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Abstract—We present a Conditional Variational Autoencoder
(CVAE) designed to generate realistic money laundering (ML)
patterns in the form of transaction subgraphs. The synthesized
patterns are employed to balance class distribution in ML datasets.
By jointly modeling relational structures and transactional
attributes, the CVAE produces graph-based samples that capture
established ML typologies. Experiments on the AMLWorld
dataset demonstrate that our method outperforms conventional
oversampling methods such as SMOTE and ADASYN, as well
as generative models like GAN, in downstream ML detection
tasks. Notably, graph neural network (GNN) models trained on
CVAE-augmented data achieve significantly higher recall while
reducing false alert rates. To the best of our knowledge, our
proposed approach is the first that generates ML data at the
pattern level, rather than at the level of individual transactions.

Index Terms—Money laundering detection, synthetic data gen-
eration, transaction graphs, conditional variational autoencoder,
graph neural networks, class imbalance

I. INTRODUCTION

Money laundering (ML) is the process of disguising illicit
funds as legitimate assets, often involving proceeds from crimes
such as tax evasion, trafficking, illegal gambling, and terrorist
financing. Financial institutions must implement anti-money
laundering (AML) measures such as customer verification, risk
assessment, transaction monitoring, and reporting suspicious
activities. Non-compliance has resulted in large regulatory fines
worldwide [1]. This work focuses on transaction monitoring
for ML detection.

Most AML systems rely on rule-based thresholds [2], such
as flagging cash withdrawals above $10,000 within 24 hours.
These rules are conservative and lead to extremely high false
alert rates (FAR), typically 95%–98% [3]. Every alert requires
manual review, making the process costly. Machine learning
can detect more subtle ML behaviors [4], but extreme class
imbalance remains a major obstacle. In public datasets such
as SynthAML [5], SAML-D [6], and AMLworld [7], illicit
transactions account for only 0.05%–0.125% of all transactions.

Two main approaches address class imbalance: (a) data-level
methods such as undersampling or oversampling [8], [9]; and
(b) algorithm-level methods such as cost-sensitive learning
or anomaly detection [7], [10]. Given the extreme imbalance
(1:800 to 1:2,000), undersampling or cost-sensitive learning
alone is insufficient. In this paper, we focus on oversampling.

A money laundering case usually involves several accounts
and multiple linked transactions. Suzumura and Kanezashi [11]
identify eight common ML patterns, shown in Figure 1. How-
ever, popular oversampling methods such as SMOTE [12] and

ADASYN [13] treat each transaction independently and cannot
capture the relational or sequential structures of laundering
patterns. Table I illustrates examples from the AMLworld
dataset: SMOTE is unaware of these structures and generates
isolated transactions that do not form meaningful ML patterns.

After identifying the limitations of SMOTE and ADASYN,
which operate at the transaction level, we adopt a different
approach: generating complete ML patterns as transaction sub-
graphs. In our previous work [14], we proposed a GAN-based
model that generates such realistic graph patterns, substantially
improving money laundering detection performance compared
to transaction-level oversampling methods such as SMOTE
and ADASYN. However, our preliminary results indicate that
augmenting the dataset with a CVAE achieves even greater
improvements in detection performance.

The main contribution of this paper is the development of a
generative model using CVAE that learns money laundering
(ML) typologies [11] and generates realistic ML patterns by
jointly modeling graph structures and transaction attributes. We
evaluate the CVAE on the AMLWorld dataset, comparing its
performance with SMOTE, ADASYN, and CGAN in terms
of downstream ML detection across multiple graph neural
network (GNN) models. Experimental results show that the
CVAE consistently outperforms these baselines, with GNNs
trained on CVAE-augmented data achieving higher recall and
significantly lower false alert rates (FAR) than those trained
on data augmented by SMOTE, ADASYN, or CGAN.

