A Study on Design Requirements for Ensuring Cross-
Compatibility in Korean Public-Sector Al Systems

NunSol Park
NIA(National Information Society Agency)
Daegu, Republic of Korea
nspark@nia.or.kr

HanKyoung Choi
NIA(National Information Society Agency
Daegu, Republic of Korea
hotspot@nia.or.kr

Abstract—With the rapid advancement of artificial intelligence
(AI) technologies and the diversification of commercial models,
the demand for Al adoption in the public sector has surged
dramatically. Governments and public institutions are actively
leveraging Al technologies to enhance administrative efficiency,
deliver personalized services, and enable data-driven policy-
making. However, in the actual implementation process,
numerous limitations and challenges have emerged. In particular,
when Al systems are designed in a way that is dependent on
specific cloud platforms or proprietary models, organizations are
often burdened with high costs and technical constraints during
system transitions, expansions, and maintenance in response to
evolving technologies. In such a fast-changing AI ecosystem,
ensuring the stability and scalability of Al services in the public
sector requires establishing cross-compatibility across Al
infrastructure, cloud platforms, and AI models. Cross-
compatibility refers to the ability for services, data, and models to
be seamlessly interoperable and reusable across different AI
environments. This enables public institutions to avoid vendor
lock-in and adopt a diverse range of suppliers and solutions.
Moreover, securing cross-compatibility acts as a strategic means
to reduce long-term maintenance costs while strengthening the
sustainability and technological autonomy of public AI services.
Nevertheless, many current Al projects in the Korean public
sector are being implemented based on heterogeneous standards,
model formats, and platform environments. As a result,
compatibility issues frequently arise during model replacement or
technology migration processes. To effectively introduce and
manage diverse Al technologies, it is imperative for public
institutions to adopt cross-compatibility strategies grounded in
platform independence and open standards. Therefore, this paper
proposes design-level requirements aimed at securing cross-
compatibility in Al services for the public sector.

Keywords—Cross-Compatibility, Korean public Al system, Al
service, Cloud platform, AI model

Eunju Kim
NIA(National Information Society Agency)
Daegu, Republic of Korea
outframe@nia.or.kr

DongHee Kim
NIA(National Information Society Agency)
Daegu, Republic of Korea
dhk@nia.or.kr

JinKyu Yang
NIA(National Information Society Agency)
Daegu, Republic of Korea
jky@nia.or.kr

1. INTRODUCTION

A. Current Status of Public AI Adoption in South Korea

In recent years, the South Korean government and public
institutions have been actively promoting the adoption of
artificial intelligence (Al)-based services to address various
societal challenges and enhance administrative efficiency [1],
[2]. Numerous applications are emerging, including automated
civil response systems, intelligent document analysis, and
predictive analytics for policy and service delivery [3]. These
initiatives are being implemented not only at the central
government level but also across local governments and public
agencies, leading to a broad diffusion of Al pilot projects
throughout the public sector. Despite this rapid expansion, many
Al projects are developed in a vendor-dependent manner,
relying heavily on specific platforms or technologies [4], [5]. As
a result, these systems often face significant limitations when
undergoing technological upgrades, expansions, or transitions.
For instance, Al models built on proprietary frameworks—such
as “PyTorch” or “TensorFlow”—or stored in custom formats,
pose major challenges in terms of reusability or migration to
other environments [6]. To overcome these issues, it is essential
to ensure cross-compatibility among Al infrastructures,
platforms, and models. This will allow public institutions to
remain technologically agile, reduce operational and
maintenance costs, and avoid vendor lock-in, thereby securing
sustainable and scalable Al services [7].

