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Abstract—With the rapid advancement of artificial intelligence 

(AI) technologies and the diversification of commercial models, 

the demand for AI adoption in the public sector has surged 

dramatically. Governments and public institutions are actively 

leveraging AI technologies to enhance administrative efficiency, 

deliver personalized services, and enable data-driven policy-

making. However, in the actual implementation process, 

numerous limitations and challenges have emerged. In particular, 

when AI systems are designed in a way that is dependent on 

specific cloud platforms or proprietary models, organizations are 

often burdened with high costs and technical constraints during 

system transitions, expansions, and maintenance in response to 

evolving technologies. In such a fast-changing AI ecosystem, 

ensuring the stability and scalability of AI services in the public 

sector requires establishing cross-compatibility across AI 

infrastructure, cloud platforms, and AI models. Cross-

compatibility refers to the ability for services, data, and models to 

be seamlessly interoperable and reusable across different AI 

environments. This enables public institutions to avoid vendor 

lock-in and adopt a diverse range of suppliers and solutions. 

Moreover, securing cross-compatibility acts as a strategic means 

to reduce long-term maintenance costs while strengthening the 

sustainability and technological autonomy of public AI services. 

Nevertheless, many current AI projects in the Korean public 

sector are being implemented based on heterogeneous standards, 

model formats, and platform environments. As a result, 

compatibility issues frequently arise during model replacement or 

technology migration processes. To effectively introduce and 

manage diverse AI technologies, it is imperative for public 

institutions to adopt cross-compatibility strategies grounded in 

platform independence and open standards. Therefore, this paper 

proposes design-level requirements aimed at securing cross-

compatibility in AI services for the public sector.  
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I. INTRODUCTION 

A. Current Status of Public AI Adoption in South Korea 

In recent years, the South Korean government and public 
institutions have been actively promoting the adoption of 
artificial intelligence (AI)–based services to address various 
societal challenges and enhance administrative efficiency [1], 
[2]. Numerous applications are emerging, including automated 
civil response systems, intelligent document analysis, and 
predictive analytics for policy and service delivery [3]. These 
initiatives are being implemented not only at the central 
government level but also across local governments and public 
agencies, leading to a broad diffusion of AI pilot projects 
throughout the public sector. Despite this rapid expansion, many 
AI projects are developed in a vendor-dependent manner, 
relying heavily on specific platforms or technologies [4], [5]. As 
a result, these systems often face significant limitations when 
undergoing technological upgrades, expansions, or transitions. 
For instance, AI models built on proprietary frameworks—such 
as “PyTorch” or “TensorFlow”—or stored in custom formats, 
pose major challenges in terms of reusability or migration to 
other environments [6]. To overcome these issues, it is essential 
to ensure cross-compatibility among AI infrastructures, 
platforms, and models. This will allow public institutions to 
remain technologically agile, reduce operational and 
maintenance costs, and avoid vendor lock-in, thereby securing 
sustainable and scalable AI services [7]. 

B. Definition of Cross-Compatibility 

Cross-compatibility refers to the characteristic that enables 
AI models to freely interconnect, transfer, and migrate functions 
and data across different platforms, systems, and infrastructures 
[8] without technical constraints, thereby allowing the 
implementation of flexible AI service environments that are not 
dependent on specific technologies. The detailed components of 
cross-compatibility can be divided into two categories: the first 
is cross-compatibility with respect to changes in AI 
infrastructure, and the second is cross-compatibility with respect 
to changes in AI models. Cross-compatibility with respect to AI 
infrastructure changes refers to the ability of AI models to be 



deployed and operate without additional service development 
even when the AI infrastructure environment—such as cloud 
platforms, servers, or GPUs—changes [9]. Cross-compatibility 
with respect to AI model changes refers to the ability to flexibly 
replace and update various AI models while maintaining the 
existing system architecture and API formats [10]. 

