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Abstract— This study presents a comparative analysis of Al-based
virtual sensing models for zone-level microclimate prediction in a
partially sealed greenhouse under limited sensor deployment.
Temperature and humidity data from six measured zones were
used to predict conditions in three unmeasured zones (Zones 7-9),
simulating a realistic sensor-sparse environment. Four models—
Random Forest, XGBoost, Multilayer Perceptron, and Long
Short-Term Memory—were evaluated using RMSE and MAE.
The results show that XGBoost achieved the highest accuracy for
temperature prediction, while LSTM performed best for humidity
prediction. Incorporating outdoor weather variables consistently
improved prediction performance across all models. The findings
confirm that Al-based virtual sensing can effectively estimate
spatial microclimate conditions without dense sensor installation,
offering a practical solution for intelligent greenhouse
environment management.

Keywords— Virtual sensing, Partially sealed greenhouse, Zone-
level microclimate prediction, Machine learning, Deep learning,
Smart agriculture.

I.  INTRODUCTION (HEADING 1)

The microclimate inside a greenhouse is a critical factor
directly affecting crop growth, energy consumption, and
environmental control efficiency. Particularly in semi-closed
greenhouses, the limited ventilation structure and fluctuations in
outdoor conditions cause significant variations in temperature
and humidity distribution across different zones. To accurately
capture these spatial microclimate variations, environmental
data must be collected from multiple locations. However, in
actual farming operations, deploying sensors throughout all
zones is challenging due to sensor installation costs, equipment
maintenance, and communication infrastructure limitations.
Consequently, developing technology to predict the
environment in unmonitored zones while sensors are installed
only in some areas has emerged as a critical research topic for
practical smart greenhouse operations.

Previous greenhouse environmental prediction studies have
primarily focused on analyzing microclimate changes inside
greenhouses using computational fluid dynamics or physics-
based models. However, these approaches involve complex
model development processes and extremely high

computational costs, limiting their immediate applicability to
actual farm operational systems. Recently, machine learning-
based prediction utilizing meteorological and sensor data has
gained attention as an alternative, with various machine learning
and deep learning models being applied to temperature and
humidity prediction. Nevertheless, most studies assume
conditions where sufficient sensors are installed, and the
problem of estimating the spatial environment in sensor-free
zones has not been adequately addressed.

This study proposes an Al-based virtual sensing technique to
predict the microclimate in unmeasured zones within semi-
closed greenhouses. This approach utilizes external
environmental variables and sensor data from certain internal
zones to address these limitations. Data was collected from a
total of nine zones. Zones 1 to 6 were used as model inputs,
while Zones 7 to 9 were excluded from the input, simulating
spaces without sensors. This approach aims to experimentally
verify whether spatial microclimate prediction is feasible in a
partially sensed environment.

II.  RELATED RESEARCH

Various studies have been conducted on predicting
microclimate inside greenhouses, primarily focusing on
physics-based modeling and data-driven artificial intelligence
techniques. Early research mainly utilized computational fluid
dynamics (CFD) to reproduce thermal and flow characteristics
and temperature distributions within greenhouses. Kim et al. [1]
constructed a CFD model for a single-span glass greenhouse to
simulate spatial temperature distributions, demonstrating the
potential for high-resolution spatial analysis. Kim et al. [2] also
predicted internal microclimate changes in a naturally
ventilated greenhouse using thermal-hydraulic and ventilation
models. However, such physical models are highly dependent
on structural information and have high computational costs,
limiting their real-time application.

To overcome such limitations, machine learning-based
research for temperature and humidity prediction has recently
been actively pursued. Hosseini Monjezi et al. [5] compared
RBF neural networks, SVM, and GPR using outdoor
temperature, humidity, wind speed, and solar radiation as inputs,



with the RBF model achieving the lowest RMSE. Choi [3] used
a multilayer perceptron to make short-term predictions of
greenhouse internal temperature and humidity, confirming that
the neural network-based model demonstrated stable
performance even in the actual measurement environment.
Deep learning-based research is also increasing. Oh et al. [6]
applied an LSTM model to improve the prediction accuracy of
smart greenhouse internal temperature, confirming the
advantages of deep learning in processing time-dependent
climate data. Furthermore, Wei et al. [4] quantitatively
evaluated the prediction performance of greenhouse
temperature and humidity by comparing multiple AI models,
including BPPSO, LSSVM, and RBF, and reported that
prediction capabilities vary significantly depending on the
algorithm structure.