B. Definition of Cross-Compatibility

Cross-compatibility refers to the characteristic that enables
Al models to freely interconnect, transfer, and migrate functions
and data across different platforms, systems, and infrastructures
[8] without technical constraints, thereby allowing the
implementation of flexible Al service environments that are not
dependent on specific technologies. The detailed components of
cross-compatibility can be divided into two categories: the first
is cross-compatibility with respect to changes in Al
infrastructure, and the second is cross-compatibility with respect
to changes in Al models. Cross-compatibility with respect to Al
infrastructure changes refers to the ability of Al models to be

deployed and operate without additional service development
even when the Al infrastructure environment—such as cloud
platforms, servers, or GPUs—changes [9]. Cross-compatibility
with respect to Al model changes refers to the ability to flexibly
replace and update various Al models while maintaining the
existing system architecture and API formats [10].

II. STRUCTURAL CONSIDERATIONS FOR ENSURING
CROSS-COMPATIBILITY IN PUBLIC Al

First, the requirements for ensuring cross-compatibility in
response to changes in Al infrastructure are as follows. Public
Al services should be able to operate continuously without
requiring additional redevelopment, even when underlying
infrastructure environments—such as cloud platforms, server
configurations, or GPU resources—change [11]. To achieve
this, Al models must be stored and deployed using container-
based environments [12]. Container technologies, such as
Docker, package all components required for AI model
execution—including source code, libraries, framework
versions, and runtime configurations—into a single, self-
contained unit [13]. This approach effectively mitigates
compatibility issues that may arise from differences across
operating environments. In particular, public-sector Al systems
are highly likely to be deployed across diverse infrastructure
environments, including on-premises systems, private clouds,
public clouds, and hybrid cloud architectures. Consequently,
deployment mechanisms that are independent of specific servers
or operating systems are essential. Container-based deployment
satisfies these requirements by enabling the same container
image to be consistently applied across heterogeneous
infrastructure environments, thereby ensuring both portability
and reproducibility of AT models [14].

Furthermore, container images support version control,
which facilitates efficient model updates and rollbacks, while
also enhancing responsiveness to operational failures. From the
perspective of long-term public Al service operation, this
contributes to achieving both system stability and improved
maintenance efficiency. In addition, manual, operation-
intensive deployment processes increase the likelihood of errors
when infrastructure environments change. Therefore, the
establishment of automated deployment pipelines using
Continuous Integration and Continuous Deployment (CI/CD)
tools is required. By leveraging tools such as GitLab CI and
Jenkins to automate the processes of container image building,
testing, and deployment, Al models can be deployed and
operated in a consistent manner regardless of changes in the
infrastructure environment. Such automated deployment
pipelines play a critical role in ensuring operational consistency
in public Al systems and in minimizing technical burdens
associated with infrastructure expansion or migration.

In conclusion, by jointly adopting container-based storage
and deployment mechanisms along with CI/CD automation
environments, public Al systems can respond flexibly to
infrastructure changes and secure cross-compatibility that is
independent of specific cloud platforms or hardware
environments. Furthermore, establishing a containerized
infrastructure with CI/CD automation enables public Al systems
to remain resilient and interoperable, regardless of the
underlying cloud services or hardware environments.

1. Al Usage
Inference Server Code

Al Model

i
e Deep Learning
l Framework X
ONNX API
2
Open Neural RPC
Network Exchange p GPU Farm

Fig. 1. Example of Container-Based Al Model Execution

A. Containerization

® A key strategy for deploying Al models into operational
environments and ensuring their portability is
containerization. Containers encapsulate all components
required for Al model execution—including source
code, libraries, and configuration files—into a single,
self-contained package, enabling consistent deployment
across heterogeneous environments. Docker-based
containers are commonly employed for this purpose, and
the following procedures are required.

e Container Image Construction: A container image is
built using a “Dockerfile” by encapsulating the trained
Al model together with execution scripts, required
libraries, and configuration files into a single image.

e Lightweight Design and Optimization: Since public-
sector environments often impose constraints on cloud
infrastructure resource usage, the container image size is
minimized through model size optimization and the
removal of unnecessary dependencies[15].

e Compatibility Testing: The configured container is
validated to ensure that it can be executed without issues
across various platform or cloud environments, such as
Kubernetes, OpenShift, Naver Cloud Platform, and NHN
Cloud.

