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Abstract—The Decision Transformer has significantly ad-
vanced offline reinforcement learning by reframing policy opti-
mization as a sequence modeling problem. This approach offers
strong scalability, effective long-term credit assignment, and
robust generalization across diverse tasks. However, DT’s reliance
on sample-based learning from limited offline datasets inherently
restricts its coverage of the state–action space and leads to
the accumulation of autoregressive prediction errors, especially
in long-horizon scenarios. Concurrently, Flow Matching has
emerged as a powerful generative modeling framework that
learns a continuous-time vector field to transport a simple prior
distribution toward a complex target distribution, providing sta-
ble training, efficient inference, and distribution-level supervision
without stochastic sampling. Motivated by the complementary
advantages of these approaches, this paper proposes Decision
Transformer with Integrated Flow Matching (DT+FM). This
unified framework incorporates Flow Matching into the Decision
Transformer architecture to achieve more stable and expressive
action generation. By replacing purely sample-level supervi-
sion with distribution-based learning, DT+FM expands effective
coverage of the state-action space and mitigates compounding
prediction errors that arise during long-horizon decision-making.
Experimental results on MuJoCo continuous control tasks and
RoboMimic manipulation benchmarks demonstrate that DT+FM
consistently outperforms the standard Decision Transformer. It
offers improved stability, enhanced robustness under limited-
data conditions, and substantially better performance in tasks
characterized by long episodes and complex dynamics.

Index Terms—Offline Reinforcement Learning, Decision
Transformer, Flow Matching.

I. INTRODUCTION

Offline reinforcement learning (RL) aims to learn optimal
decision-making policies entirely exclusively from fixed, pre-
collected datasets without further interaction with the envi-
ronment. This approach is particularly valuable in settings
where online data collection is costly, unsafe, or impractical,
such as in robotics, autonomous driving, and healthcare [1]–
[3]. By removing the necessity for additional exploration,
offline RL enhances safety and data efficiency while still
enabling the acquisition of complex behaviors. While of-

fline RL traditionally employed temporal-difference meth-
ods, recent advancements have reframed it as a sequence
modeling problem, most notably realized through the De-
cision Transformer (DT) [12]. DT models trajectories as
autoregressive sequences of return-to-go (RTG), states, and
actions. This approach replaces temporal-difference learning
with supervised prediction and consequently enables strong
performance across diverse benchmarks with stable, scalable
training. However, DT remains constrained by its reliance on
sample-based supervision, which limits generalization beyond
the empirical data distribution [1], and by its autoregres-
sive structure, which can compound prediction errors over
long horizons [12], [26]. To address these generalization and
stability challenges, Flow Matching (FM) [19] has emerged
as a promising generative modeling framework. It learns
continuous-time vector fields capable of transporting simple
prior distributions toward complex target distributions. FM
provides deterministic, simulation-free training of Continuous
Normalizing Flows [20] and offers stable optimization and
efficient inference without stochastic sampling. When applied
to policy learning, FM enables distribution-level modeling that
can notably enhance robustness under distributional shift and
reduce error accumulation [21].

Motivated by the complementary strengths of sequence
modeling and distribution-based learning, this paper introduces
the Decision Transformer with Integrated Flow Matching
(DT+FM). This unified framework augments the standard DT
by incorporating a flow-based objective. This integration is
designed to leverage FM’s distribution modeling capabilities
to broaden state-action coverage and significantly stabilize
long-horizon predictions within the autoregressive structure of
the transformer. Our experimental evaluations, conducted on
MuJoCo [33] continuous control and RoboMimic [34] manip-
ulation tasks, demonstrate that DT+FM consistently improves
stability, robustness, and overall performance compared to the
standard DT, especially in scenarios characterized by long
horizons and data-limited conditions.



II. BACKGROUND AND PRELIMINARIES

Offline RL aims to learn decision-making policies solely
from fixed datasets, eliminating the need for further interaction
with the environment. We consider a Markov Decision Process
(MDP) with state space S, action space A, transition kernel
P , reward function R, and discount factor γ. The objective of
a policy π is to maximize the expected discounted return:

J(π) = Eπ, P

[
T∑

t=1

γt−1r(st, at)

]
. (1)

In offline RL, the agent has no further interaction with the
environment and must instead learn from a fixed dataset

D = {(s(i)t , a
(i)
t , r

(i)
t , s

(i)
t+1)}i,t,

collected by an unknown behavior policy. While this setting is
attractive in safety-critical or cost-sensitive domains [1], [3],
it introduces a distributional mismatch between the dataset
and the state-action distribution induced by the learned policy,
which can lead to extrapolation and compounding errors [27].

