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Abstract - House object Accurate localization and
classification of dental structures in the radiographic images are
crucial for both automatic dental diagnosis and treatment
planning. This paper proposes a deep learning-based tooth
detection framework that integrates a multi-stage architecture,
comprising a backbone for hierarchical feature extraction, a neck
module for multi-scale feature refinement, and a detection head
for bounding box regression and class prediction. The backbone
employs a series of convolution-batch normalization-activation
blocks to capture low- and mid-level anatomical patterns from
input dental images. The neck module fuses multi-scale features
using upsampling and concatenation operations, enhancing
contextual representation. Then, the final predictions, including
tooth class probabilities, objectness scores, and optimized
bounding boxes, are generated in the detection head. Experimental
evaluation on multiple tooth categories reveals powerful detection
performance, with an overall precision of 0.786, an overall recall
of 0.848, mAP@50 of 0.881, and mAP@50-95 of 0.656. Class-wise
results display excellent performances for Central Incisors,
Canines, and Lateral Incisors, having mAP@50-95 values of
0.845, 0.808, and 0.823, respectively, while comparatively low
scores have been observed for some classes like the 2nd Molar. In
general, the proposed model effectively balances accuracy and
robustness across diverse tooth types.

Index Terms - Dental image analysis, Multi-scale feature
fusion, Radiographic imaging, Bounding box regression,
Automated dental diagnosis.

[. INTRODUCTION

The integration of artificial intelligence and deep learning
into dental imaging has revolutionized traditional diagnostic
workflows, which are today faster, more consistent, and highly
accurate in clinical decision-making. Initial dental radiograph
analysis studies focused on classical image processing and
neural network-based techniques as a starting point for
automated diagnosis systems. For example, Silva et al. (2018)
presented one of the earliest comprehensive studies on
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automatic tooth segmentation in X-ray images, pointing to the
main trends, benchmarking strategies, and the challenge of
variability in datasets and anatomical complexity [1].

This paper laid down the foundation for the importance of
standard datasets and robust feature extraction methods for
reliable dental image interpretation. Advancement of machine
learning has greatly increased the precision and efficiency of
dental diagnostics. Geetha et al. (2020) demonstrated the
application of back-propagation neural networks in detecting
dental caries from digital radiographs, proving that early-stage
lesions can be effectively detected using a supervised learning
approach [4]. Similarly, optimization-based deep learning
techniques have also been used to improve the accuracy of
complex dental image recognition. Mahdi et al. (2020)
proposed an optimizationenhanced deep learning method for
recognizing teeth in panoramic radiographs; achieving better
performance, the refinement of network parameters for diverse
anatomical variations significantly contributed to such results
[5].

Recent breakthroughs in architectures for deep learning
have further enhanced the capabilities of Al dental diagnostics.
Chen et al. (2019) introduced a framework using object
detection for automatic teeth detection and numbering in
periapical radiographs, with a demonstration of how CNNs can
identify and classify individual teeth within varying
orientations, occlusions, and image qualities [3]. These
advances point to the importance of deep learning in
establishing automated, reproducible, and clinician-assistive
dental diagnostic systems. Over the past years, there has been a
fast pace toward incorporating Al into a wide range of dental
applications, from simple image analysis to complete diagnosis
of diseases. A comprehensive review, starting from the basics
and finishing with the most recent developments in the field,
has been performed by Ossowska et al. (2022) [2]. All the
reviewed material indicates an increased trend in using machine
learning for caries detection, orthodontic assessment,



periodontal evaluation, and implant planning. It is mentioned
that Al increases not only diagnostic precision but also aids in
workflow optimization and reduces the workload for clinicians,
particularly in radiographic interpretation.

II. LITERATURE SURVEY

Deep learning has become an important tool in dental image
analysis for automatic diagnosis, segmentation, and
classification across a wide range of imaging modalities. Early
efforts in the subject primarily focused on using CNNs with
challenging radiographic datasets. Lee et al., in 2020, showed
one of the first applications of deep learning in the diagnosis of
cystic lesions in panoramic and CBCT images [6]. Their work
manifested the great capability of neural networks to
outperform traditional diagnostic methods, especially when the
pathological region had ambiguous borders. In the continuation
of deep learning development, the focus shifted to the automatic
feature extraction and pathology detection in periapical
radiographs. Khan et al., in 2021, proposed a CNN-based
framework for the automatic detection of dental features and
pathologies, which improved the accuracy and manual
intervention in interpreting the periapical radiograph [7]. Their
model efficiently detected structural dental features like pulp
chambers and periodontal ligaments, and set the base for
complex diagnostic tasks.