Al Model Service Development Based on Service Container Image

Al Model Weight Standardization Model Service Containerization

s ~ —
Deep Learning
Framewoss

~
S
dmlic Model Weight & ’
odel Weights
XGBOOSt Standarci en ™ =2

OPYT?rCh ONNX o

Dockerfile Image

TensorFlow \Mode\ Service Container Build & SaveJ

xnet |

54 (Container Image Storage
S

& &

~

Model Serving Frameworks

rLLM || LLM Vision
Service Service
I BENTOML _Image Image y
- Model Serving & Model Service

Frameworks Image Load

Fig. 2. Example of Service Container Image of AI Model Service

One of the most critical factors in replacing or updating Al
models for improved performance is the reusability of training
data. To enable this, it is essential to standardize the structure
and format of training data in advance. In the public sector, Al
services are not limited to a single model but must evolve
continuously by adopting and applying various algorithms and
models as technologies advance. If the data structure is tightly
coupled with specific models, every model change would
require reprocessing or restructuring of data, leading to
inefficiency.

Specifically, the training and test datasets used for Al model
development must have a consistently defined structure,
including feature names, data types, units, handling of missing
values, and normalization standards. Without such structural
consistency, even if datasets remain the same, each model may
require a different preprocessing process. This not only
undermines the comparability of training outcomes but also
reduces the reliability of performance verification. Therefore,
defining data schemas in advance and managing feature names
and data types in a standardized manner is essential.

Furthermore, consistency in label definition is also crucial,
especially in tasks such as classification, regression, and
prediction. For example, if class definitions in a multi-class
classification task vary across models or if label encoding
methods differ, existing datasets may not be reusable for training
new models[16]. To address this, the semantics, range, and
encoding rules of labels must be clearly documented and
consistently maintained, ensuring identical learning conditions
during model replacement. Beyond the model training phase,
data standardization plays a pivotal role in the full lifecycle
management of Al systems. This includes model performance
comparison, retraining, performance degradation detection,
auditability, and interpretability. In the public sector, where
transparency and accountability in Al decision-making are
crucial, standardized data structures and label definitions help
minimize policy and administrative risks associated with model
changes.

Ultimately, standardizing the structure and format of training
data is a prerequisite for ensuring cross-compatibility during Al
model replacement and updates. This enables public institutions
to continuously leverage their existing data assets while flexibly
adopting the latest Al models, laying the foundation for
sustainable and adaptive Al service deployment.

TABLE L RECOMMENDED DATA FORMATS FOR DATA REUSABILITY
Format Coverage Explanation
- Each row is an
JSONL Targeting Reusability independent JSON object
(JSON Across NLP, LLM, and | - Enables complex label
Lines) Multimodal Models structures such as text and
multi-label formats
. - Universal file format
CSv Othe.:r General Fine- | _ Applicable to all types of
Tuning
models

It is essential to standardize the interface between Al models
and information systems. Given the rapid evolution in the

architecture and scale of Al models, input/output (I/O) interfaces
must be designed in a forward-compatible manner to
accommodate future model version updates. This includes
preparing for changes in model outputs and ensuring
compatibility with existing system structures. In particular,
systems should implement mechanisms to compare outputs
between the existing and updated models to evaluate
compatibility and impact. When significant changes occur, a
separate versioning and management strategy for the API should
be maintained to support stable integration.

Furthermore, to enable process reuse, lifecycle metadata
must be systematically documented and managed. This involves
capturing metadata across all components of the Al
development pipeline, including data preprocessing scripts,
model architectures, and configuration parameters. In addition,
metadata should describe the training environment, such as the
frameworks used and library versions. Establishing a
standardized training environment based on consistent data
structures and metadata ensures the reproducibility of results
and maintains consistent model quality and operational stability
during model replacement or retraining.