Classical offline RL approaches, such as Behavior Cloning
(BC) [4], offer stability and simplicity but often suffer from
severe distribution shift in long-horizon tasks. To mitigate out-
of-distribution action selection, value-regularized algorithms
such as Batch-Constrained Q-Learning (BCQ) [5] and Con-
servative Q-Learning (CQL) [6] constrain the learned value
function. Policy regularization methods such as BRAC [7]
and AWAC [8] further enforce closeness to the behavior
policy to reduce extrapolation error. More recent frameworks
like Implicit Q-Learning (IQL) [9] improve stability through
expectile regression and advantage-weighted regression. How-
ever, most offline RL methods remain sensitive to approxi-
mation errors and often lack mechanisms to capture global
trajectory structure. Model-based approaches such as MOPO
and COMBO [10], [11] attempt to broaden data coverage with
synthetic rollouts but are limited by model bias.

DT [12] reconceptualizes offline RL as a sequence modeling
problem using a causal Transformer [28]. It enables stable
training by predicting actions autoregressively from RTG,
states, and past actions. A trajectory of length T is represented
as an interleaved sequence:

T = (g1, s1, a1, g2, s2, a2, . . . , gT , sT , aT ), (2)

where the RTG at time t is defined as

gt =

T∑
t′=t

rt′ . (3)

Given a context window of length K, DT parameterizes a
conditional policy

πDT

(
at | st−K:t, at−K:t−1, gt−K:t; θ

)
,

implemented by a GPT-style causal Transformer that attends
only to past tokens. Training reduces to a supervised regression
objective over the offline dataset:

LDT(θ) = E(s,a,g)∼D
[
∥at − ât∥2

]
,

ât = πDT

(
· | st−K:t, at−K:t−1, gt−K:t; θ

)
.

(4)

At evaluation time, a target RTG g1 and an initial state s1
are provided, and actions are generated autoregressively. After
each step, the RTG is updated as

gt+1 = gt − rt. (5)

While this formulation enables scalable sequence-based
control, extensions such as MGDT [13], Prompt-DT [14], and
CDT [15] explore multi-task, prompt-conditioned, and con-
strained learning settings. Structural variants such as GDT [16]
and dynamic extensions [17], [18] further demonstrate DT’s
adaptability. Nonetheless, DT remains vulnerable to restricted
dataset coverage and the accumulation of autoregressive pre-
diction errors, which degrade performance in long-horizon
tasks due to its purely sample-based supervision and autore-
gressive structure [12], [26].

FM [19] provides a complementary approach for
distribution-aware generative modeling. FM learns a
time-dependent vector field that transports samples from a
simple base distribution p0 to a complex target distribution
p1. Here, x0 ∼ p0 represents a sample drawn from the
base distribution, while x1 ∼ p1 denotes a sample from the
target distribution. Specifically, FM defines a flow map ϕτ (x)
through the ordinary differential equation (ODE):

d

dτ
ϕτ (x) = vτ

(
ϕτ (x)

)
, ϕ0(x) = x, (6)

where vτ is a neural vector field. When vτ is learned correctly,
the pushforward of p0 under ϕ1 matches p1.

Direct supervision of vτ is intractable, so FM constructs
simple conditional probability paths, typically via linear inter-
polation:

xτ = (1− τ)x0 + τx1, (7)

for which the target velocity has a closed-form expression:

vτ (xτ | x1) =
x1 − xτ
1− τ

. (8)

A neural approximation v̂τ is trained using the Conditional
Flow Matching (CFM) objective:

LCFM(θ) = Ex0∼p0, x1∼p1, τ∼U [0,1]

[
∥v̂τ (xτ ; θ)− vτ (xτ | x1)∥2

]
,

(9)
which provides unbiased gradients without solving the ODE
during training. For conditional generation, the vector field
is augmented with context c, yielding v̂τ (xτ , c; θ) and a
conditional CFM objective [21]. At inference time, sampling
reduces to integrating the learned ODE.

