sudden gas leaks, and undetected vibrations
can escalate into catastrophic events such as explosions or col-
lapses. Existing monitoring systems—often built on fixed sensors and
centralized data processing—are expensive, inflexible, and largely
reactive [1]. Their dependence on surface-level analysis contributes
to high latency, delayed hazard detection, and increased maintenance.

Our work introduces a robust alternative to an autonomous wireless
sensor network that integrates Internet of Things (IoT) technologies
with on-device artificial intelligence (AI) for real-time environmental
monitoring [2]-[3]. Each sensor node continuously measures airflow,
temperature, humidity, gas concentrations, and vibration signatures.
Equipped with built-in Edge AI, nodes can analyze conditions lo-
cally—even without internet connectivity—and issue early warnings
before hazards escalate. By combining Edge AI processing, a resilient
LoRa mesh architecture, and ultra–low-power operation, the proposed
system aims to enhance safety, responsiveness, and operational effi-
ciency within deep-mine environments.

Our proposed system key contributions are further highlighted as:
• Innovation A: We promoted AI-based NeXNet using a foun-

dation 8-bit Quantized 1D-CNN model that run on tiny micro-
controllers (MCUs) underground without needing the internet.

• Innovation B: We promoted self-healing LoRa Mesh NeXNet
system that runs on decentralized gateway feedback mechanism.

Through these advancements, the system establishes a foundation for
safer, smarter, and more proactive underground mining infrastructure.
The primary of NeXNet lies in the synergetic integration of on-
device inference and a decentralized mesh protocol, ensuring that
safety alerts are generated in <0.5s even when the primary network
backbone is compromised.

II. RELATED WORKS AND PROBLEM FORMULATION

Existing underground mine monitoring solutions fall short in
two areas essential for deep Canadian mines: real-time autonomous

decision-making and reliable long-range communication with self-
healing capability.

1) WSNs and Traditional Monitoring: Traditional Wireless
Sensor Networks (WSNs), often based on ZigBee, have been
used to measure temperature, humidity, gas levels, and airflow
with reasonable accuracy [4]-[5], [11]. However, their short-
range links require dense node deployment, resulting in high
installation and maintenance costs. More critically, these sys-
tems rely on centralized processing [5]—sending raw data to
surface servers—which introduces latency and prevents rapid,
autonomous hazard response in large, complex mine tunnels.

2) LoRa and LPWAN Technologies: LPWAN solutions such as
LoRa have gained traction due to their long-range and low-
power performance. Prior studies [1]-[3], [6]-[8] show that
LoRa can maintain communication across extended under-
ground passages and sustain battery life using adaptive data rate
mechanisms. Despite these benefits, LoRa systems typically act
as simple data-forwarding pipes, offering little to no on-device
intelligence. Without edge-level processing, they cannot detect
subtle airflow changes or gas anomalies independently, making
them dependent on continuous backhaul connectivity—a major
limitation for autonomous mine safety.

3) Edge AI for Industrial Sensing: Recent advances in Edge
AI demonstrate that machine learning models can run directly
on microcontrollers for real-time detection tasks, as shown
in electronic-nose–based gas identification systems achieving
near-perfect accuracy [9]-[11]. Yet, these solutions are gen-
erally deployed as isolated units without support for mesh
networking or self-healing communication. They lack the re-
silience needed to maintain connectivity after node failures,
structural shifts, or seismic disturbances—conditions common
in deep mines.

A comprehensive comparison table in Fig. 1 detailing WSNs, LoRa
LPWAN, Edge AI network models were compared to our proposed
NeXNet network model. The parameters for comparison covers
Range coverage, network topology, processing location, latency for
alert and novelty integration.

TABLE I
COMPARATIVE ANALYSIS: NEXNET VS. CONVENTIONAL UNDERGROUND

MONITORING TECHNOLOGIES

Feature WSNs [6] LoRa LPWAN [5] Edge AI [4] NeXNet (Proposed)
Range/Coverage Short-Range Long-Range (180m+) Short-to-Medium Long-Range
Network Topology Static/Cluster Mesh (Non-Healing) Isolated/Star Self-Healing Mesh
Processing Central/Cloud Central/Cloud Edge (Real-Time) Edge (Real-Time)
Alert Latency High High (Cloud-linked) Low Ultra-Low (0.4s)
Novelty Low Low Moderate High (Edge AI+Mesh)
* ahsifahmed12 data statement

III. SYSTEM MODEL

The proposed system as shown in Fig. 2 is built around a
decentralized, autonomous sensor network tailored for underground
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Fig. 1. NeXNet Architecture System Components Diagram.

mining environments. It combines robust hardware, efficient commu-
nication protocols, and embedded intelligence to detect and respond
to environmental hazards in real time. The architecture is designed to
operate reliably in harsh environments, low connectivity, and energy-
constrained conditions typical of deep Canadian mines.