B. Standardization of Input/Output Interfaces

e Designing Interfaces with Version Updates in Mind: As
Al models are frequently updated due to performance
improvements or changes in algorithms, it is necessary
to ensure that input/output (I/O) interfaces are designed
with future version updates in mind. While the input
structure should ideally remain consistent, the output
format may vary depending on the model version.
Therefore, the interface should be designed to ensure
backward compatibility, allowing newer models to
function seamlessly within existing systems without
disrupting downstream processes.

e Introducing an API Versioning System: n cases where
significant changes to the interface are required, a well-
defined versioning system must be introduced to avoid
conflicts with existing APIs. For instance, maintaining
separate versions such as /vl/predict and /v2/predict
allows parallel operation of multiple API versions,
ensuring stable integration with legacy systems while
accommodating new capabilities.

e In American English, commas, semicolons, periods,
question and exclamation marks are located within
quotation marks only when a complete thought or name
is cited, such as a title or full quotation. When quotation
marks are used, instead of a bold or italic typeface, to
highlight a word or phrase, punctuation should appear
outside of the quotation marks. A parenthetical phrase or
statement at the end of a sentence is punctuated outside
of the closing parenthesis (like this). (A parenthetical
sentence is punctuated within the parentheses.)

¢ Implementation of Output Comparison Mechanisms: By
implementing functionalities that enable comparative
analysis of prediction results between the existing model
and the updated model—such as visualization of output
differences or generation of comparative reports on key
indicators—it becomes possible to quantitatively assess

the impact of model updates on policy application and
service outcomes[17].

C. Full-Cycle Metadata Documentation and Managament

e Metadata Structuring of Training Pipeline Components:
It is essential to systematically organize metadata for all
components used throughout the entire process of data
collection, preprocessing, training, and model
deployment. This metadata should include the following
elements(Parameters, Model architecture, Training logs
and performance metrics, etc.).

¢ Documentation of Training Environment Information:
To ensure reproducibility and consistent model quality,
detailed information about the environment in which the
model was trained must also be included as metadata
such as Frameworks & versions(e.g., PyTorch 2.0,
TensorFlow 2.11), Hardware specifications(e.g.,
NVIDIA A100, CUDA 11.7) and libraries and versions.

III. IMPLICATION

This study derives the core requirements for ensuring cross-
compatibility to enable the stable adoption and widespread
deployment of artificial intelligence (AI) systems in the public
sector. As a result, it is expected to yield the following practical
implications across future government- and public-sector Al
initiatives.

A. Reduction of Technology Dependency and Strengthening of
Platform Independence

When public institutions adopt Al services, technical
dependency on specific vendors, cloud platforms, or
frameworks often leads to various challenges, including
increased long-term maintenance costs, reduced operational
flexibility, and limited ability to respond to rapid technological
evolution. The container-based deployment approaches,
standardized model formats, and API interface standardization
proposed in this study mitigate such technology dependency by
enabling Al models to be reused and migrated across diverse
environments. Consequently, these measures enhance platform
independence and technological autonomy, providing a
foundation for strengthening governmental digital sovereignty.

B. Improvement of Operational Efficiency and Reduction of
Maintenance Costs

Following the deployment of Al systems, continuous
operation, performance maintenance, and periodic model
replacement are required. If critical elements such as data
formats, input/output structures, and training environments are
not managed consistently, substantial time and cost are incurred
whenever new models are introduced. The standardization of
data and metadata, along with the metadata-based
documentation of training pipelines proposed in this study,
minimizes redundant work and ensures consistent quality during
model replacement or retraining. This approach improves
maintenance efficiency while also enhancing transparency and
predictability in budget execution.

C. Ensuring Scalability and Sustainability of Al Services

Al technologies are evolving rapidly, and the functional
requirements of public services are becoming increasingly
complex. Accordingly, Al systems must be continuously
improved and expanded to incorporate diverse models,
including multimodal models, large language models (LLMs),
and prediction-based models. This study proposes a strategy that
structurally embeds cross-compatibility to proactively respond
to such technological advancements. As a result, it establishes a
foundation for implementing sustainable Al services that are not
constrained by specific technological environments.