However, the common limitations of existing studies can be
summarized as follows:

1. Most Al-based forecasting studies focus on temporal
predictions and do not directly estimate the spatial
distribution of microclimate within greenhouses.

2. Existing research assumes environments with
sufficient sensor coverage, failing to address the
challenge of predicting unmeasured zones commonly
encountered in actual farms.

Therefore, in semi-closed greenhouses with limited sensor
installations, Al-based virtual sensing research that estimates
microclimate conditions in unmeasured zones by utilizing
sensor data from some internal areas and outdoor information
has not yet been sufficiently conducted. This study aims to
address this research gap by comparing the prediction
performance of various Al models (Random Forest, XGBoost,
MLP, LSTM) to analyze the feasibility of zone-level spatial
microclimate estimation.

III. MAIN BoDY

A. Data Collection and Operational Environment

1) Research Greenhouse

This study developed a zone-based microclimate prediction
model for semi-closed greenhouses used in protected
horticulture.

This is a single-span greenhouse with a total floor area of
approximately 256m?. The interior is divided into nine zones for
collecting sensor-based environmental data. The greenhouse
employs a typical semi-closed operation mode utilizing natural
ventilation through side vents and a heating system-based
supplemental heating system (Fig. 1).

Figure 1 Panoramic view of the semi-enclosed single-span greenhouse under
study.

The main specifications of the greenhouse are as shown in
Table 1.

TABLE L. GREENHOUSE SPECIFICATIONS

Item Specification

Structure type Single-span polycarbonate greenhouse

Length(m) 32.0
Width (m) 8.0
Eavesheight(m) 23
Roof height (m) 4.2
Roof slope (°) 18

Side-window natural ventilation + ceiling

Ventilation method . .
circulation fan

Heating method Hot-water heating or FCU-based auxiliary heating
Exterlp T covenng Polycarbonate panel

material

Internal zone

configuration 9 zones (Zone 1-9)

Sensor-installed
zones

Unmeasured zones
(target zones)

Zone 1-6

Zone 7-9

Operation type

2) Circulation Fan

The semi-closed greenhouse used in this study is equipped
with circulation ventilation fans to maintain stable internal
airflow. The ventilation fans are arranged at regular intervals
along the central section of the greenhouse ceiling (Fig. 2),
preventing stagnation of internal air and mitigating temperature
and humidity variations between zones. Particularly in semi-
closed greenhouses, where side window ventilation is limited,
insufficient internal air mixing can lead to localized temperature
increases and humidity accumulation, making the role of
ventilation fans even more critical.

Partial sealed greenhouse

This study collected temperature and humidity data from
each zone under conditions where the ventilation fan was
operating normally, aiming to incorporate the effect of fan
operation on microclimate spatial distribution into the
experimental data. Figure 2 shows the actual ventilation fan
installed in the greenhouse under study.

Figure 2 Circulation ventilation fan installed in the semi-enclosed
greenhouse under study



The general specifications of the ventilation fan are as
shown in Table 2.

TABLE II. SPECIFICATIONS OF CIRCULATION FAN

Item Specification

Fan diameter (mm) Approximately 400-450 mm

Power consumption

120-180 W
W)
Width (m) 8.0
Air  flow rate 70-110 m¥/min
(m*/min)
Rotational ~ speed
(RPM) 1,400-1,600 rpm

Installation position Center ceiling line, spaced at 5—-6 m intervals

Air mixing, temperature—humidity uniformity,

Main function
removal of stagnant zones

3) Data Collection and Operational Environment

Figure 3 Outdoor weather station sensors (left) and indoor temperature—
humidity sensor node (right) used for greenhouse data collection.

Figure 3 presents the sensor systems used to collect
environmental data inside and outside the greenhouse. The
outdoor weather station monitors external climatic factors,
while the indoor temperature and humidity sensors measure the
microclimate conditions within each designated zone. These
datasets were used as model inputs and ground-truth values for
evaluating the performance of microclimate prediction models.

a) Outdoor Weather Station.

The outdoor weather station was installed on the north side
of the greenhouse to monitor external environmental conditions
that directly affect internal microclimate variations. The station
measured air temperature, relative humidity, wind speed, wind
direction, solar radiation*, and rainfall*, which were used as
model inputs to analyze the impact of outdoor climate on semi-
closed greenhouse ventilation and temperature distribution. The
measured variables and sensor specifications are summarized in

Cate | Measurement Unit Sensor Type Description
gory Item
weat Relative % Capacitive External humidity
her humidity RH sensor
(RH) : : .
Wind speed m/s 3-cup Airflow intensity
anemometer
Wind ° Wind vane Directional air
direction movement
Solar W/m? Pyranometer Heating influence
radiation (optional) on greenhouse
mm Rain gauge External
Rainfall precipitation
conditions

b) Temperature/Humidity Sensors.