The remainder of this paper is organized as follows. Section
II reviews related work on class imbalance handling in anti-
money laundering (AML) systems. Section III presents the
proposed CVAE-based synthetic data generation model. Section
IV describes the experimental setup, including datasets, base-
lines, and evaluation metrics. Section V discusses the results
of our experiments, comparing CVAE with other oversampling
techniques. Finally, Section VI concludes the paper and outlines
directions for future research.

II. RELATED WORK

Most research in AML has focused on money laundering
detection [15]–[17]. Our focus, however, is the class imbalance
problem of AML data, which significantly affects classification
performance of ML detection models. Prior surveys have
reviewed class imbalance solutions across domains such as
medical diagnosis, fraud detection, and image recognition
[18]–[21]. In AML, illicit transactions are extremely rare,



Fig. 1: Common money laundering patterns [7]. Shaded nodes are key or central nodes in each ML structure.

TABLE I: Examples of transaction-based vs. pattern-based synthetic data generation

often representing less than 0.1% of the data, which has been
identified as a major challenge [17], [22].

To mitigate class imbalance, prior work in AML uses
either data-level [8], [9]or algorithm-level methods [7],
[10]. Data-level methods modify the class distribution of
training data. Undersampling removes majority class samples
using random or near-miss techniques [8], [12], [23], while
oversampling increases minority class representation using
methods like SMOTE [24], which interpolates between neigh-
bors, or ADASYN [13], which generates more samples in
sparse minority class regions. Some prior works have combined
undersampling and oversampling to balance AML datasets [9],
[12].

Algorithm-level methods instead adjust the learning process.
These include the use of class-weighted loss functions to
penalize misclassifications of the minority class [7], [25]. Focal
loss is used in DTPAN [26] to focus on hard-to-classify samples.
Other studies reframe AML detection as an anomaly detection
problem to avoid explicit resampling. For example, El-Kilany
et al. [27] and Baltoiu et al. [28] use one-class SVM, while
Tertychnyi et al. [10] use isolation forests to detect anomalous
behavior in transaction graphs.

In this paper, we focus on oversampling to mitigate class
imbalance in AML data. While SMOTE and ADASYN are
effective for numeral or tabular data, they are not capable
of replicating pattern structures in graph data like AML
data. To address this gap, we propose a deep learning model
based on a conditional variational autoencoder (CVAE) that
synthesizes complete graph patterns representing real-world
money laundering typologies. While CVAE has been used for
generating synthetic data [29], [30], to our knowledge, this
work is the first that generates graph patterns tailored to money
laundering detection and studies their impact on ML detection
models.

III. THE PROPOSED MODEL

Figure 2 provides an overview of the proposed model and
the downstream task of money laundering (ML) detection. The
following sub-sections detail each step of the pipeline.

A. Pre-processing

Since our goal is to generate ML patterns, the first step is to
extract these patterns (shown in Figure 1) from the AMLWorld
dataset. Each ML case is represented by a graph (see two
example graphs in Table I). For each extracted pattern graph,
we constructed an adjacency matrix A and a feature matrix F,
each of size v × v, assuming the pattern graph has v nodes
(vertices). In the adjacency matrix A, Ai,j = 1 indicates that
there is a directed edge (a transaction) from node i to node
j, and Ai,j = 0 otherwise. The feature matrix F contains the
attributes of the transactions (the edges) such as transaction
amount, currency type, and transfer method.

Because the pattern graphs have different sizes, the resulting
square matrices have different sizes. Therefore, we padded all
matrices with zeros to match the size of the largest pattern
graph in the dataset, 45× 45. This way, all matrices input into
the CVAE model have the same size. Each pair of matrices (A,
F) is labeled with the corresponding pattern (fan-in, fan-out,
gather-scatter, scatter-gather, cycle, random, bipartite or stack).
These matrices and their labels are then fed into a conditional
variational autoencoder to learn the underlying distribution of
each pattern type.