A. Hardware and Deployment:
The system comprises multiple identical smart sensor nodes de-

ployed throughout the main haulage and ventilation tunnels of the
underground mine. Each node consists of a low-power Microcon-
troller Unit (MCU) (e.g., a specific low-power System-on-Chip) and
a suite of environmental sensors for data acquisition, including a
CH4 gas sensor, a temperature/humidity sensor, and an air velocity
sensor. Communication is handled by integrated LoRa transceiver.
The primary function of this part is to provide robust edge AI
capability and self-healing network resilience as detailed later.

B. Edge AI Model Design and Quantization:
The core intelligence of the NeXNet system lies in its ability to

perform high-accuracy hazard prediction directly at the sensor node,
necessitating a highly efficient Edge Artificial Intelligence (Edge AI)
model. The model in Fig. 3 is designed to process time-series data
(airflow, gas concentration, vibration) and classify anomalous patterns
associated with safety hazards. Model Architecture Selection: Given
the strict power and memory constraints of the Microcontroller Unit
(MCU) used in the NeXNet nodes (e.g., an ESP32 or similar low-
power SoC), conventional deep learning models are infeasible. We
adopted a specialized, lightweight 1D Convolutional Neural Network
(1D-CNN) architecture. The 1D-CNN is preferred for time-series
analysis as it effectively captures temporal dependencies in the sensor
data stream. The 1D-CNN model was trained using a balanced
dataset of 5,000 samples collected from the NeXNeT lab’s ventilation
sensors, representing normal airflow, gas leaks, and sensor failure.
To ensure deployment compatibility with the ESP32 microcontroller,
the model underwent 8-bit integer quantization using the TensorFlow
Lite Micro framework. This reduced the model size by approximately

75 percent without compromising the 92.4 percent classification
accuracy. The final inference engine executes on-node with a memory
footprint of less than 256 KB, enabling real-time hazard detection
in under 10 milliseconds. The 1D-CNN model architecture, 8-bit
quantization scripts, and the synthetic dataset generation logic used
for these experiments are publicly hosted for reproducibility here.

The architecture in Fig. 3 consists of:
1) Three Convolutional Layers with small filter sizes (e.g., 3× 1

to 5× 1) to minimize parameter count.
2) Two Pooling Layers for downsampling, further reducing com-

putational complexity.
3) A final Dense Layer with a Softmax activation for binary

or multi-class hazard classification (e.g., Normal, Methane
Hazard, Airflow Disruption).

The total parameter count for the selected model was kept below
50,000 parameters, ensuring a minimal memory footprint and fast
inference time, typically under 10 milliseconds per reading.

C. Training and Quantization for TinyML:

To enable deployment on the resource-constrained MCU, the
trained 32-bit floating-point model must undergo post-training 8-bit
integer quantization. This is also a method for reducing the number
of rating scale items without the predictability loss [12]. This process
converts the model’s weights, biases, and activation function outputs
from 32-bit floating-point numbers to 8-bit integers.

Q-Value = round

(
Floating Point Value

Scale
+ Zero Point

)
. (1)

This quantization yields (Q-value) three significant benefits:
1) Model Size Reduction: The final model size is reduced by

approximately 75% (from 32-bit to 8-bit), allowing it to fit
entirely within the limited on-chip Flash memory.

2) Inference Speed: Integer arithmetic is computationally faster
and more energy-efficient than floating-point arithmetic on
embedded processors, resulting in the ultra-low latency results.

3) Energy Efficiency: Faster processing translates directly into
shorter periods during which the MCU must be active, sig-
nificantly lowering the overall power consumption of the node.

The quantized model is deployed using TensorFlow Lite Micro
(TFLu) framework, specifically optimized for running machine learn-
ing models on microcontrollers without an operating system.

