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Abstract—This work introduces PureCertificate, a privacy-
preserving certificate analysis framework that uses locally de-
ployed vision–language models instead of cloud services to
meet military-grade confidentiality requirements. PureCertificate
employs lightweight fine-tuning, dataset preprocessing, and GPT-
Generated Unified Format (GGUF) conversion for efficient on-
device inference through OLLAMA. Among the tested models,
qwen3-vl:8b-instruct-q8_0 delivered the most reliable perfor-
mance with a model size of about 9.8 GB. The framework
supports similarity checking, information extraction, discrep-
ancy detection, content recognition, and certificate comparison
through a Flutter-connected inferencing module. Experiments
show fluctuating desktop performance. Overall, PureCertificate
is a promising solution to offline multimodal certificate analysis.

Index Terms—Small Language Models (SLM),
Vision–Language Models (VLM), Privacy-Preserving Document
Analysis, Certificate Analysis

I. INTRODUCTION

Secure and reliable document analysis is increasingly es-
sential across governmental, industrial, and defense domains,
where unauthorized alteration or forgery of certificates poses
significant operational risks. Conventional cloud-based docu-
ment analysis pipelines, while effective, introduce confiden-
tiality and compliance concerns that are incompatible with
sensitive or classified environments. To address these limita-
tions, this work introduces PureCertificate, a locally deploy-
able framework built on Small Language Models (SLMs) and
Vision–Language Models (VLMs) [1] [2] [3] [4] to enable
multimodal certificate understanding without external data
transmission. By combining lightweight model fine-tuning,
structured preprocessing, and mobile-edge inferencing through
the OLLAMA runtime, the system provides a practical so-
lution for similarity evaluation, content extraction, and dis-
crepancy detection under strict privacy requirements. This
approach advances document intelligence toward secure, de-
centralized, and operationally adaptable analysis architectures
suited for military-grade privacy expectations.

The following list summarizes the primary contributions of
this research:

1) A multimodal (image and text) analysis engine capable
of similarity checking, information extraction, discrep-
ancy detection, content recognition, and certificate com-
parison within a unified workflow.

2) A privacy-preserving certificate analysis framework that
performs all document analysis locally using SLM-
and VLM-based inferencing, eliminating dependence on
cloud services and meeting military-grade confidentiality
requirements.

3) A practical integration into real-world applications
through a Flutter-based interface and local inferencing
module, validated through desktop and device-level ex-
periments that demonstrate stable performance.

The remaining parts of the paper are divided into the
following sections. Section II describes the literature review.
The proposed system workflow is explained in Section III.
Section IV presents the experimental setup and results, while
Section V discusses the conclusion and future work.

II. LITERATURE REVIEW

A research conducted in [5] developed a proof-of-concept
system that verifies the authenticity of news screenshots by ap-
plying Optical Character Recognition (OCR) using the Google
Cloud Vision Application Programming Interface (API) to ex-
tract text from an image, and then comparing that text against
the New York Times (NYT) article database through the
NYT Developers Application Programming Interface (API)
to determine whether the screenshot corresponds to a real
published article. Tested on a small curated dataset of 52
screenshots, the system achieves approximately 84.5% accu-
racy. The key research gap is that the method relies on exact
or near-exact text matching from a single news source and
therefore does not address multi-source analysis, paraphrased
content, subtle manipulations, multilingual news, or noisy real-
world social media layouts. The artificial intelligence (AI)



Fig. 1. System workflow showing local model tuning, deployment, and on-device certificate analysis within the PureCertificate framework..

limitation is that the system does not use advanced semantic
language models or multimodal reasoning; instead, it depends
purely on text matching, meaning it cannot understand article
meaning, detect nuanced alterations, or generalize beyond the
constrained New York Times-only setting.

Another study in [6] developed a multi-stage method for
extracting very small text from document and chart images
by combining single-image super-resolution with character-
level segmentation before recognition using a Convolutional
Recurrent Neural Network with Connectionist Temporal Clas-
sification loss. This approach improves accuracy by 18%
over a standard baseline on small-text datasets, demonstrat-
ing that enhancing resolution and isolating characters helps
overcome low-visibility text. However, a key research gap
remains: the system struggles with multi-oriented text, tightly
spaced characters, mixed font sizes, and complex real-world
chart layouts, limiting its robustness. The artificial intelli-
gence limitation is that the framework relies on traditional
convolutional–recurrent models without modern transformer
or attention-based architectures, preventing it from leveraging
contextual semantic cues and reducing its generalization abil-
ity across diverse and noisy image conditions.