Building on object detection methodology, Cha et al. (2021)
proposed an R-CNN to quantify peri-implant bone loss based
on periapical radiographs [8]. This approach allowed for
accurate localization of the peri-implant regions and automated
bone level measurement, providing a useful tool to aid in
implant maintenance protocols. Kim et al. (2021) employed
deep learning to predict paresthesia after third molar extraction
[9]. Their study demonstrated that neural networks may
interpret the radiographic patterns indicative of nerve proximity
and extraction complexity. These studies together highlighted
the potential of deep learning to provide patient-specific risk
estimates and to aid in clinical decision-making. Studies were
conducted regarding the classification and detection tasks using
panoramic radiographs. Muramatsu et al. (2021) enhanced the
detection and classification of teeth by including multisized
input data to overcome the problems caused by variation in
scale and overlapping of anatomical structures [10]. The results
indicated that their automatic dental charting was an effective
way of combining panoramic imaging with deep learning for
routine clinical documentation.

Recent works in 2024 and beyond mark the shift toward
dedicated and large-scale models for tooth classification and
segmentation. Yilmaz et al. (2024) developed a deep learning-

based method that is dedicated to tooth classification in
panoramic radiographs, yielding high accuracy for a wide range
of dental patterns [11]. For pediatric dental image analysis,
Beser et al. (2024) presented a YOLOvS5-based tooth detection
and segmentation method in mixed dentition images that can
provide clinicians with a fast and accurate diagnosis in a clinical
environment with a child population [12]. Furthermore, Hu et
al. (2024) expanded the AI application area into 3D dental
imaging by presenting a fully automatic system for the
segmentation and fine classification of mixed dentition from
CBCT images with superior performance in volumetric
analyses compared to conventional 2D approaches [13].Very
recently, Balel et al. (2025) investigated Al applications in
implant dentistry through the development of an Al-based
framework for detecting and numbering dental implants in
panoramic radiographs [14]. Their approach yielded highly
accurate results both in detecting implant positions and
annotations, thus providing clinical support in postoperative
assessment and long-term implant monitoring.
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Fig.1 Proposed model architecture

III. PROPOSED MODEL

In Fig.1., the input stage begins with dental X-ray images
represented as a tensor HxWx3, where H, W, and 3 denote the
height, width, and color channels of the image, respectively.
Before feeding the image into the network, it is typically
normalized to stabilize training and improve feature extraction.
This normalization is performed by scaling pixel intensities to
the range [0,1], ensuring consistent input distribution for the
subsequent processing stages.

The backbone stage acts as the basic feature extractor in dental
image detection, transforming the raw pixel-level information



into high-quality hierarchical representations suitable for
deeper processing. Each block typically consists of a sequence
of Convolution, Batch Normalization, Activation, which are
known for optimizing gradient flow and reducing
computational redundancy. The operation
represents the crucial component for learning spatial features
such as tooth contours, enamel boundaries, root structures, and
texture variations within dental radiographs. A convolution
layer applies a set of learnable kernels K across the input feature
map X to produce an output feature Y, computed as

convolution

Yi,j,k = Zm,n,p Xi+m,j+n,p Km,n,p,k (1)

which aggregates information within a local neighborhood
around each spatial location. However, simply applying
convolution is insufficient for stable and efficient training,
especially when processing large dental datasets. Therefore, the
output of each convolution is normalized using Batch
Normalization, which standardizes the activations by
subtracting the mini-batch mean and dividing by the batch
variance, expressed as

A X—U

= Jotte (2)
y=yx"+8 3)

This step reduces internal covariate shift, accelerates
convergence, and allows the model to use higher learning rates
without diverging. Following normalization, the activations
pass through the SiLU (Sigmoid Linear Unit) non-linear
function, defined as
. X
Silu(x) = Ter @)

Which preserves small gradients, avoids harsh saturation, and
enhances the model’s ability to extract subtle details such as
narrow gaps between teeth or fine anatomical structures.
Together, these Conv—-BN-SiLU blocks form a powerful
backbone capable of capturing both low-level (edges, intensity
gradients) and mid-level (tooth shapes, root outlines) features,
ultimately producing a rich and discriminative feature map that
feeds into the subsequent neck and detection head for accurate
dental structure localization and classification.