Compared to diffusion models, FM offers deterministic,
simulation-free training and typically requires fewer func-
tion evaluations during sampling, making it attractive for
distribution-aware policy modeling [22], [24]. Conditional
FM has recently been explored in RL, leading to flow-
based methods such as Flow Q-Learning [22], Flow Policy
Optimization [23], and ReinFlow [24], as well as latent-space
formulations such as LFM [25]. While flow-based approaches
provide expressive, distribution-aware modeling, they typically



Fig. 1: Conceptual overview of DT+FM.

lack the long-horizon temporal reasoning capabilities offered
by Transformer-based sequence models.

This complementary relationship motivates hybrid frame-
works that integrate sequence modeling with distributional
action generation. The proposed DT+FM framework builds
on this idea by conditioning FM policy on Transformer rep-
resentations, combining long-range temporal reasoning with
continuous, distribution-level supervision to improve stability
and generalization in offline RL.

III. DECISION TRANSFORMER WITH INTEGRATED FLOW
MATCHING (DT+FM)

We propose DT+FM, a unified offline RL framework that
augments the DT with a FM module. DT provides sequence-
level context through a causal Transformer, whereas FM pro-
vides distribution-level supervision by learning a continuous-
time vector field that transports samples from a simple prior to
the data-supported action distribution along a conditional prob-
ability path [19], [21]. This integration targets two limitations
of standard DT: (i) sample-based bias due to restricted dataset
coverage, and (ii) autoregressive error accumulation in long-
horizon rollouts. In DT+FM, the Transformer hidden represen-
tation ht conditions the FM vector field, enabling a sequence-
aware denoising process that maps noisy action samples to
clean, data-consistent actions, thereby reducing trajectory drift
and improving stability under distribution shift [24].

As illustrated in Fig. 1, a trajectory window

Tt = (gt−K+1, ot−K+1, at−K+1, . . . , gt, ot, at) (10)

is embedded and processed by a masked self-attention Trans-
former to produce contextual embeddings ht. Unlike vanilla
DT, which decodes ht with a deterministic action head,
DT+FM uses ht as conditioning input to a flow model.
Concretely, we treat the terminal point of the flow as the action
itself (x1 = at). During training, we sample x0 ∼ N (0, I)
and τ ∼ U [0, 1], and construct an intermediate point on the
conditional path

xτ = (1− τ)x0 + τx1, (11)

which matches the standard linear interpolation used in
FM [19]. FM module predicts a context-conditioned vector
field v̂τ = vθ(xτ , τ, ht) and is trained by regressing to the
corresponding target field under CFM [19], [21]. To make
the vector field explicitly depend on both time and trajec-
tory context, DT+FM applies Feature-wise Linear Modulation
(FiLM) [32]: a time embedding ψ(τ) and context ht produce
per-feature scale and shift parameters (γ, β), which modulate
intermediate activations in the vector-field network.

The overall optimization jointly updates the DT backbone
parameters ϕ and the FM parameters θ by minimizing the
FM regression loss, and an optional auxiliary DT action
regression loss from Eq. (4) can be added without changing
the sampling procedure. At inference time, DT+FM follows
an autoregressive rollout as in DT, but replaces deterministic
decoding with flow-based action generation: given ht and an
initial noise sample x0, the action is obtained by integrating
the learned ODE

dx(τ)

dτ
= vθ(x(τ), τ, ht), τ ∈ [0, 1], (12)

using a standard numerical solver such as Euler or Runge–
Kutta [29]–[31], and taking the terminal state as the executed
action ât = x1. RTG is updated as in DT, gt+1 = gt − rt. By
generating each action through a context-conditioned denois-
ing flow trained to map noisy samples toward data-supported
actions, DT+FM reduces deviation from the empirical behav-
ior distribution and mitigates compounding errors over long
horizons, yielding more stable offline policy execution.

IV. EXPERIMENTS

A. Environments and Datasets

The proposed DT+FM framework is evaluated on two
standard offline RL domains: continuous-control locomotion
tasks from MuJoCo [33] and robotic manipulation tasks
from RoboMimic [34]. For locomotion, expert-level datasets
from the Minari benchmark [35] are used for HalfCheetah,
Walker2d, Ant, and Humanoid. These environments span a
wide range of state and action dimensionalities and exhibit
increasing control complexity. For manipulation, we con-
sider the Lift and Can tasks from RoboMimic using the
Proficient-Human (PH) datasets, which consist of high-quality
teleoperated demonstrations and require precise long-horizon
manipulation.

