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Abstract—Fine-tuning pre-trained classification models for
image retrieval tasks can deal with the computational expense
and data requirements of deep learning. However, standard
classification networks are fundamentally designed to output
probability distributions, which differs from the requirements
of image retrieval tasks that rely on efficient and meaningful
distance metrics in a feature space. Additionally, balancing a
trade-off between semantic richness and efficient feature dimen-
sioning is still a critical challenge. In this paper, we propose
an adapted pre-trained EfficientNet models-based Content-Based
Image Retrieval (CBIR) scheme designed to address these lim-
itations by leveraging transfer learning and fine-tuning on the
Corel-1K dataset. The proposed scheme incorporates critical
post-processing steps, including feature normalization and the
selection of an appropriate distance metric, and analyzes features
extracted from intermediate layers to identify an optimal depth
for a better trade-off between performance and computational ef-
ficiency. Through simulation analysis, we show that the proposed
scheme outperforms established CBIR approaches. For example,
among the analyzed models, EfficientNet-B4 model achieved the
highest overall Mean Average Precision (mAP) score of 93.50%.
Furthermore, our scheme maintains superior performance across
all reported ranked metrics, indicating a more robust and effec-
tive feature representation for image retrieval tasks compared to
prior techniques.

Index Terms—EfficientNet, Corel-1K, transfer learning,
content-based image retrieval.

I. INTRODUCTION

Image retrieval systems have evolved significantly, mov-
ing from traditional keyword-based searches to methods that
utilize the visual content of the images themselves, often
known as Content-Based Image Retrieval (CBIR) systems.
Early approaches relied heavily on handcrafted features such
as color histograms, texture descriptors, and shape information
[1], [2]. These methods offered interpretability and computa-
tional simplicity; however, they often struggle with complex,
real-world image variability and semantic understanding [1].
The advent and rapid advancement of Convolutional Neural
Networks (CNNs) have revolutionized the field of computer
vision, demonstrating state-of-the-art (SOTA) performance in
feature extraction that can enable applications such as, image
classification [1], [3].

Despite the powerful discriminative capabilities of classifi-
cation networks, several challenges remain in applying them
effectively to CBIR tasks. For example, high-performing CNN
architectures are often computationally expensive and require
large volume of data for their training. In this regard, transfer

learning is a widely adopted paradigm that allows a model
pre-trained on a large dataset (like ImageNet) to be used as
a starting point for a new, related task, rather than training it
from scratch. Consequently, this learned feature reuse reduces
training time, the required data, and computational resources
for the new, specific problem [4]. However, despite their over-
all effectiveness, pre-trained models often show performance
limitations when transferred to different or domain-specific
visual datasets as they are optimized for the source data
statistical distribution. Therefore, they tend to extract fewer
distinguishing features from classes that are underrepresented
in the source domain [3]. Furthermore, standard classification
networks are fundamentally designed to output probability
distributions, which differs from the requirements of image
retrieval tasks that rely on efficient and meaningful distance
metrics in a feature space. Additionally, determining the op-
timal depth for feature extraction that balances rich semantic
representation with efficient feature dimensioning remains a
critical challenge.

In this paper, we propose an adapted pre-trained deep
learning model-based CBIR scheme designed to address these
limitations. Specifically, we leverage the EfficientNet mod-
els [5], known for their superior performance and efficient
scaling properties, and fine-tune them using transfer learning
on the Corel-1K dataset [6]. Although these models are
originally designed for classification, we incorporate critical
post-processing steps, including feature normalization and the
selection of an appropriate distance metric compatible with
the model’s loss function, ensuring robust feature matching for
optimal performance in distance-based image retrieval tasks.
Furthermore, we analyze features extracted from intermediate
layers to identify an application-specific optimal depth that
provides a better trade-off between semantic representation
and computational efficiency. Finally, we provide an exten-
sive comparison with existing baseline CBIR methods and
demonstrate superior retrieval performance in both overall and
specific ranked metrics.

II. PROPOSED METHOD

Fig. 1 shows a high level illustration of our proposed
CBIR scheme. In general, an image retrieval system consists
of feature extraction and feature matching modules. This
section outlines the complete pipeline for the proposed image
retrieval system, detailing how we adapted a pre-trained deep
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Fig. 1: Proposed CBIR scheme where the feature extraction is based
on EfficientNet models.

learning model to serve as a robust feature extractor, the fine-
tuning process, and the similarity matching procedure used for
evaluation.