Indoor temperature and humidity sensors were installed
in six zones (Zone 1-6) to capture the spatial microclimate
distribution within the greenhouse. Each sensor node measured
air temperature and relative humidity at fixed intervals and
transmitted the data to a central data logger. These
measurements served as input variables for model training,
while data from unmeasured zones (Zone 7-9) were used as
evaluation targets. The specifications of the indoor sensors are
summarized in Table 4.

TABLE IV. INDOOR TEMPERATURE-HUMIDITY SENSOR
SPECIFICATIONS
Item Specification
Sensor type Digital temperature—humidity sensor

(e.g., SHT series)

Air temperature, Relative humidity

Measurement variables

Temperature range —40 to 85 °C (typical)

Humidity range 0-100 %RH

Accuracy +0.3 °C, +2 %RH (typical)

Installation zones Installation zones: Zone 1-9

Sampling interval Fixed interval logging (e.g., 1-5 min)

¢) Data Collection Settings.

Environmental data were recorded at fixed intervals
throughout the experiment to obtain synchronized time-series
data for model training and evaluation. All sensor readings were
stored in a centralized logging system, and missing or noisy
data points were removed during preprocessing. Table 5
summarizes the data collection settings, including sampling
frequency, logging duration, and the variables used as model
inputs and prediction targets.

Table 3. TABLE V. DATA COLLECTION SETTINGS
Setting Description
TABLE IIL OUTDOOR WEATHER DATA ITEMS Sampling interval 1-5 min (fixed interval)
;:;e} Mea;':e':’mem Unit Sensor Type Description Recording duration Full experimental period (continuous)
Out Air °C Thermistor / External air External input variables Ta, RH, Wind speed, Wind direction, Solar
d;lor temperature PT100 temperature radiation, Rain
(Ta) Internal input variables Temperature & RH from Zone 1-6




Setting Description

Prediction target zones Zone 7-9 (unmeasured zones)

Outlier removal, missing-value interpolation,

Data preprocessing normalization

d) Greenhouse Internal Zone Configuration and Sensor
Placement.
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Figure 4 Configuration of the 9 Zones in the Study Greenhouse and Sensor
Layout Diagram. The blue areas (Zones 1-6) are input zones where sensors are
installed, while the red areas (Zones 7-9) are unmeasured zones (Virtual
Sensing targets) without sensors.

This study divided the interior space into a total of nine
zones (Zone 1-9) to analyze spatial microclimate variations
within the greenhouse and predict unmeasured zones. Each
zone was uniformly divided based on the greenhouse's length
(32 m) and width (8 m), with the partitioned zones shown in
Figure 4.

Environmental sensors (temperature/humidity) were
installed in six zones: Zones 1, 2, 3, 5, 4, and 6. Data from these
sensors was used as input for the Al model. Conversely, Zones
7, 8, and 9 were designated as unmeasured zones without
sensors and were used for the Virtual Sensing evaluation.
Sensor locations were chosen at representative points within
each zone, considering the internal airflow within the
greenhouse.

4) Virtual Sensing Scenario

The virtual sensing scenario was established to infer
microclimate conditions in unmeasured zones under a limited
sensing environment. Among the nine greenhouse zones,
temperature and humidity data from Zones 1-6 were used as
model inputs, while Zones 7-9 were excluded to simulate
unmeasured areas. The input variables consisted of indoor
temperature—humidity values from the six measured zones and
optional outdoor weather variables, and the output variables
were defined as the temperature and humidity of Zones 7-9.

The virtual sensing framework was constructed using
time-series sensor datasets that were synchronized and
preprocessed into fixed-interval records. The scenario follows
a data-driven approach, in which no physical or CFD models
are used; instead, all estimations are performed purely through
machine-learning and deep-learning—based inference.

The input—output structure is illustrated in Figure 5.

Raw sensor data

v

Stored in data logger (time-series)

¥

Preprocessing (synchronization, missing-value
removal, normalization)

Construction of input vectors

¥

Input to Al models

¥

Qutput {¥): Prediction of Zones 7-9

Figure 5 Panoramic view of the semi-enclosed single-span greenhouse under
study.

