
 

 

Comparative Analysis of AI Models for Zone-Level 

Microclimate Prediction in a Partially Sealed 

Greenhouse 

Hyun Tae Shin     

Department of Smart Agriculture  

Sunchon National University 

Suncheon, Republic of Korea 

sy4448441@naver.com 

 

Hyeon Chang Jeong     

Department of Smart Agriculture  

Sunchon National University 

Suncheon, Republic of Korea 

gusckd555@naver.com 

 

 

Yoe Hyun 
Department of Artificial Intelligence 

Engineering 

Sunchon National University 

Suncheon, Republic of Korea 

yhyun@scnu.ac.kr 

Abstract— This study presents a comparative analysis of AI-based 

virtual sensing models for zone-level microclimate prediction in a 

partially sealed greenhouse under limited sensor deployment. 

Temperature and humidity data from six measured zones were 

used to predict conditions in three unmeasured zones (Zones 7–9), 

simulating a realistic sensor-sparse environment. Four models—

Random Forest, XGBoost, Multilayer Perceptron, and Long 

Short-Term Memory—were evaluated using RMSE and MAE. 

The results show that XGBoost achieved the highest accuracy for 

temperature prediction, while LSTM performed best for humidity 

prediction. Incorporating outdoor weather variables consistently 

improved prediction performance across all models. The findings 

confirm that AI-based virtual sensing can effectively estimate 

spatial microclimate conditions without dense sensor installation, 

offering a practical solution for intelligent greenhouse 

environment management. 
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I.  INTRODUCTION (HEADING 1) 

The microclimate inside a greenhouse is a critical factor 
directly affecting crop growth, energy consumption, and 
environmental control efficiency. Particularly in semi-closed 
greenhouses, the limited ventilation structure and fluctuations in 
outdoor conditions cause significant variations in temperature 
and humidity distribution across different zones. To accurately 
capture these spatial microclimate variations, environmental 
data must be collected from multiple locations. However, in 
actual farming operations, deploying sensors throughout all 
zones is challenging due to sensor installation costs, equipment 
maintenance, and communication infrastructure limitations. 
Consequently, developing technology to predict the 
environment in unmonitored zones while sensors are installed 
only in some areas has emerged as a critical research topic for 
practical smart greenhouse operations. 

Previous greenhouse environmental prediction studies have 
primarily focused on analyzing microclimate changes inside 
greenhouses using computational fluid dynamics or physics-
based models. However, these approaches involve complex 
model development processes and extremely high 

computational costs, limiting their immediate applicability to 
actual farm operational systems. Recently, machine learning-
based prediction utilizing meteorological and sensor data has 
gained attention as an alternative, with various machine learning 
and deep learning models being applied to temperature and 
humidity prediction. Nevertheless, most studies assume 
conditions where sufficient sensors are installed, and the 
problem of estimating the spatial environment in sensor-free 
zones has not been adequately addressed. 

This study proposes an AI-based virtual sensing technique to 
predict the microclimate in unmeasured zones within semi-
closed greenhouses. This approach utilizes external 
environmental variables and sensor data from certain internal 
zones to address these limitations. Data was collected from a 
total of nine zones. Zones 1 to 6 were used as model inputs, 
while Zones 7 to 9 were excluded from the input, simulating 
spaces without sensors. This approach aims to experimentally 
verify whether spatial microclimate prediction is feasible in a 
partially sensed environment. 

II. RELATED RESEARCH 

Various studies have been conducted on predicting 

microclimate inside greenhouses, primarily focusing on 

physics-based modeling and data-driven artificial intelligence 

techniques. Early research mainly utilized computational fluid 
dynamics (CFD) to reproduce thermal and flow characteristics 

and temperature distributions within greenhouses. Kim et al. [1] 

constructed a CFD model for a single-span glass greenhouse to 

simulate spatial temperature distributions, demonstrating the 

potential for high-resolution spatial analysis. Kim et al. [2] also 

predicted internal microclimate changes in a naturally 

ventilated greenhouse using thermal-hydraulic and ventilation 

models. However, such physical models are highly dependent 

on structural information and have high computational costs, 

limiting their real-time application. 

To overcome such limitations, machine learning-based 

research for temperature and humidity prediction has recently 
been actively pursued. Hosseini Monjezi et al. [5] compared 

RBF neural networks, SVM, and GPR using outdoor 

temperature, humidity, wind speed, and solar radiation as inputs, 



 

 

with the RBF model achieving the lowest RMSE. Choi [3] used 

a multilayer perceptron to make short-term predictions of 

greenhouse internal temperature and humidity, confirming that 

the neural network-based model demonstrated stable 

performance even in the actual measurement environment. 