B. Conditional Variational Autoencoder (CVAE)

Conditional variational autoencoders [31] are generative
models designed to learn complex data distributions and
generate new samples based on a given condition. Unlike
standard VAEs [32], CVAE incorporate conditional variables
to guide the generation process, making them well-suited for



Fig. 2: An overview of CVAE and the downstream task of money laundering detection

structured data like ML patterns. A CVAE consists of two
main components:

1. Encoder: The encoder maps the input pattern (A,F ) into
a latent space representation z, conditioned on an auxiliary
variable c (e.g., the pattern type). The encoding process is
modeled as:

qϕ(z|A,F, c) = N (µ, σ2),

where µ and σ are learned parameters representing the mean
and variance of the latent distribution.

2. Decoder: The decoder reconstructs the original input
pattern (A,F ) from the latent variable z and condition c:
pθ(A,F |z, c)

The reconstruction loss (e.g., binary cross-entropy for
adjacency matrices and mean squared error for feature matrices)
ensures that the generated patterns resemble real ML patterns.

The training objective is to minimize the evidence lower
bound (ELBO):

L = Eqϕ(z|A,F,c)[log pθ(A,F |z, c)]−DKL(qϕ(z|A,F, c)||p(z)),

where the first term represents the reconstruction loss, and the
second term is the Kullback-Leibler (KL) divergence, which
regularizes the latent space to follow a prior distribution
(typically a standard normal distribution).

Once trained, the CVAE can generate new synthetic ML
pattern graphs by sampling z from the latent space and
decoding it using a given condition c. This enables the model
to create diverse pattern graphs representative of real-world
ML behavior while preserving statistical properties of real data.

C. Data Augmentation and Transaction Classification

For each dataset Di used in this study (described in
Section IV-B and Table II), the CVAE learned from the pattern
graphs in the minority class of Di, and generated synthetic
ML samples for each pattern type. The synthetic ML samples
were then added to the minority class of Di to obtain a more
balanced dataset. Each dataset (original or augmented) was
then converted into a (large) global graph, in which nodes and
directed edges represent accounts and transactions between
accounts, respectively. Three graph neural network (GNN)
models (described in Section IV-C) were trained on the datasets
to classify transactions as licit or suspicious of ML.

IV. EXPERIMENT SETTINGS

This section describes the baseline synthetic data generation
methods to compare against CVAE, datasets used in the
experiments, and evaluation metrics.

A. Baseline Synthetic Data Generation Methods

To evaluate the quality of our synthetic data and the
effectiveness of pattern-based generation versus individual
transaction generation, we compare our approach with three
widely used methods: SMOTE [33], ADASYN [34], and
CGAN [14]. SMOTE and ADASYN create synthetic samples
by interpolating between existing transactions, while CGAN,
like our proposed CVAE model, learns to generate structured
data patterns. SMOTE and ADASYN are the most popular
oversampling techniques in financial fraud and money laun-
dering detection [7], [13], [24], [33]–[37]. CGAN [14] is the
closest competitor to CVAE due to its ability to synthesize
structured data patterns. Collectively, these methods provide a
diverse benchmark for evaluating CVAE.

B. Datasets

In this paper, we use AMLworld [7], a synthetic dataset
developed by IBM that models a virtual financial ecosystem
and the full money laundering cycle. AMLworld provides two
variants based on the percentage of illicit transactions: high
illicit ratio (HI) and low illicit ratio (LI).

In this paper, we evaluate our model using only the Small
AMLworld datasets. A 60–20–20 temporal split is used for
training, validation, and testing, where transactions are divided
chronologically.

TABLE II: Sizes of the original and augmented Small AML-
world datasets. HI: high illicit ratio; LI: low illicit ratio; M:
million; K: thousand.