The study in [7] built a text-extraction system that combines
image preprocessing, convolutional neural network–based text

detection, character segmentation, and Tesseract Optical Char-
acter Recognition within a Streamlit web interface, enabling
users to upload images and retrieve extracted text. The work
demonstrates effective extraction under clean, horizontally
aligned conditions but leaves a research gap in handling
skewed, low-quality, multilingual, handwritten, and complex-
background text that occurs in real-world scenarios. Its arti-
ficial intelligence limitation is reliance on traditional models
and Tesseract OCR rather than modern transformer-based or
context-aware recognition systems, reducing accuracy, robust-
ness, and semantic understanding.

The study in [8] evaluates eight combinations of speech-
to-text, large language models, and text-to-speech systems for
controlling a ROSbot XL through spoken commands, demon-
strating that the Whisper + GPT-4.0 + Google Text-to-Speech
pipeline yields the most accurate and efficient robot responses,
while all LLaMA 3.2 configurations perform considerably
worse. The work was not intended as a comprehensive or
certifiable analysis of autonomous robotic control; rather, it
serves as a targeted performance comparison within a con-
trolled simulation environment. The work was not meant for
certificate analysis or formal certification of robotic systems,
but rather for exploratory performance evaluation within a
controlled simulation environment.



TABLE I
SMALL LANGUAGE MODELS (VISION-LANGUAGE AND TEXT-ONLY) WITH REASONING CLASSIFICATION

Model Full Name Modality Vision Capability Parameters (B) Classification
qwen3-vl:8b-instruct-q8_0 Vision-Language Yes 8.0 Reasoning
Qwen3-VL-3B Vision-Language Yes 3.0 Reasoning
Phi-3.5-Vision Vision-Language Yes ≈4.0 Reasoning
DeepSeek-VL-1.3B Vision-Language Yes 1.3 Reasoning
DeepSeek-OCR-3B Vision-Language Yes (OCR-focused) ≈3.0 Non-Reasoning
LLaVA-7B (LLaMA/Vicuna-based) Vision-Language Yes 7.0–7.2 Reasoning
Llama 3.2-3B-Instruct Text-Only No 3.0 Reasoning
Llama 3.1-8B-Instruct Text-Only No 8.0 Reasoning
Llama 3.2 Vision 11B Vision-Language Yes 11.0 Reasoning

TABLE II
GGUF/GGML INTEGER QUANTIZATION FORMATS

Format Full Meaning of Abbreviation Bit-Width Fidelity Level Typical Use-Case
Q8_0 Quantized 8-bit, Scheme 0 (symmetric zero-

point)
8 High General local inference; minimal

quality loss
Q6_K Quantized 6-bit, K-type block quantization 6 High Efficient CPU/GPU inference with

strong accuracy
Q5_K Quantized 5-bit, K-type block quantization 5 Medium-high Low-VRAM GPUs; faster CPU in-

ference
Q5_1 Quantized 5-bit, Scheme 1 (with bias cor-

rection)
5 Medium-high Lightweight inference needing

higher precision than Q5_0
Q5_0 Quantized 5-bit, Scheme 0 (baseline 5-bit) 5 Medium General reduction with slightly

more compression
Q4_K Quantized 4-bit, K-type block quantization 4 Medium-high Best 4-bit fidelity; widely used for

laptops/CPUs
Q4_1 Quantized 4-bit, Scheme 1 (bias-aware) 4 Medium Balanced compression + accuracy
Q4_0 Quantized 4-bit, Scheme 0 4 Medium Most common lightweight 4-bit

baseline
Q3_K Quantized 3-bit, K-type block quantization 3 Low-medium Very compressed CPU/edge infer-

ence
Q2_K Quantized 2-bit, K-type block quantization 2 Low Extreme compression for tiny de-

vices
Q1_K Quantized 1-bit, K-type block quantization 1 Very low Research on binary LLMs only

III. PROPOSED SYSTEM WORKFLOW

The system workflow in Fig. 1 follows a structured sequence
that ensures secure, local, and efficient certificate analysis
using SLM and VLM models.