Deep learning-based research is also increasing. Oh et al. [6] 

applied an LSTM model to improve the prediction accuracy of 

smart greenhouse internal temperature, confirming the 

advantages of deep learning in processing time-dependent 

climate data. Furthermore, Wei et al. [4] quantitatively 
evaluated the prediction performance of greenhouse 

temperature and humidity by comparing multiple AI models, 

including BPPSO, LSSVM, and RBF, and reported that 

prediction capabilities vary significantly depending on the 

algorithm structure. 

However, the common limitations of existing studies can be 

summarized as follows: 

1. Most AI-based forecasting studies focus on temporal 

predictions and do not directly estimate the spatial 

distribution of microclimate within greenhouses. 

2. Existing research assumes environments with 
sufficient sensor coverage, failing to address the 

challenge of predicting unmeasured zones commonly 

encountered in actual farms. 

Therefore, in semi-closed greenhouses with limited sensor 

installations, AI-based virtual sensing research that estimates 

microclimate conditions in unmeasured zones by utilizing 

sensor data from some internal areas and outdoor information 

has not yet been sufficiently conducted. This study aims to 

address this research gap by comparing the prediction 

performance of various AI models (Random Forest, XGBoost, 

MLP, LSTM) to analyze the feasibility of zone-level spatial 
microclimate estimation. 

III. MAIN BODY 

A. Data Collection and Operational Environment 

1) Research Greenhouse 
This study developed a zone-based microclimate prediction 

model for semi-closed greenhouses used in protected 
horticulture. 

This is a single-span greenhouse with a total floor area of 
approximately 256m². The interior is divided into nine zones for 
collecting sensor-based environmental data. The greenhouse 
employs a typical semi-closed operation mode utilizing natural 
ventilation through side vents and a heating system-based 
supplemental heating system (Fig. 1). 

 

Figure 1 Panoramic view of the semi-enclosed single-span greenhouse under 

study. 

The main specifications of the greenhouse are as shown in 
Table 1. 

TABLE I.  GREENHOUSE SPECIFICATIONS  

Item Specification 

Structure type Single-span polycarbonate greenhouse 

Length(m)                        32.0 

Width (m) 8.0 

Eavesheight(m) 2.3 

Roof height (m) 4.2 

Roof slope (°) 18 

Ventilation method 
Side-window natural ventilation + ceiling 

circulation fan 

Heating method Hot-water heating or FCU-based auxiliary heating 

Exterior covering 

material 
Polycarbonate panel 

Internal zone 

configuration 
9 zones (Zone 1–9) 

Sensor-installed 

zones 
Zone 1–6 

Unmeasured zones 

(target zones) 
Zone 7–9 

Operation type Partial sealed greenhouse 

2) Circulation Fan 
The semi-closed greenhouse used in this study is equipped 

with circulation ventilation fans to maintain stable internal 
airflow. The ventilation fans are arranged at regular intervals 
along the central section of the greenhouse ceiling (Fig. 2), 
preventing stagnation of internal air and mitigating temperature 
and humidity variations between zones. Particularly in semi-
closed greenhouses, where side window ventilation is limited, 
insufficient internal air mixing can lead to localized temperature 
increases and humidity accumulation, making the role of 
ventilation fans even more critical. 

This study collected temperature and humidity data from 
each zone under conditions where the ventilation fan was 
operating normally, aiming to incorporate the effect of fan 
operation on microclimate spatial distribution into the 
experimental data. Figure 2 shows the actual ventilation fan 
installed in the greenhouse under study. 

 

Figure 2 Circulation ventilation fan installed in the semi-enclosed 
greenhouse under study 



 

 

 The general specifications of the ventilation fan are as 
shown in Table 2. 

TABLE II.  SPECIFICATIONS OF CIRCULATION FAN  

Item Specification 

Fan diameter (mm) Approximately 400–450 mm 

Power consumption 

(W) 
120–180 W 

Width (m) 8.0 

Air flow rate 

(m³/min) 
70–110 m³/min 

Rotational speed 

(RPM) 
1,400–1,600 rpm 

Installation position Center ceiling line, spaced at 5–6 m intervals 

Main function 
Air mixing, temperature–humidity uniformity, 

removal of stagnant zones 

 
 

3) Data Collection and Operational Environment 

 
Figure 3 Outdoor weather station sensors (left) and indoor temperature–

humidity sensor node (right) used for greenhouse data collection. 