A. Feature Extraction for Image Retrieval

Feature extraction is a function that maps an input image
I into a high-dimensional feature space Φ. In this work, we
employ a pre-trained deep learning (DL) model and adapt it
using transfer learning to perform this mapping effectively.
The following sections detail the strategy for fine-tuning this
model and generating robust feature representations.

1) Model Architecture and Transfer Learning: The DL
model f used in this work is a parameterized function fθ
(based on the EfficientNetB1 architecture) that learns to update
its parameters θ by minimizing a loss function L, such that
the predicted output is as close as possible to the ground
truth label. The most common choice for the loss function
in classification tasks is the Categorical Cross-Entropy (CCE)
loss, defined for a single sample as:

LCCE(y, ŷ) = −
C∑

c=1

yc log(ŷc), (1)

where C is the number of classes, yc is a binary indicator
if class c is the correct classification, and ŷc is the model’s
predicted probability for class c.

The model is structured into two main components: a feature
extractor module, consisting of multiple convolutional layers,
and a classifier module, comprised of fully connected layers.
A model’s classifier module is highly specific to a certain task
(for example, designed for 1000 ImageNet categories), while
its underlying feature extractor module is generalizable. This
modularity allows us to utilize the learned representations from
one source task (T1) to optimize the model efficiently for our
target retrieval task (T2), a process known as transfer learning.

The objective function for each task T ∈ {T1, T2} is defined
as minimizing the expected loss:

min
F̂T ∈fT

L(F̂T ) = min
F̂T ∈fT

E
[
LT

(
YT , F̂T (XT )

)]
. (2)

The goal of transfer learning is to leverage the pre-trained
model F̂T1

from the source task to find the optimal estimator
F̂T2

for the target task T2. This is achieved by retraining the
classifier and fine-tuning specific layers or the entire feature
extractor module.

2) Fine-Tuning Framework: The adaptation process follows
a structured pipeline involving input and output transforma-
tions to align the source model with the target task require-
ments.
Step 1. Input Transformation: Input image in the target task
must match the input specifications of the source task images.
For which, we employ a transformation function gX to resize
images and normalize channels for the EfficientNet models.
Step 2. Applying the Pre-trained Model: The transformed
input data is passed through the pre-trained model F̂T1

, defined
as:

F̂T1
(gX (XT2

)) ∈ YT1
. (3)

Step 3. Output Transformation and Fine-Tuning: The
source classifier layers are discarded because they are opti-
mized for the source task’s specific 1000 categories and are
not relevant to our target retrieval task. The disparity between
the source and target output spaces necessitates an output
transformation gY . This function maps the output from Step
2 into the target output space YT2

. This involves attaching
new layers (for example, a global pooling layer followed by a
dense layer) and fine-tuning the entire network using the target
objective LT2

.
3) Model Truncation and Embedding Generation: Follow-

ing the fine-tuning process, the network is repurposed for
retrieval by extracting the intermediate representation. The
following steps describe how the final feature embeddings are
generated.
Model Truncation: The fine-tuned model F̂T2

is truncated
by removing the final task-specific classification layer, which
isolates the feature extractor module from the final decision-
making mechanism.
Feature Embedding: The modified network acts as a fixed
feature extractor function ϕ, mapping an input image I to
a high-dimensional feature vector v ∈ RD (where D is the
output dimension of the feature embeddings): ϕ(I) = v.
Using this feature extractor ϕ, the feature vectors s and q
are respectively obtained from the stored and query images.
L2 Normalization: Features are L2 normalized before simi-
larity matching to ensure all embeddings lie on a unit hyper-
sphere:

vnorm =
v

∥v∥2
. (4)

This normalization step is crucial, as it prepares the embed-
dings for robust angular comparison in the subsequent step.
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Fig. 2: Example images from the Corel-1K dataset.

B. Feature Similarity Measurement

The final step of the retrieval process involves the feature
matching module. For which, we employ a distance metric to
quantify the similarity between a query feature vector q and all
stored feature vectors s. The efficacy of this choice depends
heavily on how the embeddings were optimized during train-
ing. This work uses Cosine similarity as the primary metric,
which measures the angle between two normalized vectors in
the high-dimensional space:

Distance(q, s) = 1− q · s
∥q∥∥s∥

. (5)

The choice of Cosine similarity is particularly compatible with
the cross-entropy loss function (CCE) used during training.
The CCE optimizes primarily for the direction of the feature
vectors rather than their magnitude. By applying L2 normal-
ization inherent to Cosine similarity calculation, we isolate this
angular information. In contrast, the L2 (Euclidean) distance
is sensitive to both direction and magnitude, making it less
suitable for the variance in vector lengths typically produced
by CCE training. Aligning the retrieval metric with the training
objective ensures robust performance.