5) Al Model Description
Four machine learning models were compared to evaluate
their suitability for microclimate prediction under a partial
sensing environment.

1) Random Forest (RF) and XGBoost represent tree-based
ensemble models known for robustness against nonlinear
relationships and limited data

2) Multilayer Perceptron (MLP) provides a baseline neural
network structure for tabular environmental data.

3) Long Short-Term Memory (LSTM) was included to
capture temporal dependencies in sequential sensor
readings

4) All models were trained using identical input vectors and
evaluated using RMSE and MAE for temperature and
humidity predictions.

6) Data Preprocessing
Data preprocessing was conducted to ensure consistency
and reliability of the time-series dataset. All sensor streams
(indoor and outdoor) were synchronized to a 1-min interval
using timestamp alignment. Missing values caused by
communication delays were corrected by linear interpolation,
and outliers were removed using a z-score—based filter. A 5-min
moving average was applied to reduce high-frequency noise.
All variables were normalized using min—-max scaling to
stabilize the training process.
7)  Model Training Settings
The dataset was divided using an 80/20 train—test split while
preserving temporal order to prevent data leakage. Random
Forest and XGBoost hyperparameters (number of trees, depth,
learning rate) were tuned via grid search. For MLP, the hidden
layer size and activation functions were optimized, whereas
LSTM models were trained using sliding windows (sequence
length: 10-30 min). All models were trained using the Adam
optimizer with early stopping to prevent overfitting.
8) Evaluation Metrics
Model performance was evaluated using Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE),
defined as:



RMSE = /%Z(yi_yi)z (1)

MAE == 3 |y; — y| )

Equation (1) represents the square-root average of the
squared prediction errors and penalizes larger deviations more
heavily, whereas Equation (2) expresses the average magnitude
of absolute errors. Both metrics were calculated separately for
temperature and humidity in the target Zones (7-9).

9)  Experimental Scenario Design

Two experimental scenarios were designed to analyze the
impact of external weather variables and limited sensing
conditions.

1) Scenario 1 (Indoor only): Inputs consist of

temperature and humidity from Zones 1-6.

2) Scenario 2 (Indoor + Outdoor): External weather
variables (Ta, RH, wind speed) were added to the
input vector.

For both scenarios, the prediction targets were the

temperature and humidity of Zones 7-9.

All models used identical preprocessing and training

pipelines to ensure fair comparison.

IV. BODY RESULTS AND DISCUSSION

This section presents the prediction results of temperature
and humidity in the unmeasured zones (Zones 7-9) of a
partially sealed greenhouse using the proposed virtual sensing—
based Al models. Model performances were comparatively
analyzed under identical input conditions. All models were
trained using the same input vectors, consisting of temperature
and humidity data from Zones 1-6 with optional outdoor
weather variables, and were evaluated using RMSE and MAE
metrics.

1) Temperature Prediction Results

Figure 6 illustrates the comparison between observed and
predicted temperatures for Zones 7-9 across all models. When
outdoor weather variables (outdoor temperature, relative
humidity, and wind speed) were included as input features,
prediction errors consistently decreased for all models. This
result indicates that, due to the structural characteristics of
partially sealed greenhouses, external weather conditions have
a direct influence on internal microclimate behavior.

Among the evaluated models, XGBoost achieved the best
overall performance. The average RMSE for Zones 7-9 ranged
from approximately 0.45 to 0.60 °C, while the MAE ranged
from 0.30 to 0.45 °C, demonstrating stable temperature
estimation even in sensor-less zones.

The Random Forest model captured nonlinear
relationships to a certain extent; however, a tendency toward
overfitting was observed due to tree expansion. The MLP model
showed relatively lower accuracy, likely because it does not
explicitly incorporate temporal dependencies. The LSTM
model outperformed MLP by modeling sequential patterns but
exhibited slightly higher errors than XGBoost in temperature
prediction.

Observed vs Predicted Temperature by Zone (All Models)
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Figure 6 Panoramic view of the semi-enclosed single-span greenhouse under
study.
2) Humidity Prediction Results

Figure 7 presents the observed and predicted humidity
values for Zones 7-9. Humidity exhibited greater spatial and
temporal variability than temperature, making it a more
challenging variable to

Observed vs Predicted Humidity by Zone (All Models)
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Figure 7 Panoramic view of the semi-enclosed single-span greenhouse under
study.

predict. Nevertheless, the LSTM model demonstrated the
highest prediction accuracy

The LSTM model achieved an average RMSE of
approximately 1.5-2.0 %RH and an MAE of 1.0-1.4 %RH
across Zones 7-9. This superior performance can be attributed
to LSTM’s ability to capture temporal dependencies and
gradual transitions in humidity patterns among greenhouse
zones.