Figure 3 presents the sensor systems used to collect 

environmental data inside and outside the greenhouse. The 

outdoor weather station monitors external climatic factors, 

while the indoor temperature and humidity sensors measure the 

microclimate conditions within each designated zone. These 

datasets were used as model inputs and ground-truth values for 

evaluating the performance of microclimate prediction models. 

a) Outdoor Weather Station. 

The outdoor weather station was installed on the north side 
of the greenhouse to monitor external environmental conditions 
that directly affect internal microclimate variations. The station 
measured air temperature, relative humidity, wind speed, wind 
direction, solar radiation*, and rainfall*, which were used as 
model inputs to analyze the impact of outdoor climate on semi-
closed greenhouse ventilation and temperature distribution. The 
measured variables and sensor specifications are summarized in 
Table 3. 

TABLE III.  OUTDOOR WEATHER DATA ITEMS  

Cate

gory 

Measurement 

Item 

Unit Sensor Type Description 

Out

door 

Air 

temperature 

(Ta) 

°C Thermistor / 

PT100 

External air 

temperature 

Cate

gory 

Measurement 

Item 

Unit Sensor Type Description 

weat

her 

Relative 

humidity 

(RH) 

% Capacitive 

RH sensor 

External humidity 

Wind speed 
m/s 3-cup 

anemometer 

Airflow intensity 

Wind 

direction 
° Wind vane Directional air 

movement 

Solar 

radiation 

W/m² Pyranometer 

(optional) 

Heating influence 

on greenhouse 

Rainfall 

mm Rain gauge External 

precipitation 

conditions 

 

b) Temperature/Humidity Sensors. 

Indoor temperature and humidity sensors were installed 
in six zones (Zone 1–6) to capture the spatial microclimate 

distribution within the greenhouse. Each sensor node measured 

air temperature and relative humidity at fixed intervals and 

transmitted the data to a central data logger. These 

measurements served as input variables for model training, 

while data from unmeasured zones (Zone 7–9) were used as 

evaluation targets. The specifications of the indoor sensors are 

summarized in Table 4. 

TABLE IV.  INDOOR TEMPERATURE–HUMIDITY SENSOR 

SPECIFICATIONS  

Item Specification 

Sensor type 
Digital temperature–humidity sensor  

(e.g., SHT series) 

Measurement variables Air temperature, Relative humidity 

Temperature range −40 to 85 °C (typical) 

Humidity range 0–100 %RH 

Accuracy ±0.3 °C, ±2 %RH (typical) 

Installation zones Installation zones: Zone 1–9 

Sampling interval Fixed interval logging (e.g., 1–5 min) 

 

c) Data Collection Settings. 

Environmental data were recorded at fixed intervals 

throughout the experiment to obtain synchronized time-series 

data for model training and evaluation. All sensor readings were 

stored in a centralized logging system, and missing or noisy 

data points were removed during preprocessing. Table 5 

summarizes the data collection settings, including sampling 

frequency, logging duration, and the variables used as model 

inputs and prediction targets. 

TABLE V.  DATA COLLECTION SETTINGS 

Setting Description 

Sampling interval 1–5 min (fixed interval) 

Recording duration Full experimental period (continuous) 

External input variables 
Ta, RH, Wind speed, Wind direction, Solar 

radiation, Rain 

Internal input variables Temperature & RH from Zone 1–6 



 

 

Setting Description 

Prediction target zones Zone 7–9 (unmeasured zones) 

Data preprocessing 
Outlier removal, missing-value interpolation, 

normalization 

d) Greenhouse Internal Zone Configuration and Sensor 

Placement. 

 
Figure 4 Configuration of the 9 Zones in the Study Greenhouse and Sensor 

Layout Diagram. The blue areas (Zones 1–6) are input zones where sensors are 

installed, while the red areas (Zones 7–9) are unmeasured zones (Virtual 

Sensing targets) without sensors. 
This study divided the interior space into a total of nine 

zones (Zone 1–9) to analyze spatial microclimate variations 

within the greenhouse and predict unmeasured zones. Each 

zone was uniformly divided based on the greenhouse's length 

(32 m) and width (8 m), with the partitioned zones shown in 

Figure 4. 

