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 Abstract - House object Accurate localization and 

classification of dental structures in the radiographic images are 

crucial for both automatic dental diagnosis and treatment 

planning. This paper proposes a deep learning-based tooth 

detection framework that integrates a multi-stage architecture, 

comprising a backbone for hierarchical feature extraction, a neck 

module for multi-scale feature refinement, and a detection head 

for bounding box regression and class prediction. The backbone 

employs a series of convolution-batch normalization-activation 

blocks to capture low- and mid-level anatomical patterns from 

input dental images. The neck module fuses multi-scale features 

using upsampling and concatenation operations, enhancing 

contextual representation. Then, the final predictions, including 

tooth class probabilities, objectness scores, and optimized 

bounding boxes, are generated in the detection head. Experimental 

evaluation on multiple tooth categories reveals powerful detection 

performance, with an overall precision of 0.786, an overall recall 

of 0.848, mAP@50 of 0.881, and mAP@50–95 of 0.656. Class-wise 

results display excellent performances for Central Incisors, 

Canines, and Lateral Incisors, having mAP@50–95 values of 

0.845, 0.808, and 0.823, respectively, while comparatively low 

scores have been observed for some classes like the 2nd Molar. In 

general, the proposed model effectively balances accuracy and 

robustness across diverse tooth types. 
 

 Index Terms - Dental image analysis, Multi-scale feature 

fusion, Radiographic imaging, Bounding box regression,  

Automated dental diagnosis. 

 

 

I.  INTRODUCTION 

The integration of artificial intelligence and deep learning 
into dental imaging has revolutionized traditional diagnostic 
workflows, which are today faster, more consistent, and highly 
accurate in clinical decision-making. Initial dental radiograph 
analysis studies focused on classical image processing and 
neural network-based techniques as a starting point for 
automated diagnosis systems. For example, Silva et al. (2018) 
presented one of the earliest comprehensive studies on 

automatic tooth segmentation in X-ray images, pointing to the 
main trends, benchmarking strategies, and the challenge of 
variability in datasets and anatomical complexity [1].  

This paper laid down the foundation for the importance of 
standard datasets and robust feature extraction methods for 
reliable dental image interpretation. Advancement of machine 
learning has greatly increased the precision and efficiency of 
dental diagnostics. Geetha et al. (2020) demonstrated the 
application of back-propagation neural networks in detecting 
dental caries from digital radiographs, proving that early-stage 
lesions can be effectively detected using a supervised learning 
approach [4]. Similarly, optimization-based deep learning 
techniques have also been used to improve the accuracy of 
complex dental image recognition. Mahdi et al. (2020) 
proposed an optimizationenhanced deep learning method for 
recognizing teeth in panoramic radiographs; achieving better 
performance, the refinement of network parameters for diverse 
anatomical variations significantly contributed to such results 
[5]. 

Recent breakthroughs in architectures for deep learning 
have further enhanced the capabilities of AI dental diagnostics. 
Chen et al. (2019) introduced a framework using object 
detection for automatic teeth detection and numbering in 
periapical radiographs, with a demonstration of how CNNs can 
identify and classify individual teeth within varying 
orientations, occlusions, and image qualities [3]. These 
advances point to the importance of deep learning in 
establishing automated, reproducible, and clinician-assistive 
dental diagnostic systems. Over the past years, there has been a 
fast pace toward incorporating AI into a wide range of dental 
applications, from simple image analysis to complete diagnosis 
of diseases. A comprehensive review, starting from the basics 
and finishing with the most recent developments in the field, 
has been performed by Ossowska et al. (2022) [2]. All the 
reviewed material indicates an increased trend in using machine 
learning for caries detection, orthodontic assessment, 



periodontal evaluation, and implant planning. It is mentioned 
that AI increases not only diagnostic precision but also aids in 
workflow optimization and reduces the workload for clinicians, 
particularly in radiographic interpretation. 