Statistics HI LI

Original Augmented Original Augmented

Total Transactions 5.1M 5.2M 6.9M 7.0M
Laundering Transactions 5.2K 94.8K 3.6K 65.3K
Minority-to-Majority Ratio 1:981 1:54 1:1942 1:107



C. Money Laundering Detection Models

To assess the impact of CVAE-generated data on downstream
classification performance, we follow the experimental setup
used for the AMLworld benchmark [7]. Specifically, we use
three GNN architectures for the task of ML detection (which
are also used in [7]): Graph Isomorphism Network (GIN) [38];
GIN with edge updates (GIN+EU) [39], which extends GIN
by incorporating edge update mechanisms during training; and
GNN with principal neighborhood aggregation (PNA) [40],
which aggregates node neighborhoods using multiple statistics
(mean, max, standard deviation) and applies degree-scalers
to improve generalization across graphs. Details about the
architecture, hyperparameters, and implementation of these
GNN models can be found in [7].

D. Money Laundering Detection Performance Metrics

Common metrics like accuracy and F1-score are not suitable
for AML tasks due to the extreme class imbalance of AML data.
For example, in datasets with a 1:1000 positive-to-negative
sample ratio, a naïve model that always predicts the negative
class would still achieve an accuracy of 99.9%. F1-scores favor
a balance of recall and precision. However, in AML, recall
(the ability to identify true ML transactions) takes priority over
precision to avoid regulatory penalties caused by missed ML
cases.

In this context, we use recall (detection rate) and the false
alert rate (FAR) as metrics to evaluate the classification
performance of money laundering detection models. The
objective is to achieve a target high recall value, e.g., 95%,
while lowering the FAR. (While precision is widely used
in machine learning literature, the FAR is more common in
industry and helps quantify the operational cost of manually
investigating alerts.)

V. EXPERIMENTAL RESULTS

In this section, we evaluate money laundering detection
performance of GNN models trained on synthetic data gener-
ated by SMOTE, ADASYN, CGAN and CVAE. All results are
reported with standard deviations to ensure statistical reliability.

For ML detection, we use three GNN models described in
Section IV-C: GIN, GIN+EU and PNA, trained on the original
datasets (natural distributions) and the augmented datasets
whose class distributions are listed in Table II. The test sets in
all experiments retain the natural class distributions.

The metrics to evaluate ML detection performance are recall
and false alert rate (FAR = 1 - precision), as explained in
Section IV-C. When the intersection-over-union (IoU) threshold
is calibrated, higher recall will lead to a higher FAR (or,
equivalently, lower precision), and vice versa. To fairly compare
the AML models, a metric should be fixed so that we can
observe the other metric changing. For instance, given the same
target recall (e.g., 95%), a model that offers a lower FAR is
the better model. Conversely, given the same target FAR (e.g.,
60%), a model that yields higher recall is the better model. In
this paper, we present the results for the former case.

In our experiments, we use a recall value of 95%, following
the industry practice of prioritizing recall over FAR (or
precision). We calibrated the intersection-over-union (IoU)
threshold to obtain the desired recall value for each GNN
model. Given the same recall, a model that yields a lower FAR
(i.e., incurring lower operational costs) is considered the higher
performer. We also ran experiments with a threshold of 0.5,
which is used in many machine learning tasks, including the
ML detection models used to evaluate the AMLworld dataset
in [7], just for comparison purposes.

The results in terms of recall and false alert rates (FAR)
are presented in Table III and IV for the HI and LI dataset,
respectively. The top three results of each row are highlighted
in green color, and the darker the shade, the higher the
performance.

Following are the findings from the results in Table III for
the HI dataset and a target recall of 95%. First, all four data
augmentation methods give higher classification performance
than the original data (natural distributions). For instance, the
FARs of the original data are very high, ranging from 93.50%
to 93.80%. The FARs of the models trained with augmented
data are much lower.

Second, CVAE-augmented training data yield the best
performance, i.e., giving the lowest FARs, ranging from 57.90%
to 65.20%. The second best performer is CGAN, with the FAR
ranges from 63.70% to 70.85%. The FAR of the third best
performer, SMOTE, ranges from 73.10% to 78.10%. (These
FARs are significantly lower than the current industry standard
of around 95%.) These results show that pattern-level data
generated by CVAE and CGAN allow the AML models to
learn more effectively than isolated transactions synthesized
by SMOTE and ADASYN.