III. SIMULATION RESULTS

A. Dataset

The Corel-1K dataset [6] is utilized as the benchmark
dataset for evaluating the performance of our proposed image
retrieval methodology. It consists of a total 1,000 images orga-
nized into 10 distinct categories, with each category containing
exactly 100 images. The images have consistent dimensions
of either 384×256 or 256×384 pixels. The 10 categories
included in the dataset are diverse and cover a variety of
natural and man-made scenes. Specifically, the “Dinosaur”
category is unique within this dataset as it contains synthetic
illustrations rather than natural photographs, which presents
a specific challenge for models pre-trained on photographic
content like ImageNet. For visual analysis, Fig. 2 shows an
example image for each label in the this dataset.

B. Experimental Setup

For analysis, we implemented our proposed Content-Based
Image Retrieval (CBIR) scheme using pre-trained EfficientNet
models [5], specifically configurations B0 through B5. These
models were pre-trained on the large-scale ImageNet dataset

to leverage transfer learning capabilities. The Corel-1K dataset
was used for training, fine-tuning, and evaluation. For reliable
performance assessment, the dataset was divided into an 80%
training set and a 20% testing set. All experiments were
repeated three times using different random seeds for the
dataset splits to ensure robustness. The models were optimized
using the Adam optimizer with categorical cross-entropy as the
loss function and a batch size of 8. The training process was
conducted in two distinct phases:

Phase I: Classifier Training. Initially, only the top classifica-
tion layers of the EfficientNet models were trained. The base
layers were kept frozen. This phase ran for 5 epochs using a
learning rate of 0.001.

Phase II: Fine-tuning. Following Phase I, we unfroze the
top 80 layers of the entire model and then fine-tuned for an
additional 15 epochs using a reduced learning rate of 1e−5 to
ensure stable convergence and prevent catastrophic forgetting
of the pre-trained weights.

C. Evaluation Metrics

To rigorously assess the performance of the image retrieval
system, we utilize several widely accepted metrics that provide
a comprehensive view of ranking quality and efficiency.

1) Average Precision (AP) and Mean Average Precision
(mAP): This work uses the Mean Average Precision (mAP)
as the primary metric, which is derived from the Average
Precision (AP) score. The AP metric measures the retrieval
performance in terms of how well relevant images are ranked
within the list of retrieved images for a single query. For a
single query q, the AP is defined as:

AP(q) =
N∑

k=1

P (k)× rel(k), (6)

where N is the total number of images in the database, P (K)
is the precision at rank k, and rel(k) is a binary relevance
indicator (1 if the item at rank k is relevant, 0 otherwise).
From (6), the mAP score is derived as the average of the AP
scores calculated across all Q queries in the test set:

mAP =
1

Q

Q∑
q=1

AP(q). (7)

2) Precision @K (P@K) and Recall @K (R@K): P@K and
R@K are used to evaluate the quality of the top K retrieved
results, which directly correlates with the user’s immediate
experience. P@K measures the retrieval performance as how
many retrieved images are relevant among the top K results:

P@K =
|Dl ∩ Dr|

|Dr|
, (8)

where Dl and Dr respectively denotes the number of relevant
and retrieved images. R@K measures the retrieval perfor-
mance as how many relevant images are correctly identified



within the top K results relative to the total number of relevant
images in the database:

R@K =
|Dl ∩ Dr|

|Dl|
. (9)

These metrics provide a balanced assessment of the image
retrieval system’s ability to find relevant items quickly and
comprehensively.

D. Retrieval Performance Analysis

In this section, we conduct a thorough evaluation of the
proposed fine-tuned EfficientNet architectures using the Corel-
1K dataset. The analysis is structured into three main parts:
first, an investigation into the optimal feature extraction depth;
second, a performance comparison against existing state-of-
the-art retrieval techniques; and finally, a detailed class-wise
performance breakdown to identify category-specific strengths
and weaknesses.