The Neck stage is critical for refinement and fusing the features
extracted by the backbone: while the backbone focuses on
progressively learning low-level and mid-level patterns, the
neck needs to refine, fuse, and strengthen multi-scale feature
representations, which are, in turn, expected to be of paramount
importance for detecting variously sized objects in dental
images-indeed, incisors, canines, premolars, and molars vary
greatly in size and shape. The main principle here is to enable
the model to combine deep semantic features-from later layers-
with fine spatial featuresfrom early layers-so the detector can

accurately localize small or partially visible dental structures.
The process begins with Feature Pyramid Fusion, where feature
maps from different scales, typically denoted as f; (higher-
resolution feature) and fi+; (lower-resolution but semantically
richer), are fused. Since fi+; has smaller spatial dimensions, it
must be upsampled before fusion. This is mathematically
expressed as
Frusea = Concat(fy, Up(fi+1)) (5)
where Up denotes an interpolation operation, such as bilinear
interpolation, used to expand the spatial resolution of the deeper
feature map without learning additional parameters. Bilinear
upsampling is defined as
Up(X) = Bilinear(X) (6)

Which computes each new pixel value as a weighted average of
the nearest four pixels, ensuring smooth and artifact-free
resizing. After the feature maps are concatenated, the combined
representation contains detailed spatial patterns from shallow
layers and strong semantic information from deep layers,
making it more suitable for identifying dental structures that
may vary in orientation, scale, or contrast. This fused
representation is then passed through a sequence of
convolutional refinement layers represented as

Fout = Q)(Ffused) @)

this neck module ensures that the detector receives balanced,
multi-scale, information-rich features, enabling it to precisely
localize small dental structures, differentiate between closely
positioned teeth, and maintain robustness across varying
imaging conditions. The careful blending of coarse high-level
features and fine low-level features makes the neck an essential
bridge between the backbone and the prediction head in any
modern deep learning based dental image detection system. The
detection head is responsible for generating the final
predictions, which include class probabilities, the bounding box
coordinates (x,y), width w, height h, and the objectness score
that indicates whether a tooth exists in the predicted region.

IV. EXPERIMENTS

A.Dataset

The distribution of dental tooth classes based on the number of
annotated instances available for each category is shown in
Fig.2. It includes seven major tooth types: 1st Molar, Ist
Premolar, 2nd Molar, 2nd Premolar, Canine, Central Incisor,
and Lateral Incisor. The frequencies show noticeable variation
across classes, indicating class imbalance within the dataset.
The highest number of instances appears in the 1st Premolar,
Canine, Central Incisor, and Lateral Incisor categories, each
with close to or above 1800 samples, suggesting strong



representation of these teeth. The 1st Molar and 2nd Premolar
classes also have substantial counts, with around 1500-1600
instances. However, the 2nd Molar class has significantly fewer
samplesroughly 750making it the least represented category.
This imbalance highlights the need for careful model training
strategies, such as weighted loss functions or data
augmentation, to ensure that underrepresented classes like the
2nd Molar are learned effectively by deep learning models.
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Fig.3. Mosaic Augmented image

In mosaic augmentation, four different images are combined
into one composite image, thereby allowing the model to learn
varied contexts, lighting conditions, and spatial arrangements in
one training instance. In this case, the quadrants each show
different teeth with bounding box annotations of several classes
of teeth, differentiated by color and class IDs is shown in Fig.3.
The created scene is highly complicated, with objects varying

in scale, orientation, and position. This augmentation increases
the complexity significantly since the model is exposed to more
difficult configurations, enhancing its generalization capability
to real-world dental radiographs or intraoral images. Mosaic
augmentation increases the number of bounding boxes
available per image and helps the model in learning good
feature interaction, specifically for small, partially occluded
teeth.
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Fig.4. Confusion Matrix

The normalized confusion matrix represents the performance of
the dental tooth classification model for eight classes, including
the background category is shown in Fig.4. The values on the
diagonal indicate correct predictions and are particularly strong
for several classes, such as Central Incisor (0.96), Lateral
Incisor (0.93), Canine (0.89), and Ist Premolar (0.87),
indicating that the model steadily identifies these types of teeth.
For such classes as 1st Molar (0.67) and 2nd Premolar (0.81),
moderate  performance is observed with noticeable
misclassifications, especially for similar classes. The 2nd Molar
class has the lowest accuracy, with only 0.37 correctly
classified and a substantial confusion with background, 1st
Premolar, and 1st Molar, which reflects class imbalance and
visual similarity issues present in the dataset. Misclassifications
into the background category also emerge for several classes,
especially for 2nd Molar and 1st Molar, which indicates
detection challenges for partially visible or small teeth. On the
whole, this matrix points to great performance for most
categories of teeth but shows that rare or visually subtle classes
need further refinement.
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Fig.5. Performance metrics
The complete training and validation performance curves of the
tooth classification and detection model across 50 epochs,
showing how the model learns to differentiate between different
tooth categories is shown in Fig.5. The losses in training, which
are box loss, classification loss, and distribution focal loss,
consistently decrease over time. This goes to show that the
model is getting better at bounding-box localization and class
label prediction for various teeth, such as molars, premolars,
canines, and incisors. Similarly, there is a downwards trend for
these losses in validation, indicating good generalization and
low overfitting. On the right, metrics such as precision, recall,
mAP50, and mAP50-95 steadily increase throughout training.
Precision and recall rising together reflect improved correct
object Identification and reduced false detections of tooth
classes, even those with similar morphology. The mAP curves
show robust improvement, demonstrating that the model
becomes increasingly able to detect teeth more accurately
across different IoU thresholds. In summary, these curves
confirm that the model learns effectively from the dataset and
becomes progressively more reliable at distinguishing between
different tooth types in intraoral images.
TABLE 1 Model parameters