Environmental sensors (temperature/humidity) were 
installed in six zones: Zones 1, 2, 3, 5, 4, and 6. Data from these 

sensors was used as input for the AI model. Conversely, Zones 

7, 8, and 9 were designated as unmeasured zones without 

sensors and were used for the Virtual Sensing evaluation. 

Sensor locations were chosen at representative points within 

each zone, considering the internal airflow within the 

greenhouse. 

4) Virtual Sensing Scenario 

The virtual sensing scenario was established to infer 

microclimate conditions in unmeasured zones under a limited 

sensing environment. Among the nine greenhouse zones, 

temperature and humidity data from Zones 1–6 were used as 

model inputs, while Zones 7–9 were excluded to simulate 
unmeasured areas. The input variables consisted of indoor 

temperature–humidity values from the six measured zones and 

optional outdoor weather variables, and the output variables 

were defined as the temperature and humidity of Zones 7–9. 

The virtual sensing framework was constructed using 

time-series sensor datasets that were synchronized and 

preprocessed into fixed-interval records. The scenario follows 

a data-driven approach, in which no physical or CFD models 

are used; instead, all estimations are performed purely through 

machine-learning and deep-learning–based inference. 

The input–output structure is illustrated in Figure 5. 

 
Figure 5 Panoramic view of the semi-enclosed single-span greenhouse under 

study. 

5) AI Model Description 

Four machine learning models were compared to evaluate 

their suitability for microclimate prediction under a partial 

sensing environment.  

1) Random Forest (RF) and XGBoost represent tree-based 

ensemble models known for robustness against nonlinear 

relationships and limited data 

2) Multilayer Perceptron (MLP) provides a baseline neural 

network structure for tabular environmental data. 

3) Long Short-Term Memory (LSTM) was included to 

capture temporal dependencies in sequential sensor 

readings 
4) All models were trained using identical input vectors and 

evaluated using RMSE and MAE for temperature and 

humidity predictions. 

6) Data Preprocessing 

Data preprocessing was conducted to ensure consistency 

and reliability of the time-series dataset. All sensor streams 

(indoor and outdoor) were synchronized to a 1-min interval 

using timestamp alignment. Missing values caused by 

communication delays were corrected by linear interpolation, 

and outliers were removed using a z-score–based filter. A 5-min 

moving average was applied to reduce high-frequency noise. 

All variables were normalized using min–max scaling to 

stabilize the training process. 

7) Model Training Settings 

The dataset was divided using an 80/20 train–test split while 

preserving temporal order to prevent data leakage. Random 

Forest and XGBoost hyperparameters (number of trees, depth, 

learning rate) were tuned via grid search. For MLP, the hidden 

layer size and activation functions were optimized, whereas 

LSTM models were trained using sliding windows (sequence 

length: 10–30 min). All models were trained using the Adam 

optimizer with early stopping to prevent overfitting. 

8) Evaluation Metrics 

Model performance was evaluated using Root Mean 

Squared Error (RMSE) and Mean Absolute Error (MAE), 

defined as: 



 

 

 RMSE = √
1

𝑛
∑(𝑦𝑖−𝑦𝑖)

2 () 

  = 
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖| (2) 

Equation (1) represents the square-root average of the 
squared prediction errors and penalizes larger deviations more 

heavily, whereas Equation (2) expresses the average magnitude 

of absolute errors. Both metrics were calculated separately for 

temperature and humidity in the target Zones (7–9). 

9) Experimental Scenario Design 

Two experimental scenarios were designed to analyze the 

impact of external weather variables and limited sensing 

conditions. 

1) Scenario 1 (Indoor only): Inputs consist of 

temperature and humidity from Zones 1–6. 

2) Scenario 2 (Indoor + Outdoor): External weather 

variables (Ta, RH, wind speed) were added to the 
input vector. 

For both scenarios, the prediction targets were the 

temperature and humidity of Zones 7–9. 

All models used identical preprocessing and training 

pipelines to ensure fair comparison. 

IV. BODY RESULTS AND DISCUSSION 

This section presents the prediction results of temperature 

and humidity in the unmeasured zones (Zones 7–9) of a 

partially sealed greenhouse using the proposed virtual sensing–

based AI models. Model performances were comparatively 

analyzed under identical input conditions. All models were 
trained using the same input vectors, consisting of temperature 

and humidity data from Zones 1–6 with optional outdoor 

weather variables, and were evaluated using RMSE and MAE 

metrics. 