Third, PNA is the best classifier, followed by GIN+EU, based
on the FARs they yield, thanks to these models’ awareness of
graph structures.

When using the standard threshold of 0.5, it takes more
effort to compare the classification performance of the different
classifiers and data augmentation methods, because both the
recall and FAR now vary. A closer examination shows that, for
each classifier, CVAE-augmented data yield the highest recall
among the data augmentation methods, and the original data
yield the lowest recall. However, all recall values in this set
of experiments are very low, below the industry acceptable
level. For example, the highest recall is 67.57%, produced by
CVAE-augmented data and PNA classifier. This implies that
32.43% of ML transactions were misclassified in this case!

Table IV presents the results for the LI (low illicit trans-
action ratio) dataset. The overall trends match those observed
in the HI datasets, with one exception: GIN+EU outperforms
PNA. This suggests that when the minority class is extremely
low, incorporating edge-update mechanisms (GIN+EU) is more
effective than aggregating node neighborhoods using multiple
statistics (PNA).

We compare the results in Table III (high illicit ratio) with
those in Table IV (low illicit ratio). For example, the FAR given
by the combination {CVAE, 95% recall, PNA} in Table III



TABLE III: Recall and FARs in percentages for the HI dataset. The results highlighted in yellow are taken from [7].

Model Natural Distribution CVAE CGAN SMOTE ADASYN
Recall FAR Recall FAR Recall FAR Recall FAR Recall FAR

AML Threshold (High Recall of Approx. 95%)
GIN 95.13±0.88 93.80±6.61 95.45±0.67 65.20±3.83 95.32±0.35 70.85±8.27 95.18±0.71 78.10±4.65 95.05±0.91 82.50±4.92
GIN + EU 95.12±0.74 93.70±7.11 95.48±0.59 61.10±3.04 95.35±0.84 67.50±7.96 95.22±0.22 74.60±4.50 95.18±0.43 79.20±4.83
PNA 95.08±0.65 93.50±7.75 95.50±0.09 57.90±2.48 95.38±0.11 63.70±7.25 95.20±0.38 73.10±3.94 95.30±0.77 70.80±3.79

Standard Threshold of 0.5
GIN 38.16±5.92 72.60±7.98 58.24±3.12 57.40±4.25 53.78±4.47 62.90±6.21 33.10±3.21 68.45±3.09 30.50±3.33 72.50±3.18
GIN + EU 55.41±5.96 57.71±10.69 67.41±3.27 35.56±4.30 66.13±4.68 42.10±6.13 34.11±3.45 50.25±3.26 31.03±3.31 54.50±3.20
PNA 53.15±2.26 41.52±10.67 67.57±1.85 17.13±4.11 63.44±2.14 23.79±5.77 35.00±1.91 32.75±1.85 36.41±2.00 30.11±1.78

is 57.90%, lower than the FAR 74.40% given by the same
combination in Table IV. That is, the dataset with a higher
number of money laundering samples (high illicit ratio) yields
higher performance than that with fewer money laundering
samples, as expected, because a classifier can learn more
effectively with more samples. This finding is consistent across
all datasets, classifiers and recall targets/thresholds.

VI. CONCLUSION

We propose CVAE, a generative model that addresses a
critical shortcoming in current ML detection systems: their
inability to generate structurally faithful minority-class samples.
Unlike traditional oversampling methods that treat transactions
as independent and identically distributed samples, CVAE
synthesizes graph-structured transaction patterns that more ac-
curately reflect real-world ML behavior. Our preliminary results
demonstrate that CVAE outperforms conventional oversampling
methods in downstream detection performance. In future work,
we aim to extend this study by investigating the statistical
and structural quality of the samples generated by various
oversampling methods (e.g., SMOTE, ADASYN, CGAN,
CVAE) in greater depth. We will evaluate the proposed CVAE
model using more datasets. We will also study combinations
of oversampling, undersampling and algorithm-level methods
to find the most effective solutions to class imbalance.
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