Layers | Parameters | GFLOPs Prep‘rocess Infe‘rence Postpro
Time Time cess
Time
172,986,69
120 3 608.3 0.1 ms 3.5ms 1.0 ms

Table 1 summarizes the computational characteristics and
efficiency of the YOLOv6x model. The overall architecture
comprises 120 layers with 172,986,693 trainable parameters,
which illustrates a deep and highly expressive network capable
of learning complex dental features. This model requires 608.3
GFLOPs, reflecting its high computational demand during
forward propagation. Despite this big size, the processing times
per image remain efficient; for example, pre-processing takes
0.1 ms, inference requires 3.5 ms to generate predictions, and

post-processing, which includes operations such as non-
maximum suppression, takes 1.0 ms.

TABLE 2 Performance Metrics

Precision | Recall mAP@50-

Class (19) R) mAP@50 95
All Classes 0.786 0.848 0.881 0.656
1st Molar 0.68 0.771 0.782 0.484
1st Premolar 0.803 0.941 0.958 0.717
2nd Molar 0.644 0.461 0.606 0.324
2nd Premolar | 0.684 0.899 0.89 0.588
Canine 0.883 0.922 0.97 0.808
Central

Incisor 0.921 0.978 0.986 0.845
Lateral

Incisor 0.885 0.963 0.977 0.823

Table 2 presents the detection performance of the model across
different tooth classes using key evaluation metrics such as
Precision, Recall, mAP@50, and mAP@50-95. Overall
performance for all classes is strong, with a Precision of 0.786,
Recall of 0.848, and an mAP@50 of 0.881, indicating reliable
detection capability. Individual class results show variations
depending on tooth type. Central Incisors and Canines achieve
the highest performance, with Precision values above 0.88 and
mAP@50-95 scores of 0.845 and 0.808, respectively,
demonstrating excellent localization and classification
accuracy. Similarly, Lateral Incisors and 1st Premolars exhibit
strong results, reflecting effective detection of these tooth
structures. In contrast, performance for the 2nd Molar class is
comparatively lower, with a Recall of 0.461 and mAP@50-95
of 0.324, indicating difficulty in detecting these teeth likely due
to occlusion, anatomical variations, or lower visibility in
radiographs.

Fig.6. Validated Energy Constraint Radiographic image



The predicted image provides an output of the tooth-
classification model, where numerous teeth have been detected
and labeled along with their respective classes and confidence
scores is shown in Fig.6. Each colored bounding box in the
image represents a type of tooth prediction, such as 2nd
Premolar, 2nd Molar, Central Incisor, or Lateral Incisor, with
its numeric value showing the model's confidence in that
respective prediction. The overlapping boxes, therefore,
indicate that the model has identified several possible areas of
teeth but seems to be doing poorly in areas where visual
similarities among adjacent teeth are prominent, hence having
multiple predictions at one location. Some lower confidence
scores, like 0.30 for 2nd Molar and 0.38 for 2nd Premolar, are
indicative of uncertainty, mostly caused by the subtleness of the
anatomical difference or the small number of training samples
for the classes concerned. On the other hand, higher confidence
predictions (e.g., 0.9+) show strong model reliability for well-
represented or visually distinctive categories.

V. Conclusion

The proposed multi-stage dental detection framework
demonstrates that combining hierarchical feature extraction,
multi-scale feature refinement, and an optimized detection head
can effectively identify and classify diverse tooth structures in
radiographic images. The experimental results confirm strong
overall performance, particularly for clearly distinguishable
classes such as Central Incisors, Lateral Incisors, and Canines,
while also highlighting areas requiring further improvement,
such as the detection of 2nd Molars. Despite these challenges,
the model consistently achieves high precision, recall, and mAP
values, validating its reliability for automated dental analysis.
Future research can focus on enhancing performance for low-
visibility teeth and integrating additional contextual learning
techniques to further improve robustness.
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