D. Establishment of a National-Level Al System Foundation

Finally, the design requirements for ensuring cross-
compatibility extend beyond individual institutional projects
and serve as a foundation for standardizing and expanding
technical infrastructures at the national Al ecosystem level. As
a foundational study that considers future Al technical
standards, public data standardization, and institutionalization
through collaboration with organizations such as TTA and other
standardization bodies, this research is expected to provide
substantial momentum toward the realization of a digital
platform government.

IV. CONCLUSION

This study proposed a set of design-level requirements for
ensuring cross-compatibility in public-sector Al systems as a
strategic foundation for sustainable operation and technical
autonomy. Focusing on two primary axes—changes in Al
infrastructure and changes in Al models—we identified and
elaborated on key technical considerations and implementation
strategies.

First, in response to infrastructure shifts, we emphasized the
importance of container-based deployment and storing Al
models in standardized formats (e.g., ONNX, PMML) to
enhance portability and scalability. Second, to facilitate the
replacement or upgrading of Al models, we discussed the
necessity of standardizing data structures and label definitions,
managing API versioning, implementing output comparison
mechanisms, and maintaining lifecycle metadata in a systematic
manner.

The proposed framework aims to help public institutions
build a flexible Al ecosystem that is not locked into specific
vendors or technologies, thereby enabling the integration and
operation of diverse Al solutions. Moreover, the requirements
presented here can serve as foundational criteria for public
agencies in Al project planning, RFP documentation, technical
verification, and performance evaluation. With the
accumulation of real-world implementation cases, this
framework can further evolve into a robust set of technical and
policy guidelines.

For future research, it will be important to validate the
practical applicability of these design requirements by
constructing an empirical implementation framework, as well as
to develop more refined standards through comparative analysis
of interoperability practices across countries and industries.
These efforts will contribute to the establishment of a more

robust, scalable, and policy-aligned foundation for future Al
adoption in the public sector.

REFERENCES

OECD, Al in the Public Sector: Opportunities and Challenges, OECD
Publishing, Paris, 2021.

European Commission, White Paper on Artificial Intelligence: A
European Approach to Excellence and Trust, Brussels, Belgium, 2020.
M. A. Cusumano, A. Gawer, and D. B. Yoffie, The Business of Platforms,
Harper Business, New York, NY, USA, 2019.

NIST, Al Risk Management Framework (Al RMF 1.0), National Institute
of Standards and Technology, Gaithersburg, MD, USA, 2023.

J. Kreps et al., “Managing Machine Learning Models at Scale,” in Proc.
IEEE Int. Conf. Big Data, 2019, pp. 110-117.

European Union, Interoperable Europe Act, European Commission,
Brussels, Belgium, 2023.

ISO/IEC 19941, Information Technology — Cloud Computing —
Interoperability and Portability, ISO, Geneva, Switzerland, 2017.

P. Mell and T. Grance, The NIST Definition of Cloud Computing, NIST
SP 800-145, 2011.

(91

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

M. Zaharia et al., “MLflow: An Open Platform for the Machine Learning
Lifecycle,” Proc. VLDB Endowment, vol. 13, no. 12, pp. 3459-3462,
2020.

NIST, AI Risk Management Framework (Al RMF 1.0), National Institute
of Standards and Technology, Gaithersburg, MD, USA, 2023.

Docker Inc., Docker Documentation: Overview of Docker Containers,
https://docs.docker.com/get-started/, accessed 2025.

P. Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud Computing,
vol. 2, no. 3, pp. 24-31, May—June 2015.

Kubernetes, Kubernetes
accessed 2025.

M. Villamizar et al., “Evaluating the Monolithic and the Microservice
Architecture Pattern,” IEEE Software, vol. 32, no. 3, pp. 42-50, 2015.

J. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux Journal, no. 239, 2014.

Documentation, https://kubernetes.io/docs/,

NIST, Big Data Interoperability Framework: Volume 3, Use Cases and
General Requirements, NIST Special Publication 1500-3, 2015.

NIST, Big Data Interoperability Framework: Volume 3, Use Cases and
General Requirements, NIST Special Publication 1500-3, 2015.