D. Self-healing Lora Mesh Protocol:
The resilience of the system is achieved through a proprietary Self-

Healing LoRa Mesh Protocol built atop the standard LoRa physical
layer. This protocol ensures uninterrupted data backhaul despite
frequent node failures or environmental link degradation common
in deep mine environments. Adaptive Network Topology employs a
dynamic hybrid star-mesh topology. Each sensor node functions as a
standard star-network end device, but also contains the meshing logic
to serve as a relay node. The network is not reliant on a single fixed
backbone; instead, the protocol dynamically determines the optimal
path to the gateway based on a real-time Link Quality Metric (LQM),
which prioritizes reliability over simple hop count. Link Quality
metric (LQM): The LQM is the basis for all routing decisions and is
calculated by combining two key wireless parameters:

LQM = w1 · Normalized RSSI + w2 · Normalized SNR. (2)

Received Signal Strength Indicator (RSSI) measures signal power,
indicating link reliability. Signal-to-Noise Ratio (SNR), crucial in



3

Fig. 2. Self-Healing Protocol Flowchart.

LoRa, indicating how resistant the link is to interference and noise.
The weighting factors (w1, w2) are empirically tuned during de-
ployment to prioritize SNR in the noisy underground environment,
ensuring the selected route is not only strong but also stable. Each
node periodically broadcasts a small Heartbeat packet containing
its current LQM and routing table, allowing neighboring nodes to
continuously update their understanding of the network’s health.

• Failure Detection and Dynamic Re-Routing: Failure Detection
occurs when a node fails to receive a set number of consecutive
heartbeat packets from a neighboring relay node. The protocol
immediately initiates the Self-Healing Sequence:

1) Route Request (RREQ): The upstream node broadcasts a re-
quest packet across the mesh to find a new path to the gateway.

2) Route Discovery: Neighboring nodes respond with a route reply
containing their current LQM to the gateway, effectively listing
all viable alternative paths.

3) Path Selection: The original node selects the path with the
highest LQM (not necessarily the shortest hop count) to ensure
the newly established route is the most resilient.

4) Route Update: The node updates its internal routing table
and broadcasts this new path information to its downstream
neighbors, thereby healing the break in the network graph and
restoring PDR to functional level as demonstrated in Section
IV. This process is fully autonomous and completed within
seconds, minimizing data loss during a network fault.

E. Central Gateway and Dashboard:
A ruggedized Raspberry Pi or Industrial PC acts as a central gate-

way, collecting data from sensor nodes and providing a monitoring
dashboard. The dashboard offers real-time visualization and alerts.

F. Deployment Scenario Example:
Imagine a deep gold mine tunnel where sensor nodes are installed

at intervals of 30-50 meters. These nodes continuously monitor gas
levels and airflow. One node detects a sharp drop in airflow alongside
increased methane readings. Its built-in AI model predicts a potential
blockage. The node immediately:

1) Sounds like a local buzzer alarm.
2) Sends high-priority message to gateway via LoRa mesh.
3) The gateway logs the incident, alerts supervisors, and suggests

evacuation or ventilation adjustments.

TABLE II
COMPARATIVE ANALYSIS OF UNDERGROUND

MONITORING TECHNOLOGIES

Technology Pros Limitations
Fixed Sensor Stable, proven Poor coverage, centralized, no AI.
Zigbee (Wi-Fi) Flexible, scalable High power use, weak under-

ground signal propagation
UWB/Bluetooth High accuracy (for

tracking)
Line-of-sight needed, short range,
no scalability

LoRa/ LPWAN Low power, long range Often centralized, lacks edge
decision-making

Cloud-based AI High processing power Connectivity-dependent, delayed
response in emergencies

TABLE III
SUMMARY OF TOOLS USED

Phase Tools/ Tech
Data collection Arduino IDE, ESP32, Serial logging
AI training Python, scikit-learn, TensorFlow Lite.
Edge inference TensorFlow Lite for Microcontrollers
Communication LoRa SX1278, RadioHead, PainlessMesh
Simulation PVC tunnel, fans, gas sources, motor

This decentralized yet coordinated system design ensures continuous
safety monitoring, even during communication failures or partial
system outages. Its modular nature makes it suitable for scaling
and adapting to different mine layouts and types. The firmware was
developed using the Arduino framework, with the TensorFlow Lite
for Microcontrollers library for edge inference.

IV. RESULTS AND DISCUSSION

The system is evaluated based on End-to-End Latency and Network
Resilience, with a comparison made against a baseline centralized-
cloud system using similar hardware. The quantitative advantages of
the NeXNet architecture are summarized in Table IV. Most notably,
the transition from cloud-based processing to edge-inference reduced
the end-to-end alert latency from 6.5s to 0.4s, which is critical for
life-safety applications in deep mines.

A. End-to-End Latency and Real-Time Hazard Alerting:
The primary advantage of incorporating Edge AI is the elimination

of backhaul latency associated with transmitting raw data to a
centralized cloud server for processing. As illustrated in Fig. 3(a), the
average end-to-end alert latency of the baseline centralized/cloud sys-
tem was 6.5s. This delay is primarily due to multi-hop transmission
through the underground environment and server processing time.
The 6.5s baseline represents a traditional Star-topology LoRaWAN
network where data is transmitted to a central gateway and processed
in a cloud-based Python environment.