II.  LITERATURE SURVEY 

Deep learning has become an important tool in dental image 
analysis for automatic diagnosis, segmentation, and 
classification across a wide range of imaging modalities. Early 
efforts in the subject primarily focused on using CNNs with 
challenging radiographic datasets. Lee et al., in 2020, showed 
one of the first applications of deep learning in the diagnosis of 
cystic lesions in panoramic and CBCT images [6]. Their work 
manifested the great capability of neural networks to 
outperform traditional diagnostic methods, especially when the 
pathological region had ambiguous borders. In the continuation 
of deep learning development, the focus shifted to the automatic 
feature extraction and pathology detection in periapical 
radiographs. Khan et al., in 2021, proposed a CNN-based 
framework for the automatic detection of dental features and 
pathologies, which improved the accuracy and manual 
intervention in interpreting the periapical radiograph [7]. Their 
model efficiently detected structural dental features like pulp 
chambers and periodontal ligaments, and set the base for 
complex diagnostic tasks. 
 
Building on object detection methodology, Cha et al. (2021) 
proposed an R-CNN to quantify peri-implant bone loss based 
on periapical radiographs [8]. This approach allowed for 
accurate localization of the peri-implant regions and automated 
bone level measurement, providing a useful tool to aid in 
implant maintenance protocols. Kim et al. (2021) employed 
deep learning to predict paresthesia after third molar extraction 
[9]. Their study demonstrated that neural networks may 
interpret the radiographic patterns indicative of nerve proximity 
and extraction complexity. These studies together highlighted 
the potential of deep learning to provide patient-specific risk 
estimates and to aid in clinical decision-making. Studies were 
conducted regarding the classification and detection tasks using 
panoramic radiographs. Muramatsu et al. (2021) enhanced the 
detection and classification of teeth by including multisized 
input data to overcome the problems caused by variation in 
scale and overlapping of anatomical structures [10]. The results 
indicated that their automatic dental charting was an effective 
way of combining panoramic imaging with deep learning for 
routine clinical documentation. 
Recent works in 2024 and beyond mark the shift toward 
dedicated and large-scale models for tooth classification and 
segmentation. Yilmaz et al. (2024) developed a deep learning-

based method that is dedicated to tooth classification in 
panoramic radiographs, yielding high accuracy for a wide range 
of dental patterns [11]. For pediatric dental image analysis, 
Beser et al. (2024) presented a YOLOv5-based tooth detection 
and segmentation method in mixed dentition images that can 
provide clinicians with a fast and accurate diagnosis in a clinical 
environment with a child population [12]. Furthermore, Hu et 
al. (2024) expanded the AI application area into 3D dental 
imaging by presenting a fully automatic system for the 
segmentation and fine classification of mixed dentition from 
CBCT images with superior performance in volumetric 
analyses compared to conventional 2D approaches [13].Very 
recently, Balel et al. (2025) investigated AI applications in 
implant dentistry through the development of an AI-based 
framework for detecting and numbering dental implants in 
panoramic radiographs [14]. Their approach yielded highly 
accurate results both in detecting implant positions and 
annotations, thus providing clinical support in postoperative 
assessment and long-term implant monitoring. 

 

Fig.1 Proposed model architecture 
 

III.  PROPOSED MODEL 

In Fig.1., the input stage begins with dental X-ray images 
represented as a tensor H×W×3, where H, W, and 3 denote the 
height, width, and color channels of the image, respectively. 
Before feeding the image into the network, it is typically 
normalized to stabilize training and improve feature extraction. 
This normalization is performed by scaling pixel intensities to 
the range [0,1], ensuring consistent input distribution for the 
subsequent processing stages. 
The backbone stage acts as the basic feature extractor in dental 
image detection, transforming the raw pixel-level information 