A. Dataset Description

The dataset is sourced from Hugging Face
(unsloth/LaTeX_OCR) and contains images of mathematical
expressions paired with their ground-truth LaTeX
representations. It is divided into a training set (68,686
samples) and a test set (7,632 samples). Each sample consists
of an image and a corresponding LaTeX text label, making
the dataset suitable for vision-to-text OCR tasks, specifically
mathematical formula recognition using vision–language
models.(Step 1), followed by dataset preprocessing (Step 2).

B. Dataset Preprocessing

During preprocessing, each dataset sample is converted
into a conversation-based instruction format required
for vision fine-tuning. A fixed instruction, defined as
“Write the LaTeX representation for this
image.”, is used for all samples. For each sample,

the convert_to_conversation(sample) function
creates a structured message sequence consisting of a
user role and an assistant role. The user message contains
two content elements: a text instruction ({"type":
"text", "text": instruction}) and the
corresponding image ({"type": "image", "image":
sample["image"]}). The assistant message contains
the ground-truth LaTeX label ({"type": "text",
"text": sample["text"]}). The function returns the
formatted output as {"messages": conversation},
ensuring that all samples follow a consistent structure
compatible with supervised vision–language fine-tuning.

C. Model Fine-Tuning

The pretrained Gemma-3 Vision–Language Model is
fine-tuned using supervised fine-tuning with SFTTrainer
and the UnslothVisionDataCollator to support
vision–language learning. Fine-tuning is enabled using
FastVisionModel.for_training(model) and
performed on the converted conversation dataset. The
configuration uses per_device_train_batch_size
= 1 with gradient_accumulation_steps



= 4 and gradient_checkpointing = True
(with use_reentrant = False) to reduce
memory usage. Optimization is carried out using
adamw_torch_fused with learning_rate =
2e-4, weight_decay = 0.01, max_grad_norm
= 0.3, warmup_ratio = 0.03, and a cosine learning
rate scheduler. Fine-tuning is limited to max_steps
= 30 for faster execution, with logging_steps
= 1, save_strategy = “steps”, and seed =
3407. Vision fine-tuning requirements are satisfied
by setting remove_unused_columns = False,
dataset_text_field = “”, dataset_kwargs
= {"skip_prepare_dataset": True}, and
max_length = 2048. A selected lightweight
vision–language model, such as Qwen2-VL-2B or Gemma-
3-4b, is then fine-tuned (Step 3) using a parameter-efficient
SLM tuning strategy.

D. Model Inference

After fine-tuning, the pretrained Gemma-3 Vision–
Language Model is switched to inference mode using
FastVisionModel.for_inference(model). A test
image is selected from the dataset, and a user-defined instruc-
tion is provided while leaving the output empty. The input is
formatted using the Gemma-3 instruction chat template and
processed jointly with the image to construct the model input
tensors.

Text generation is performed using optimized inference
hyperparameters, namely temperature = 1.0, top_p =
0.95, and top_k = 64, which balance output diversity and
generation stability. The model generates responses token by
token using caching and streaming, producing either a textual
description or a LaTeX representation of the input image. This
demonstrates the model’s ability to generalize and generate
meaningful outputs from previously unseen visual data.

The tuned model is subsequently converted into the GGUF
format (Step 4) to enable optimized execution within the OL-
LAMA runtime. Deployment takes place through two paths:
either a pre-fine-tuned model is directly loaded (Step 5b) or
the newly fine-tuned model is deployed (Step 5a).

In parallel, users upload an original certificate and its com-
parison copy to the PureCertificate application (Step 6). The
application, connected to the OLLAMA inference server (Step
9), forwards the processed visual inputs to the local VLM
engine. During inferencing (Step 7), the system performs a
sequence of analytical tasks, including similarity checking, in-
formation extraction, discrepancy testing, content recognition,
and certificate comparison using targeted prompts routed to the
appropriate VLM. The inference outputs are then evaluated
for consistency and quality, producing a structured “Good
Inference Result” (Step 8) that is returned to the application
interface. Through this workflow, all document data remains
local, meeting stringent privacy requirements while enabling
accurate multimodal certificate analysis.