Analysis of EfficientNet Feature Extraction Points. Table I
summarizes the extensive evaluation of fine-tuned EfficientNet
models (B0 through B5) for image retrieval on the Corel-
1K dataset. The comparison focuses on feature extraction
from two distinct network depths that is, Block 6 versus
Block 7, chosen to investigate a potential optimal point that
balances rich semantic representation with efficient feature
dimensioning. The values are reported as the mean ± standard
deviation across three independent experimental runs for mAP,
mAP@K, P@K, and R@K metrics. It is noteworthy that
standard mAP evaluates the quality across the entire ranked list
of retrieved images, while @K metrics specifically focus on
performance within the top K results. The consistently low
standard deviation values indicate high stability and repro-
ducibility of all results.

A primary observation across all tested models is that
features extracted from Block 7 consistently yield superior
retrieval performance in terms of overall mAP and metrics
reliant on deeper result lists (for example, P@100, R@100),
validating the identification of this layer as an optimal point for
richer semantic representation. However, a focused analysis of
the ranked metrics (K=10 or 20) reveals that the performance
difference between Block 6 and Block 7 is not statistically
significant in the very early results. These metrics are highly
relevant for practical applications where only the top few
results are immediately presented to the user. This finding
highlights a crucial trade-off that Block 6 provides smaller
feature vectors (for example, d=192 vs. d=320 for B0), which
facilitates significantly faster feature matching and reduced
computational overhead. Therefore, Block 6 is a viable alter-
native for applications prioritizing real-time performance and
faster response times over marginal gains in the overall result
list quality. Furthermore, simply scaling up the model size
(from B0 to B5) does not guarantee a proportional increase
in performance for example, the B5 model, despite having the
largest feature dimensions, does not achieve peak efficacy.

In summary, the EfficientNet-B4 model with Block 7 fea-
tures emerged as the overall top performer across the majority

of metrics presented in the table. For subsequent analysis,
two models were selected to balance performance and com-
putational efficiency: the B4 Block 7 configuration (for best
performance) and the B0 Block 7 configuration (for better
computational complexity).

Comparison with the State-of-the-Art Techniques. Table
II presents a comparison of the proposed EfficientNet-B0
and B4 (Block 7) models against several established image
retrieval techniques from existing literature, evaluated on the
Corel-1K dataset. The baseline methods include early deep
learning approaches such as AlexNet [7] and VGG16 [8],
along with custom CNN architectures [9], and hybrid methods
combining handcrafted features (for example, LBP, HOG,
color histograms) with machine learning techniques like ge-
netic algorithms for feature selection [10]. Note that due to
variations in evaluation methodologies across studies, not all
metrics are available for all baselines.

The proposed models demonstrate highly competitive per-
formance, frequently establishing a new state-of-the-art on this
dataset. For example, our B4 model achieves the highest over-
all mAP observed in the comparison (93.50%), significantly
outperforming both the robust fusion technique of [7] and
their basic AlexNet. We also observe superior performance
in ranked metrics; our B4 model’s mAP@10 surpasses the
custom CNN of [9]. Furthermore, a key strength of our
approach is visible in the precision and recall metrics across
varying K values. Although several baselines achieve high
P@K scores in specific instances (for example, [8]’s Model
II achieves 96.25% P@20), our B0 and B4 models maintain
high performance across all reported ranked metrics (P@10,
P@20, P@100), R@K), indicating superior consistency and
depth in retrieval quality.

The performance gap is particularly evident in the R@100
metric, where our B4 model achieves 90.50%, drastically
outperforming hybrid methods like [10] (62.65%) and [8]’s
Model I (32.2%). This highlights the superior ability of the
fine-tuned EfficientNet features to retrieve a higher proportion
of the total relevant images within the database. The results
strongly suggest that the features extracted from the optimal
point (Block 7) of the EfficientNet architecture provide a more
robust and effective representation for image retrieval tasks
compared to prior techniques evaluated on this dataset.

Class-Wise Retrieval Performance Analysis. Table III pro-
vides a detailed class-wise comparison of retrieval perfor-
mance (mAP@10, mAP@20, and mAP@100) between our
proposed EfficientNet models (B0 and B4, Block 7) and the
hybrid approach of [10]. As [10] was the only existing scheme
that reported performance metrics on a per-class basis on the
Corel-1K dataset, it serves as our specific baseline for this
granular analysis.