into high-quality hierarchical representations suitable for 
deeper processing. Each block typically consists of a sequence 
of Convolution, Batch Normalization, Activation, which are 
known for optimizing gradient flow and reducing 
computational redundancy. The convolution operation 
represents the crucial component for learning spatial features 
such as tooth contours, enamel boundaries, root structures, and 
texture variations within dental radiographs. A convolution 
layer applies a set of learnable kernels K across the input feature 
map X to produce an output feature Y, computed as 
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which aggregates information within a local neighborhood 
around each spatial location. However, simply applying 
convolution is insufficient for stable and efficient training, 
especially when processing large dental datasets. Therefore, the 
output of each convolution is normalized using Batch 
Normalization, which standardizes the activations by 
subtracting the mini-batch mean and dividing by the batch 
variance, expressed as 
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This step reduces internal covariate shift, accelerates 
convergence, and allows the model to use higher learning rates 
without diverging. Following normalization, the activations 
pass through the SiLU (Sigmoid Linear Unit) non-linear 
function, defined as 
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Which preserves small gradients, avoids harsh saturation, and 
enhances the model’s ability to extract subtle details such as 
narrow gaps between teeth or fine anatomical structures. 
Together, these Conv–BN–SiLU blocks form a powerful 
backbone capable of capturing both low-level (edges, intensity 
gradients) and mid-level (tooth shapes, root outlines) features, 
ultimately producing a rich and discriminative feature map that 
feeds into the subsequent neck and detection head for accurate 
dental structure localization and classification. 
 
The Neck stage is critical for refinement and fusing the features 
extracted by the backbone: while the backbone focuses on 
progressively learning low-level and mid-level patterns, the 
neck needs to refine, fuse, and strengthen multi-scale feature 
representations, which are, in turn, expected to be of paramount 
importance for detecting variously sized objects in dental 
images-indeed, incisors, canines, premolars, and molars vary 
greatly in size and shape. The main principle here is to enable 
the model to combine deep semantic features-from later layers-
with fine spatial featuresfrom early layers-so the detector can 

accurately localize small or partially visible dental structures. 
The process begins with Feature Pyramid Fusion, where feature 
maps from different scales, typically denoted as fi (higher-
resolution feature) and fi+1 (lower-resolution but semantically 
richer), are fused. Since fi+1 has smaller spatial dimensions, it 
must be upsampled before fusion. This is mathematically 
expressed as 

%&'(") = *+,-./01� , 23�1�	! 4   (5) 

where Up denotes an interpolation operation, such as bilinear 
interpolation, used to expand the spatial resolution of the deeper 
feature map without learning additional parameters. Bilinear 
upsampling is defined as 

23�� = 5���,6.7��   (6) 

Which computes each new pixel value as a weighted average of 
the nearest four pixels, ensuring smooth and artifact-free 
resizing. After the feature maps are concatenated, the combined 
representation contains detailed spatial patterns from shallow 
layers and strong semantic information from deep layers, 
making it more suitable for identifying dental structures that 
may vary in orientation, scale, or contrast. This fused 
representation is then passed through a sequence of 
convolutional refinement layers represented as 

%8'9 = ∅0%&'(")4  (7) 

this neck module ensures that the detector receives balanced, 
multi-scale, information-rich features, enabling it to precisely 
localize small dental structures, differentiate between closely 
positioned teeth, and maintain robustness across varying 
imaging conditions. The careful blending of coarse high-level 
features and fine low-level features makes the neck an essential 
bridge between the backbone and the prediction head in any 
modern deep learning based dental image detection system. The 
detection head is responsible for generating the final 
predictions, which include class probabilities, the bounding box 
coordinates (x,y), width w, height h, and the objectness score 
that indicates whether a tooth exists in the predicted region. 
 