Table I consolidates the candidate small-scale models as-
sessed for PureCertificate by contrasting (i) modality (vision–

language versus text-only), (ii) native visual perception avail-
ability, (iii) parameter count in billions P (spanning ap-
proximately P ∈ [1.3, 11]B), and (iv) a coarse “reasoning”
versus “non-reasoning” designation. This characterization is
operationally salient for certificate analysis because the target
functions—including similarity checking, discrepancy detec-
tion, and certificate-to-certificate comparison—are intrinsically
multimodal, such that models with explicit vision capabil-
ity are structurally advantaged over text-only baselines that
would otherwise require an external OCR front-end. The
predominance of vision–language entries marked as reasoning-
capable suggests suitability for multi-step, context-dependent
judgments beyond transcription, whereas the inclusion of an
OCR-focused non-reasoning variant motivates a division of
labor in which perception-centric extraction can be decoupled
from deliberative verification. Finally, the spread in model
sizes reflects the deployment trade-off in local settings, where
resource consumption increases with P and numeric precision;
in practice, on-device feasibility is governed by an approxi-
mate scaling relationship M ∝ P · b, where M denotes model
weight memory and b denotes effective bit-width.

Table II specifies the GGUF/GGML integer quantization
design space used to enable local deployment by enumerating
formats ({Q8_0, Q6_K, Q5_K, Q5_1, Q5_0, Q4_K, Q4_1,
Q4_0, Q3_K, Q2_K, Q1_K}) and mapping each scheme to
bit-width b ∈ {8, 6, 5, 4, 3, 2, 1}, an expected fidelity tier, and
a typical deployment niche. The table thereby operationalizes
the monotone compression–quality frontier: higher precision
(e.g., Q8_0) is positioned for high-fidelity inference with min-
imal quality loss, while intermediate 5-bit and 4-bit schemes—
including block-quantized K-type variants—target practical
constraints such as low-VRAM GPUs and laptop/CPU infer-
ence while preserving usable accuracy. Conversely, aggressive
compression (e.g., Q3_K and Q2_K) is aligned with edge
CPU contexts at the cost of lower fidelity, and the 1-bit
setting is framed as primarily research-oriented due to severe
representational loss. Conceptually, reducing b lowers storage
and bandwidth demands approximately linearly in b, but
introduces quantization distortion that can degrade extraction
and reasoning if pushed beyond the robustness envelope of the
deployed vision–language model.

IV. EXPERIMENTAL SETUP AND RESULT

The experiment was conducted using a locally hosted OL-
LAMA server configured on a desktop environment equipped
with GPU acceleration, enabling real-time execution of SLM
and VLM models in gguf format. Multiple lightweight models
were tested, including Qwen2 VL 2B, Gemma 3 4b, and
Qwen3 VL variants, to assess inference stability, accuracy,
and resource efficiency within the PureCertificate workflow.
Among these, qwen3-vl-8b-instruct-q8_0 demonstrated the
highest reliability and most consistent outputs while maintain-
ing a manageable 9.8 GB model size, making it a promising
candidate for on-device certificate analysis. The Flutter client
connected seamlessly to the local server on desktop and
localhost configurations, producing successful inference re-



sponses across all analysis functions. In contrast, real mobile-
device testing revealed connectivity limitations for externally
accessed local servers, highlighting the need for secure tun-
neling approaches such as Virtual Private Network (VPN)
or Zero Trust Network Access (ZTNA). Overall, the results
demonstrate the feasibility of implementing local and privacy-
preserving document analysis using small vision–language
models.

The fine-tuning l oss exhibits a clear downward trend across
the 30 fine-tuning steps, indicating effective convergence of the
model. While the loss fluctuates during the initial fine-tuning
phase, reaching a peak of 2.74 at step 2, such behavior is
expected as the model adapts to the vision–language task. As
fine-tuning progresses, the loss steadily decreases, dropping
below 1.0 by step 7 and stabilizing around 0.3 in later steps.
The final loss value of 0.264 at step 30 demonstrates that the
model successfully learned the task-specific representations
within a limited number of fine-tuning steps, confirming the
stability and effectiveness of the fine-tuning setup.