II. STRUCTURAL CONSIDERATIONS FOR ENSURING  

CROSS-COMPATIBILITY IN PUBLIC AI 

First, the requirements for ensuring cross-compatibility in 
response to changes in AI infrastructure are as follows. Public 
AI services should be able to operate continuously without 
requiring additional redevelopment, even when underlying 
infrastructure environments—such as cloud platforms, server 
configurations, or GPU resources—change [11]. To achieve 
this, AI models must be stored and deployed using container-
based environments [12]. Container technologies, such as 
Docker, package all components required for AI model 
execution—including source code, libraries, framework 
versions, and runtime configurations—into a single, self-
contained unit [13]. This approach effectively mitigates 
compatibility issues that may arise from differences across 
operating environments. In particular, public-sector AI systems 
are highly likely to be deployed across diverse infrastructure 
environments, including on-premises systems, private clouds, 
public clouds, and hybrid cloud architectures. Consequently, 
deployment mechanisms that are independent of specific servers 
or operating systems are essential. Container-based deployment 
satisfies these requirements by enabling the same container 
image to be consistently applied across heterogeneous 
infrastructure environments, thereby ensuring both portability 
and reproducibility of AI models [14]. 

Furthermore, container images support version control, 
which facilitates efficient model updates and rollbacks, while 
also enhancing responsiveness to operational failures. From the 
perspective of long-term public AI service operation, this 
contributes to achieving both system stability and improved 
maintenance efficiency. In addition, manual, operation-
intensive deployment processes increase the likelihood of errors 
when infrastructure environments change. Therefore, the 
establishment of automated deployment pipelines using 
Continuous Integration and Continuous Deployment (CI/CD) 
tools is required. By leveraging tools such as GitLab CI and 
Jenkins to automate the processes of container image building, 
testing, and deployment, AI models can be deployed and 
operated in a consistent manner regardless of changes in the 
infrastructure environment. Such automated deployment 
pipelines play a critical role in ensuring operational consistency 
in public AI systems and in minimizing technical burdens 
associated with infrastructure expansion or migration.  

In conclusion, by jointly adopting container-based storage 
and deployment mechanisms along with CI/CD automation 
environments, public AI systems can respond flexibly to 
infrastructure changes and secure cross-compatibility that is 
independent of specific cloud platforms or hardware 
environments. Furthermore, establishing a containerized 
infrastructure with CI/CD automation enables public AI systems 
to remain resilient and interoperable, regardless of the 
underlying cloud services or hardware environments. 

 

Fig. 1.  Example of Container-Based AI Model Execution 

A. Containerization 

• A key strategy for deploying AI models into operational 
environments and ensuring their portability is 
containerization. Containers encapsulate all components 
required for AI model execution—including source 
code, libraries, and configuration files—into a single, 
self-contained package, enabling consistent deployment 
across heterogeneous environments. Docker-based 
containers are commonly employed for this purpose, and 
the following procedures are required. 

• Container Image Construction: A container image is 
built using a “Dockerfile” by encapsulating the trained 
AI model together with execution scripts, required 
libraries, and configuration files into a single image. 

• Lightweight Design and Optimization: Since public-
sector environments often impose constraints on cloud 
infrastructure resource usage, the container image size is 
minimized through model size optimization and the 
removal of unnecessary dependencies[15]. 

• Compatibility Testing: The configured container is 
validated to ensure that it can be executed without issues 
across various platform or cloud environments, such as 
Kubernetes, OpenShift, Naver Cloud Platform, and NHN 
Cloud. 

 

Fig. 2. Example of Service Container Image of AI Model Service 



One of the most critical factors in replacing or updating AI 
models for improved performance is the reusability of training 
data. To enable this, it is essential to standardize the structure 
and format of training data in advance. In the public sector, AI 
services are not limited to a single model but must evolve 
continuously by adopting and applying various algorithms and 
models as technologies advance. If the data structure is tightly 
coupled with specific models, every model change would 
require reprocessing or restructuring of data, leading to 
inefficiency. 

Specifically, the training and test datasets used for AI model 
development must have a consistently defined structure, 
including feature names, data types, units, handling of missing 
values, and normalization standards. Without such structural 
consistency, even if datasets remain the same, each model may 
require a different preprocessing process. This not only 
undermines the comparability of training outcomes but also 
reduces the reliability of performance verification. Therefore, 
defining data schemas in advance and managing feature names 
and data types in a standardized manner is essential. 