IV. EXPERIMENTS 

 A.Dataset 

The distribution of dental tooth classes based on the number of 
annotated instances available for each category is shown in 
Fig.2. It includes seven major tooth types: 1st Molar, 1st 
Premolar, 2nd Molar, 2nd Premolar, Canine, Central Incisor, 
and Lateral Incisor. The frequencies show noticeable variation 
across classes, indicating class imbalance within the dataset. 
The highest number of instances appears in the 1st Premolar, 
Canine, Central Incisor, and Lateral Incisor categories, each 
with close to or above 1800 samples, suggesting strong 



representation of these teeth. The 1st Molar and 2nd Premolar 
classes also have substantial counts, with around 1500–1600 
instances. However, the 2nd Molar class has significantly fewer 
samplesroughly 750making it the least represented category. 
This imbalance highlights the need for careful model training 
strategies, such as weighted loss functions or data 
augmentation, to ensure that underrepresented classes like the 
2nd Molar are learned effectively by deep learning models. 
 

 
Fig.2. Dataset 

 

 

 

Fig.3. Mosaic Augmented image 
 

In mosaic augmentation, four different images are combined 
into one composite image, thereby allowing the model to learn 
varied contexts, lighting conditions, and spatial arrangements in 
one training instance. In this case, the quadrants each show 
different teeth with bounding box annotations of several classes 
of teeth, differentiated by color and class IDs is shown in Fig.3. 
The created scene is highly complicated, with objects varying 

in scale, orientation, and position. This augmentation increases 
the complexity significantly since the model is exposed to more 
difficult configurations, enhancing its generalization capability 
to real-world dental radiographs or intraoral images. Mosaic 
augmentation increases the number of bounding boxes 
available per image and helps the model in learning good 
feature interaction, specifically for small, partially occluded 
teeth. 

 
Fig.4. Confusion Matrix 

The normalized confusion matrix represents the performance of 
the dental tooth classification model for eight classes, including 
the background category is shown in Fig.4. The values on the 
diagonal indicate correct predictions and are particularly strong 
for several classes, such as Central Incisor (0.96), Lateral 
Incisor (0.93), Canine (0.89), and 1st Premolar (0.87), 
indicating that the model steadily identifies these types of teeth. 
For such classes as 1st Molar (0.67) and 2nd Premolar (0.81), 
moderate performance is observed with noticeable 
misclassifications, especially for similar classes. The 2nd Molar 
class has the lowest accuracy, with only 0.37 correctly 
classified and a substantial confusion with background, 1st 
Premolar, and 1st Molar, which reflects class imbalance and 
visual similarity issues present in the dataset. Misclassifications 
into the background category also emerge for several classes, 
especially for 2nd Molar and 1st Molar, which indicates 
detection challenges for partially visible or small teeth. On the 
whole, this matrix points to great performance for most 
categories of teeth but shows that rare or visually subtle classes 
need further refinement. 



 
Fig.5. Performance metrics 

The complete training and validation performance curves of the 
tooth classification and detection model across 50 epochs, 
showing how the model learns to differentiate between different 
tooth categories is shown in Fig.5. The losses in training, which 
are box loss, classification loss, and distribution focal loss, 
consistently decrease over time. This goes to show that the 
model is getting better at bounding-box localization and class 
label prediction for various teeth, such as molars, premolars, 
canines, and incisors. Similarly, there is a downwards trend for 
these losses in validation, indicating good generalization and 
low overfitting. On the right, metrics such as precision, recall, 
mAP50, and mAP50–95 steadily increase throughout training. 
Precision and recall rising together reflect improved correct 
object Identification and reduced false detections of tooth 
classes, even those with similar morphology. The mAP curves 
show robust improvement, demonstrating that the model 
becomes increasingly able to detect teeth more accurately 
across different IoU thresholds. In summary, these curves 
confirm that the model learns effectively from the dataset and 
becomes progressively more reliable at distinguishing between 
different tooth types in intraoral images. 