In stark contrast, the NeXNet (Edge-IoT) system achieved an
average alert latency of 0.4s. This near-instantaneous response is
enabled by the lightweight machine learning model running directly
on the node’s microcontroller, allowing it to autonomously predict

TABLE IV
SUMMARY OF FRAMEWORK BENEFITS

Feature Implementations
Edge AI inference, TensorFlow Lite Micro, real-time alerts
Signal Filtering High Ause, weak underground signal propagation
Hazard prediction Risk score model, decision tree classifiers
Network reliability TDMA, self-healing LoRa mesh
Low Resource Footprint ≤256 kb RAM per Model, OTA update support
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TABLE V
PERFORMANCE BENCHMARKING: NEXNET VS. OTHERS

Metric Cloud Baseline NeXNet (Edge) Improvement
Alert Latency 6.5s 0.4s 93.8%
PDR (Post-Fail) < 40% > 90% Critical
Recovery Time Manual 15s Autonomous
Inference Remote Local Reliability

Fig. 3. Latency and Resilience Performance Charts (a) and (b). All simulation
scripts and data points are available at here

and generate critical alerts without communicating with the sur-
face. This ultra-low latency is paramount for responding to rapidly
evolving hazards, such as methane gas flashes or sudden airflow
disruptions, ensuring timely evacuation procedures. As shown in Fig.
3(a), proposed system achieves and end-to-end latency of 0.4s. The
benchmarking scripts used to measure this performance are included
in the replication package here.

B. Network Resilience and Self-Healing Performance:

To validate the reliability of the system, a controlled failure
simulation was performed in which a critical relay node was disabled
at t=10s. Fig. 3(b) plots PDR during this event. Standard LoRa
Mesh: PDR dropped from 98% to 0% immediately following the
node failure at t=10 s and remained non-functional. This represents a
typical communication failure in non-adaptive underground networks,
leading to a complete safety blackout. Self-Healing Mesh: The PDR
initially dipped to 65%, but the integrated link-quality assessment
and dynamic re-routing protocol successfully bypassed the failed
node. The system achieved a steady-state PDR >90% within 15s
(by t=25s). This rapid and autonomous self-healing capability en-
sures that the safety monitoring network maintains high operational
continuity, which is a critical feature for the highly volatile and com-
plex topology of deep Canadian mining environments. The network
maintains a PDR of >90% even after node failure, with a recovery
time of 15s as illustrated in Fig. 3(b). The raw simulation data and
resilience plotting scripts are available here.

• AI Modeling: Sensor readings are normalized and signals are
time-windowed to capture trends. We utilize lightweight mod-
els—decision trees, K-means clustering and logistic regression.

• Model Deployment: Models are converted to TensorFlow Lite
Micro format for deployment on ESP32 nodes, allowing them to
use <256 kb of memory and make predictions in milliseconds.

• Edge Inference: Nodes continuously feed processed data into
the model. If abnormal patterns are detected, the node raises a
local alert and notifies the gateway.

• Sample AI Logic: python (if CH4 - level > threshold and
airflow < minimum: trigger-alert(Gas + AirFlow anomaly)).

V. CONCLUSION AND FUTURE WORK

This study presented and validated NeXNet, a next-generation
Edge-IoT sensor network designed for ultra-low-latency hazard detec-
tion and high-resilience communication in deep-mine environments.
By combining a quantized 1D-CNN model for on-node inference with
a proprietary self-healing LoRa mesh protocol, NeXNet overcomes
the latency and reliability limitations of traditional centralized mon-
itoring systems. The system reduced end-to-end alert latency from
6.5s to 0.4s through optimized Edge AI processing, and demonstrated
autonomous resilience by restoring the Packet Delivery Rate to over
90% within 15s. following a simulated node failure. Overall, NeXNet
provides a robust, low-power, and highly responsive monitoring
framework suitable for hazardous industrial environments, offering a
more reliable and cost-effective alternative to conventional solutions.
Future work will focus on integrating lightweight decentralized secu-
rity mechanisms for authenticated sensing and further refining 8-bit
quantization to support deployment on even smaller MCU platforms
without compromising model accuracy. By moving the intelligence
to the edge, NeXNet eliminates the ’single point of failure’ common
in centralized mining networks, providing blueprints for autonomous
safety systems in other high-risk industrial sectors.
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