The results reveal that the proposed models generally out-
perform the baseline across most classes and all evaluated
metrics. The average performance across the 10 classes (bot-
tom ‘Mean’ row) clearly favors our approach, with the B4
model achieving the highest overall mean mAP@100 score



TABLE I: Performance analysis of fine-tuned EfficientNet models on Corel-1K dataset. The metric values are reported as mean±standard
deviation. The best values are in bold.

Model Block d mAP mAP@10 mAP@20 mAP@100 P@10 P@20 P@100 R@10 R@20 R@100

B0 Block6 192 0.869±0.007 0.956±0.001 0.937±0.002 0.787±0.008 0.952±0.021 0.949±0.002 0.821±0.007 0.096±0 0.19±0 0.821±0.007
block7 320 0.913±0.005 0.97±0.001 0.96±0.003 0.85±0.008 0.975±0.001 0.969±0.002 0.874±0.006 0.098±0 0.194±0 0.874±0.006

B1 Block6 192 0.851±0.003 0.953±0.002 0.934±0.002 0.767±0.003 0.961±0.002 0.947±0.002 0.802±0.003 0.096±0 0.189±0 0.802±0.003
block7 320 0.921±0.007 0.975±0.002 0.966±0.003 0.868±0.008 0.979±0.002 0.972±0.002 0.887±0.007 0.098±0 0.194±0 0.887± 0.007

B2 block6 208 0.866±0.005 0.959±0.001 0.942±0.002 0.781±0.006 0.966±0.001 0.954±0.002 0.816±0.005 0.097±0 0.191±0 0.816±0.005
block7 352 0.934±0.009 0.981±0.002 0.973±0.003 0.884±0.013 0.984±0.001 0.979±0.002 0.9±0.011 0.098±0 0.196±0 0.9±0.011

B3 block6 232 0.876±0.002 0.963±0.001 0.946±0.001 0.798±0.002 0.97±0.001 0.957±0.001 0.83±0.002 0.097±0 0.191±0 0.83±0.002
block7 384 0.938±0.005 0.98±0.002 0.974±0.002 0.892±0.007 0.984±0.001 0.98±0.002 0.907±0.006 0.098±0 0.196±0 0.907±0.006

B4 block6 272 0.877±0.004 0.967±0.001 0.951±0.002 0.804±0.006 0.973±0.001 0.961±0.002 0.834±0.005 0.097±0 0.192±0 0.834±0.005
block7 448 0.935±0.007 0.981±0 0.974±0.001 0.891±0.007 0.984±0 0.98±0.001 0.905±0.007 0.098±0 0.196±0 0.905±0.007

B5 block6 304 0.849±0.002 0.96±0.001 0.938±0.001 0.765±0.002 0.967±0.001 0.95±0.001 0.802±0.002 0.097±0 0.19±0 0.802±0.002
block7 512 0.922±0.003 0.978±0.001 0.969±0.001 0.875±0.005 0.981±0.001 0.975±0.001 0.891±0.004 0.098±0 0.195±0 0.891± 0.004

TABLE II: Benchmarking of proposed EfficientNet models against state-of-the-art image retrieval techniques on Corel-1K dataset. The best
values are in bold.

Method mAP mAP@5 mAP@10 mAP@20 mAP@100 P@10 P@20 P@100 R@10 R@20 R@100

[7]’s AlexNet 75.48 93.14 91.87 - - - - - - - -
[7]’s 91.65 96.02 95.80 - - - - - - - -

[8]’s VGG16 - - - - - - 94.60 - - 18.92 -
[8]’s Model I - - - - - 95.2 87.25 32.2 9.52 17.45 32.2
[8]’s Model II - - - - - - 96.25 - - 19.25 -

[9] - - 95.62 - - - - - - - -

[10] - - 95.55 93.90 82.51 93.07 87.13 62.65 9.31 17.43 62.65

Ours (B0 Block7) 91.30 97.80 97.00 95.98 85.04 97.50 96.90 87.40 9.80 19.40 87.40
Ours (B4 Block7) 93.50 98.65 98.10 97.43 89.10 98.40 98.00 90.50 9.80 19.60 90.50

TABLE III: Per-class retrieval performance (mAP@K) comparison with the baseline method of [10]. The best values are in bold.