1) Temperature Prediction Results 

Figure 6 illustrates the comparison between observed and 

predicted temperatures for Zones 7–9 across all models. When 

outdoor weather variables (outdoor temperature, relative 

humidity, and wind speed) were included as input features, 

prediction errors consistently decreased for all models. This 

result indicates that, due to the structural characteristics of 

partially sealed greenhouses, external weather conditions have 

a direct influence on internal microclimate behavior. 
Among the evaluated models, XGBoost achieved the best 

overall performance. The average RMSE for Zones 7–9 ranged 

from approximately 0.45 to 0.60 °C, while the MAE ranged 

from 0.30 to 0.45 °C, demonstrating stable temperature 

estimation even in sensor-less zones. 

The Random Forest model captured nonlinear 

relationships to a certain extent; however, a tendency toward 

overfitting was observed due to tree expansion. The MLP model 

showed relatively lower accuracy, likely because it does not 

explicitly incorporate temporal dependencies. The LSTM 

model outperformed MLP by modeling sequential patterns but 
exhibited slightly higher errors than XGBoost in temperature 

prediction. 

 
Figure 6 Panoramic view of the semi-enclosed single-span greenhouse under 

study. 

2) Humidity Prediction Results 

Figure 7 presents the observed and predicted humidity 
values for Zones 7–9. Humidity exhibited greater spatial and 

temporal variability than temperature, making it a more 

challenging variable to 

 
Figure 7 Panoramic view of the semi-enclosed single-span greenhouse under 

study. 

predict. Nevertheless, the LSTM model demonstrated the 

highest prediction accuracy 

The LSTM model achieved an average RMSE of 

approximately 1.5–2.0 %RH and an MAE of 1.0–1.4 %RH 

across Zones 7–9. This superior performance can be attributed 

to LSTM’s ability to capture temporal dependencies and 

gradual transitions in humidity patterns among greenhouse 

zones. 

XGBoost also showed competitive performance; however, 

slightly higher errors were observed during rapid humidity 
fluctuations compared to LSTM. Random Forest and MLP 

models exhibited relatively lower prediction stability under 

high humidity variability. 

3) Analysis of Spatial Zone Characteristics 

Although Zones 7–9 share similar geometric layouts, their 

microclimate behaviors differ depending on proximity to side 

vents, outdoor exposure, and ventilation fan effects. 

1) Zone 7: Adjacent to side vents, highly influenced by 

outdoor conditions 



 

 

2) Zone 8: Transitional zone influenced by both central 

and peripheral regions 

3) Zone 9: Affected by exhaust airflow from circulation 

fans 

Despite being excluded from model inputs, prediction 

errors across these zones remained comparable, indicating that 

spatial relationships among internal zones were effectively 

learned using data from Zones 1–6. In particular, Zone 7—

despite its strong exposure to outdoor conditions—showed 

significantly improved prediction stability when outdoor 
variables were included. 

4) Effect of Outdoor Variables on Prediction Performance 

Figure 8 compares model performance (RMSE) with and 

without outdoor weather variables. The inclusion of outdoor 

variables consistently improved prediction accuracy across all 

models, with the most pronounced improvements observed for 

XGBoost and LSTM. This result highlights the critical role of 

outdoor weather information in microclimate prediction for 

partially sealed greenhouse environments. 

 
Figure 8 Overall prediction performance comparison by model with and 

without external weather variables. 

V. CONCLUSION 

This study investigated an AI-based virtual sensing 

approach for predicting microclimate conditions in unmeasured 

zones of a partially sealed greenhouse under limited sensor 

deployment. Temperature and humidity data collected from six 

measured zones, along with optional outdoor weather variables, 

were used to evaluate zone-level prediction performance of 

multiple machine learning models. 
The experimental results indicated that XGBoost achieved 

the best performance for temperature prediction, while LSTM 

showed superior accuracy in humidity prediction. In addition, 

incorporating outdoor weather variables consistently improved 

prediction accuracy across all evaluated models, highlighting 

the importance of external environmental factors in partially 

sealed greenhouse microclimate dynamics. 

These findings demonstrate that AI-based virtual sensing 

can effectively estimate zone-level microclimate conditions 

without dense sensor installation. The proposed approach 

provides a practical and scalable solution for intelligent 

greenhouse environment monitoring and control, particularly in 

real-world agricultural settings where sensor deployment is 

constrained. 
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