TABLE 1 Model parameters 

Layers Parameters GFLOPs 
Preprocess 

Time 

Inference 

Time 

Postpro

cess 

Time 

120 
172,986,69
3 608.3 0.1 ms 3.5 ms 1.0 ms 

 
Table 1 summarizes the computational characteristics and 
efficiency of the YOLOv6x model. The overall architecture 
comprises 120 layers with 172,986,693 trainable parameters, 
which illustrates a deep and highly expressive network capable 
of learning complex dental features. This model requires 608.3 
GFLOPs, reflecting its high computational demand during 
forward propagation. Despite this big size, the processing times 
per image remain efficient; for example, pre-processing takes 
0.1 ms, inference requires 3.5 ms to generate predictions, and 

post-processing, which includes operations such as non-
maximum suppression, takes 1.0 ms. 

 
 

TABLE 2 Performance Metrics 

Class 

Precision 

(P) 

Recall 

(R) mAP@50 

mAP@50–

95 

All Classes 0.786 0.848 0.881 0.656 

1st Molar 0.68 0.771 0.782 0.484 

1st Premolar 0.803 0.941 0.958 0.717 

2nd Molar 0.644 0.461 0.606 0.324 

2nd Premolar 0.684 0.899 0.89 0.588 

Canine 0.883 0.922 0.97 0.808 

Central 
Incisor 0.921 0.978 0.986 0.845 

Lateral 
Incisor 0.885 0.963 0.977 0.823 

 

Table 2 presents the detection performance of the model across 
different tooth classes using key evaluation metrics such as 
Precision, Recall, mAP@50, and mAP@50–95. Overall 
performance for all classes is strong, with a Precision of 0.786, 
Recall of 0.848, and an mAP@50 of 0.881, indicating reliable 
detection capability. Individual class results show variations 
depending on tooth type. Central Incisors and Canines achieve 
the highest performance, with Precision values above 0.88 and 
mAP@50–95 scores of 0.845 and 0.808, respectively, 
demonstrating excellent localization and classification 
accuracy. Similarly, Lateral Incisors and 1st Premolars exhibit 
strong results, reflecting effective detection of these tooth 
structures. In contrast, performance for the 2nd Molar class is 
comparatively lower, with a Recall of 0.461 and mAP@50–95 
of 0.324, indicating difficulty in detecting these teeth likely due 
to occlusion, anatomical variations, or lower visibility in 
radiographs.  

 

Fig.6. Validated Energy Constraint Radiographic image 



The predicted image provides an output of the tooth-
classification model, where numerous teeth have been detected 
and labeled along with their respective classes and confidence 
scores is shown in Fig.6. Each colored bounding box in the 
image represents a type of tooth prediction, such as 2nd 
Premolar, 2nd Molar, Central Incisor, or Lateral Incisor, with 
its numeric value showing the model's confidence in that 
respective prediction. The overlapping boxes, therefore, 
indicate that the model has identified several possible areas of 
teeth but seems to be doing poorly in areas where visual 
similarities among adjacent teeth are prominent, hence having 
multiple predictions at one location. Some lower confidence 
scores, like 0.30 for 2nd Molar and 0.38 for 2nd Premolar, are 
indicative of uncertainty, mostly caused by the subtleness of the 
anatomical difference or the small number of training samples 
for the classes concerned. On the other hand, higher confidence 
predictions (e.g., 0.9+) show strong model reliability for well-
represented or visually distinctive categories.  

 
V. Conclusion 

The proposed multi-stage dental detection framework 
demonstrates that combining hierarchical feature extraction, 
multi-scale feature refinement, and an optimized detection head 
can effectively identify and classify diverse tooth structures in 
radiographic images. The experimental results confirm strong 
overall performance, particularly for clearly distinguishable 
classes such as Central Incisors, Lateral Incisors, and Canines, 
while also highlighting areas requiring further improvement, 
such as the detection of 2nd Molars. Despite these challenges, 
the model consistently achieves high precision, recall, and mAP 
values, validating its reliability for automated dental analysis. 
Future research can focus on enhancing performance for low-
visibility teeth and integrating additional contextual learning 
techniques to further improve robustness. 
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