Furthermore, consistency in label definition is also crucial, 
especially in tasks such as classification, regression, and 
prediction. For example, if class definitions in a multi-class 
classification task vary across models or if label encoding 
methods differ, existing datasets may not be reusable for training 
new models[16]. To address this, the semantics, range, and 
encoding rules of labels must be clearly documented and 
consistently maintained, ensuring identical learning conditions 
during model replacement. Beyond the model training phase, 
data standardization plays a pivotal role in the full lifecycle 
management of AI systems. This includes model performance 
comparison, retraining, performance degradation detection, 
auditability, and interpretability. In the public sector, where 
transparency and accountability in AI decision-making are 
crucial, standardized data structures and label definitions help 
minimize policy and administrative risks associated with model 
changes. 

Ultimately, standardizing the structure and format of training 
data is a prerequisite for ensuring cross-compatibility during AI 
model replacement and updates. This enables public institutions 
to continuously leverage their existing data assets while flexibly 
adopting the latest AI models, laying the foundation for 
sustainable and adaptive AI service deployment. 

TABLE I.  RECOMMENDED DATA FORMATS FOR DATA REUSABILITY 

Format Coverage Explanation 

JSONL 

(JSON 

Lines) 

Targeting Reusability 

Across NLP, LLM, and 

Multimodal Models 

- Each row is an 

independent JSON object 

- Enables complex label 

structures such as text and 

multi-label formats 

CSV 
Other General Fine-

Tuning  

- Universal file format 

- Applicable to all types of 

models  

 

It is essential to standardize the interface between AI models 
and information systems. Given the rapid evolution in the 

architecture and scale of AI models, input/output (I/O) interfaces 
must be designed in a forward-compatible manner to 
accommodate future model version updates. This includes 
preparing for changes in model outputs and ensuring 
compatibility with existing system structures. In particular, 
systems should implement mechanisms to compare outputs 
between the existing and updated models to evaluate 
compatibility and impact. When significant changes occur, a 
separate versioning and management strategy for the API should 
be maintained to support stable integration. 

Furthermore, to enable process reuse, lifecycle metadata 
must be systematically documented and managed. This involves 
capturing metadata across all components of the AI 
development pipeline, including data preprocessing scripts, 
model architectures, and configuration parameters. In addition, 
metadata should describe the training environment, such as the 
frameworks used and library versions. Establishing a 
standardized training environment based on consistent data 
structures and metadata ensures the reproducibility of results 
and maintains consistent model quality and operational stability 
during model replacement or retraining. 

B. Standardization of Input/Output Interfaces 

• Designing Interfaces with Version Updates in Mind: As 
AI models are frequently updated due to performance 
improvements or changes in algorithms, it is necessary 
to ensure that input/output (I/O) interfaces are designed 
with future version updates in mind. While the input 
structure should ideally remain consistent, the output 
format may vary depending on the model version. 
Therefore, the interface should be designed to ensure 
backward compatibility, allowing newer models to 
function seamlessly within existing systems without 
disrupting downstream processes. 

• Introducing an API Versioning System: n cases where 
significant changes to the interface are required, a well-
defined versioning system must be introduced to avoid 
conflicts with existing APIs. For instance, maintaining 
separate versions such as /v1/predict and /v2/predict 
allows parallel operation of multiple API versions, 
ensuring stable integration with legacy systems while 
accommodating new capabilities. 

• In American English, commas, semicolons, periods, 
question and exclamation marks are located within 
quotation marks only when a complete thought or name 
is cited, such as a title or full quotation. When quotation 
marks are used, instead of a bold or italic typeface, to 
highlight a word or phrase, punctuation should appear 
outside of the quotation marks. A parenthetical phrase or 
statement at the end of a sentence is punctuated outside 
of the closing parenthesis (like this). (A parenthetical 
sentence is punctuated within the parentheses.) 

• Implementation of Output Comparison Mechanisms: By 
implementing functionalities that enable comparative 
analysis of prediction results between the existing model 
and the updated model—such as visualization of output 
differences or generation of comparative reports on key 
indicators—it becomes possible to quantitatively assess 



the impact of model updates on policy application and 
service outcomes[17]. 

C. Full-Cycle Metadata Documentation and Managament 

• Metadata Structuring of Training Pipeline Components: 
It is essential to systematically organize metadata for all 
components used throughout the entire process of data 
collection, preprocessing, training, and model 
deployment. This metadata should include the following 
elements(Parameters, Model architecture, Training logs 
and performance metrics, etc.). 