Labels
mAP@10 mAP@20 mAP@100

[10] B0 (Ours) B4 (Ours) [10] B0 (Ours) B4 (Ours) [10] B0 (Ours) B4 (Ours)

Africans 95.51 91.53 96.21 94.31 88.48 95.17 83.81 63.38 78.96
Architecture 92.40 100.00 100.00 89.86 100.00 100.00 73.48 92.01 98.50

Beach 86.31 100.00 100.00 82.13 100.00 100.00 63.28 98.23 99.78
Buses 99.30 97.98 98.25 98.64 96.74 97.89 92.96 84.99 86.07

Dinosaur 100.00 88.72 89.94 100.00 85.99 86.46 99.96 60.66 61.90
Elephant 97.27 100.00 100.00 94.88 100.00 100.00 77.36 99.84 99.81

Food 95.28 95.1 98.01 93.87 93.19 96.69 81.84 73.69 78.06
Horses 99.74 100.00 100.00 99.16 100.00 100.00 90.53 98.28 99.58

Mountains 89.85 100.00 100.00 86.59 100.00 99.94 68.33 97.04 98.38
Roses 99.89 96.24 98.53 99.58 95.43 98.12 93.53 82.26 90.01

Mean 95.55 96.96 98.10 93.90 95.98 97.43 82.51 85.04 89.10

of 89.10%, significantly higher than [10]’s 82.51%. Also,
in several categories, particularly “Architecture,” “Beach,”
“Elephant,” and “Mountains,” our models achieve near-perfect
scores (100% mAP@10 and mAP@20), demonstrating supe-
rior ability in retrieving images within these specific semantic
categories compared to the baseline.

However, the comparison also highlights specific weak-
nesses. For instance, in the “Africans” category, the baseline
[10] maintains strong early precision (95.51% mAP@10)
where our B0 model dips (91.53%). A notable observation
is the “Dinosaur” class. Here, the hybrid method of [10]
achieves perfect mAP@10 and mAP@20 scores, while our
models show reduced performance in early retrieval metrics.
This discrepancy is likely attributable to the nature of the
“Dinosaur” images within the Corel-1K dataset, which are
synthetic illustrations. Since our models are fine-tuned from a

network pre-trained exclusively on natural images (ImageNet),
their features are optimized for photographic content. The
superior performance of [10] in this specific instance suggests
that their handcrafted features are better suited for distinguish-
ing highly specific, non-photographic visual patterns present
in that unique class. Fig. 3 and Fig. 4 respectively show an
example image from the “Dinosaur” and “Roses” classes along
with retrieval results for our proposed EfficientNet models (B0
and B4, Block 7). Fig. 3 shows that for the underrepresented
class of “Dinosaur” the models relied on color information as
appeared in the wrong retrieval results.

Overall, despite minor performance dips in one or two
specific classes driven by data distribution differences, the
general superiority of our B4 model across all ranked metrics
and across the majority of semantic categories is confirmed
by this class-wise analysis.



Fig. 3: Visual analysis of retrieving relevant images of “Dinosaur” class to a query image from the database using proposed CBIR scheme.
Results for EfficientNet-B0 Block 7 is in the top row and for EfficientNet-B4 Block 7 is in the bottom row. The wrong retrieval results are
surrounded in red box.

Fig. 4: Visual analysis of retrieving relevant images of “Roses” class to a query image from the database using proposed CBIR scheme.
Results for EfficientNet-B0 Block 7 is in the top row and for EfficientNet-B4 Block 7 is in the bottom row.

IV. CONCLUSION

This study addressed critical challenges in applying pre-
trained classification models effectively to Content-Based Im-
age Retrieval (CBIR) tasks, focusing on optimizing efficiency,
data requirements, and metric (classification model loss func-
tion and feature matching distance metric) compatibility. For
this purpose, we proposed and evaluated an adapted pre-trained
EfficientNet-based CBIR scheme that incorporated critical
post-processing steps and analyzed features from intermediate
layers to optimize performance trade-offs. Extensive evalua-
tion of the Corel-1K dataset confirmed the scheme’s efficacy
and established a new benchmark in retrieval performance
compared to existing schemes. Furthermore, a primary finding
was the consistent superiority of features extracted from deeper
layers (specifically Block 7 of EfficientNet-B4) for overall
result list quality. Crucially, the analysis of ranked metrics
highlighted a significant practical trade-off that using features
from the shallower Block 6 offered comparable top-ranked
performance while providing smaller feature vectors and faster
computational speeds. In the future, we are interested in ex-
ploring dimensionality reduction algorithms for better feature
matching efficiency.
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