XGBoost also showed competitive performance; however,
slightly higher errors were observed during rapid humidity
fluctuations compared to LSTM. Random Forest and MLP
models exhibited relatively lower prediction stability under
high humidity variability.

3) Analysis of Spatial Zone Characteristics

Although Zones 7-9 share similar geometric layouts, their
microclimate behaviors differ depending on proximity to side
vents, outdoor exposure, and ventilation fan effects.

1) Zone 7: Adjacent to side vents, highly influenced by

outdoor conditions



2) Zone 8: Transitional zone influenced by both central
and peripheral regions
3) Zone 9: Affected by exhaust airflow from circulation
fans
Despite being excluded from model inputs, prediction
errors across these zones remained comparable, indicating that
spatial relationships among internal zones were effectively
learned using data from Zones 1-6. In particular, Zone 7—
despite its strong exposure to outdoor conditions—showed
significantly improved prediction stability when outdoor
variables were included.
4) Effect of Outdoor Variables on Prediction Performance
Figure 8 compares model performance (RMSE) with and
without outdoor weather variables. The inclusion of outdoor
variables consistently improved prediction accuracy across all
models, with the most pronounced improvements observed for
XGBoost and LSTM. This result highlights the critical role of
outdoor weather information in microclimate prediction for
partially sealed greenhouse environments.

Overall Prediction Performance Comparison by Model
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Figure 8 Overall prediction performance comparison by model with and
without external weather variables.

V. CONCLUSION

This study investigated an Al-based virtual sensing
approach for predicting microclimate conditions in unmeasured
zones of a partially sealed greenhouse under limited sensor
deployment. Temperature and humidity data collected from six
measured zones, along with optional outdoor weather variables,
were used to evaluate zone-level prediction performance of
multiple machine learning models.

The experimental results indicated that XGBoost achieved
the best performance for temperature prediction, while LSTM
showed superior accuracy in humidity prediction. In addition,
incorporating outdoor weather variables consistently improved
prediction accuracy across all evaluated models, highlighting
the importance of external environmental factors in partially
sealed greenhouse microclimate dynamics.

These findings demonstrate that Al-based virtual sensing
can effectively estimate zone-level microclimate conditions
without dense sensor installation. The proposed approach
provides a practical and scalable solution for intelligent

greenhouse environment monitoring and control, particularly in
real-world agricultural settings where sensor deployment is
constrained.

ACKNOWLEDGMENT

This work was supported by Innovative Human Resource
Development for Local Intellectualization program through the
Institute of Information & Communications Technology
Planning & Evaluation(IITP) grant funded by the Korea
government(MSIT)(IITP-2025-RS-2020-11201489).

REFERENCES

[1] S. H. Kim, H. S. Lee, and J. C. Han, “Development and validation of a
microclimate prediction model in a single-span glass greenhouse using
computational fluid dynamics,” Journal of Bio-Environment Control, vol.
28, no. 2, pp. 95-104, 2019.

[2] Y.S.KimandY.H.Kim, “A model-based microclimate prediction model
for ventilation control in a naturally ventilated greenhouse,” Journal of
Bio-Environment Control, vol. 31, no. 3, pp. 152-162,2022.

[3] H. Choi, “Prediction of air temperature and relative humidity in
greenhouse environments using multilayer perceptrons,” Computers and
Electronics in Agriculture, vol. 75, no. 2, pp. 235-243, 2011.

[4] X. Wei, Y. Zhang, L. Liu, and J. Chen, “Temperature and relative
humidity prediction in a South China greenhouse based on machine
learning,” Scientific Reports, vol. 15, no. 1, pp. 1-12,2025.

[5] P. Hosseini Monjezi, M. Khoshnevisan, and S. Rafiee, “Prediction of
greenhouse indoor air temperature using artificial intelligence combined
with sensitivity analysis,” Horticulturae, vol. 9, no. 8, pp. 853-867, 2023.

[6] G.C.Oh,S.J.Kim,S.Y. Park, C.G. Lee, L. H. Cho, Y. K. Jeon, and D.
H. Kim, “Development and verification of a smart greenhouse internal
temperature prediction model using machine learning algorithms,”
Journal of Bio-Environment Control, vol. 31, no. 3, pp. 152-162, 2022.