Fig. 2 presents the graphical user interface of the PureCer-
tificate application and illustrates how end users interact with
the local vision–language inference pipeline. The AI Analysis
in the Pure Certificate application provides a straightforward
way to compare and process documents. Users select a ref-
erence file and a comparison file, then choose from several
automated tasks such as checking for similarity, recognizing
content, or extracting specific information. By handling these
complex AI tasks on a local server rather than the cloud,
the application allows for advanced document analysis while
keeping the user’s data private and the interface easy to
navigate.

Fig. 3 illustrates the response time behavior of the PureCer-
tificate application over fifteen consecutive requests. Based on
the bar chart, the response time behavior is characterized by
an initial peak followed by frequent fluctuations rather than a
steady-state. The first request requires the most time at 67.0
seconds, likely due to the system’s initialization. Once this is
complete, the subsequent 14 requests show significant vari-
ability, with times ranging from a minimum of 21.6 seconds
(Request 3) to a maximum of 46.0 seconds (Request 13).
While there is no clear trend of performance degradation, the
response times do not settle into a consistent range, oscillating
instead between 21 and 46 seconds throughout the test period.

As summarized in the table III, Prior work primarily tar-
gets narrow OCR accuracy or cloud-based, domain-specific
verification, whereas PureCertificate delivers a fully local,
multimodal framework that integrates perception and semantic
reasoning. By enforcing data locality and enabling higher-
level operations such as similarity and discrepancy analysis,
it moves beyond OCR toward secure document intelligence
suitable for sensitive deployments.

V. CONCLUSION AND FUTURE WORK

It appears that PureCertificate could serve as a promising,
privacy-preserving solution for certificate analysis by lever-
aging locally deployed Vision-Language Models. By utiliz-

Fig. 2. PureCertificate application user interface displaying local vision–language model
inference commands.

Fig. 3. Response Time per Request

ing GGUF-quantized models like qwen3-vl:8b-instruct-q8_0
within the OLLAMA runtime, the system suggests a viable
path for performing complex tasks such as similarity checking
and discrepancy detection, without external data transmission.

Future work should pursue adaptive, context-aware quan-
tization methods and hybrid precision strategies that further
reduce response time, resource usage as well as evaluate
performance of other promising AI models. Future work will
also focus on clearly distinguishing OCR functionality from
higher-level VLM-based semantic reasoning, and on incorpo-



TABLE III
COMPARATIVE ANALYSIS WITH EXISTING LITERATURE ACROSS APPLICATION DOMAIN, TECHNIQUE, DEPLOYMENT, PRIVACY HANDLING, ANALYTICAL

CAPABILITY, AND LIMITATIONS.

Work Primary Application
Domain

Core Technique Deployment
Model

Privacy Handling Analytical
Capability

Key
Limitations

Kamal et al. [5] News screenshot
verification

Cloud-based OCR with
exact text matching against
NYT database

Fully
cloud-dependent

Low (external
APIs and
databases)

Text extraction
and direct
matching

Dependent on
exact text
matching;
cannot
understand
article
meaning.

Busa et al. [6] Small text extraction
from documents and
charts

Super-resolution;
character-level
segmentation; CRNN with
CTC

Offline,
model-specific

Medium (local
processing)

Fine-grained
OCR accuracy
improvement

Reliance on
traditional
neural
network
models rather
than modern,
context-aware
transformer
architectures

Rajmod et al. [7] Generic OCR for
images

Image preprocessing;
CNN-based detection;
Tesseract OCR

Web-based
application

Medium (user
uploads to web
interface)

Basic text
extraction

Lack of
attention
mechanism &
context-
awareness

Uruj et al. [8] Human–robot
interaction

Speech-to-text; large
language models;
text-to-speech

Mixed cloud and
local

Not a design focus Spoken
command
understanding

Not intended
for document
or certificate
analysis

PureCertificate (This
Work)

Secure certificate
analysis

Local vision–language
models with multimodal
reasoning

Fully local
(OLLAMA-based)

High (no external
data transmission)

Similarity
checking;
information
extraction;
discrepancy
detection;
content
recognition;
certificate
comparison

Current
latency
constrained by
on-device
inference
resources

rating quantitative evaluation metrics such as accuracy and
resource utilization to better validate deployment feasibility.
The study will also include a comprehensive security and
privacy threat analysis addressing potential data leakage and
offline verification scenarios. In addition, the related work will
be strengthened by incorporating recent advances in VLM-
based document understanding, privacy-preserving machine
learning, and document forgery and similarity detection.
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