• Documentation of Training Environment Information: 
To ensure reproducibility and consistent model quality, 
detailed information about the environment in which the 
model was trained must also be included as metadata 
such as Frameworks & versions(e.g., PyTorch 2.0, 
TensorFlow 2.11), Hardware specifications(e.g., 
NVIDIA A100, CUDA 11.7) and libraries and versions. 

III. IMPLICATION 

This study derives the core requirements for ensuring cross-
compatibility to enable the stable adoption and widespread 
deployment of artificial intelligence (AI) systems in the public 
sector. As a result, it is expected to yield the following practical 
implications across future government- and public-sector AI 
initiatives. 

A. Reduction of Technology Dependency and Strengthening of 

Platform Independence 

When public institutions adopt AI services, technical 
dependency on specific vendors, cloud platforms, or 
frameworks often leads to various challenges, including 
increased long-term maintenance costs, reduced operational 
flexibility, and limited ability to respond to rapid technological 
evolution. The container-based deployment approaches, 
standardized model formats, and API interface standardization 
proposed in this study mitigate such technology dependency by 
enabling AI models to be reused and migrated across diverse 
environments. Consequently, these measures enhance platform 
independence and technological autonomy, providing a 
foundation for strengthening governmental digital sovereignty. 

B. Improvement of Operational Efficiency and Reduction of 

Maintenance Costs 

Following the deployment of AI systems, continuous 
operation, performance maintenance, and periodic model 
replacement are required. If critical elements such as data 
formats, input/output structures, and training environments are 
not managed consistently, substantial time and cost are incurred 
whenever new models are introduced. The standardization of 
data and metadata, along with the metadata-based 
documentation of training pipelines proposed in this study, 
minimizes redundant work and ensures consistent quality during 
model replacement or retraining. This approach improves 
maintenance efficiency while also enhancing transparency and 
predictability in budget execution. 

C. Ensuring Scalability and Sustainability of AI Services 

AI technologies are evolving rapidly, and the functional 
requirements of public services are becoming increasingly 
complex. Accordingly, AI systems must be continuously 
improved and expanded to incorporate diverse models, 
including multimodal models, large language models (LLMs), 
and prediction-based models. This study proposes a strategy that 
structurally embeds cross-compatibility to proactively respond 
to such technological advancements. As a result, it establishes a 
foundation for implementing sustainable AI services that are not 
constrained by specific technological environments. 

D. Establishment of a National-Level AI System Foundation 

Finally, the design requirements for ensuring cross-
compatibility extend beyond individual institutional projects 
and serve as a foundation for standardizing and expanding 
technical infrastructures at the national AI ecosystem level. As 
a foundational study that considers future AI technical 
standards, public data standardization, and institutionalization 
through collaboration with organizations such as TTA and other 
standardization bodies, this research is expected to provide 
substantial momentum toward the realization of a digital 
platform government. 

IV. CONCLUSION 

This study proposed a set of design-level requirements for 
ensuring cross-compatibility in public-sector AI systems as a 
strategic foundation for sustainable operation and technical 
autonomy. Focusing on two primary axes—changes in AI 
infrastructure and changes in AI models—we identified and 
elaborated on key technical considerations and implementation 
strategies. 

First, in response to infrastructure shifts, we emphasized the 
importance of container-based deployment and storing AI 
models in standardized formats (e.g., ONNX, PMML) to 
enhance portability and scalability. Second, to facilitate the 
replacement or upgrading of AI models, we discussed the 
necessity of standardizing data structures and label definitions, 
managing API versioning, implementing output comparison 
mechanisms, and maintaining lifecycle metadata in a systematic 
manner. 

The proposed framework aims to help public institutions 
build a flexible AI ecosystem that is not locked into specific 
vendors or technologies, thereby enabling the integration and 
operation of diverse AI solutions. Moreover, the requirements 
presented here can serve as foundational criteria for public 
agencies in AI project planning, RFP documentation, technical 
verification, and performance evaluation. With the 
accumulation of real-world implementation cases, this 
framework can further evolve into a robust set of technical and 
policy guidelines. 

For future research, it will be important to validate the 
practical applicability of these design requirements by 
constructing an empirical implementation framework, as well as 
to develop more refined standards through comparative analysis 
of interoperability practices across countries and industries. 
These efforts will contribute to the establishment of a more 



robust, scalable, and policy-aligned foundation for future AI 
adoption in the public sector. 
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