B. Baseline and Evaluation Protocol

To isolate the contribution of FM, DT+FM is compared
exclusively against the standard DT [12]. Both methods use
identical Transformer backbones, optimization settings, and
training schedules. Two evaluation regimes are considered:

• Full Dataset: Both models are trained on the complete
expert-level dataset.

• 50% Dataset: The dataset size is reduced by 50% to
simulate limited offline data. Training on a randomly
subsampled half of the dataset to assess robustness under
data scarcity.



(a) HalfCheetah Expert (Full Dataset) (b) HalfCheetah Expert (50% Dataset)

(c) Walker2d Expert (Full Dataset) (d) Walker2d Expert (50% Dataset)

(e) Ant Expert (Full Dataset) (f) Ant Expert (50% Dataset)

(g) Humanoid Expert (Full Dataset) (h) Humanoid Expert (50% Dataset)

Fig. 2: Performance comparison of DT and DT+FM across MuJoCo tasks with full datasets (left column) and reduced datasets
(50%, right column). Each row corresponds to a different environment: (a,b) HalfCheetah, (c,d) Walker2d, (e,f) Ant, (g,h)
Humanoid, (g,h). Evaluation was performed with target RTGs set to expert-level returns: HalfCheetah = 20000, Walker2d =
10000, Ant = 10000, Humanoid = 12000.



TABLE I: Key hyperparameters for DT and DT+FM models.

Component Parameter Value

Transformer (DT)
Embedding dimension 256
Number of layers 10
Attention heads 2
Sequence length 20

Flow Matching (DT+FM only)
Architecture 3-layer MLP
Hidden dimension 512
Time embedding Sinusoidal

Optimization
Optimizer AdamW
Learning rate 1× 10−4

Weight decay 1× 10−3

Training Setup
Batch size 256
Training steps 150,000
Dataset fraction 1.0 / 0.5

Evaluation
Evaluation frequency Every 1,000 steps
Episodes per evaluation 5

Performance is reported using normalized episodic returns for
MuJoCo and task success rates for RoboMimic. All results
are averaged over five random seeds and reported with 95%
confidence intervals.

C. Implementation Details

All models are implemented in PyTorch and share a com-
mon architecture consisting of a 10-layer causal Transformer
with 256-dimensional embeddings and 2 attention heads. The
Flow Matching module in DT+FM is implemented as a 3-layer
multilayer perceptron with 512 hidden units, sinusoidal time
embeddings, and FiLM-based conditioning [32]. Training is
performed using AdamW with a learning rate of 1×10−4 and
batch size 256 for 150k gradient steps. During inference, the
learned flow ODE is solved using fixed-step Euler integration
with 50 steps [29]–[31]. All key architectural and optimization
hyperparameters are summarized in Table I.

D. Results on MuJoCo Locomotion

Across all four MuJoCo environments, DT+FM consistently
outperforms the baseline DT under both full-data and reduced-
data regimes, as shown in Fig. 2. DT+FM converges more
rapidly, exhibits lower variance across random seeds, and
maintains stable performance over long horizons. In contrast,
DT experiences notable performance degradation under the
50% dataset setting-particularly in Walker2d and Humanoid-
indicating sensitivity to compounding errors. These results
demonstrate that FM improves distributional generalization
and effectively mitigates autoregressive error accumulation in
offline locomotion control.

E. Results on RoboMimic Manipulation

Table II reports success rates for the Lift and Can tasks.
Under the full-data regime, DT+FM matches or slightly im-

TABLE II: Success rate comparison (mean ± std) of DT and
DT+FM on RoboMimic manipulation tasks under full and
50% data regimes.

Task Data Regime DT DT+FM

Lift Full Data 96.0 ± 2.0 96.0 ± 2.0
50% Data 88.0 ± 3.2 98.0 ± 1.4

Can Full Data 90.0 ± 3.0 92.0 ± 2.7
50% Data 55.0 ± 5.0 85.0 ± 3.6

Average Full Data 93.0 ± 2.5 94.0 ± 2.3
50% Data 71.5 ± 4.1 91.5 ± 2.5

proves upon DT, indicating that FM does not compromise
performance when sufficient expert data is available. Under
the 50% dataset setting, DT+FM yields substantial gains,
improving success rates from 0.88 to 0.98 on Lift and from
0.55 to 0.85 on Can. These improvements highlight the
importance of distribution-aware supervision in data-limited
manipulation tasks, where DT alone struggles with out-of-
distribution generalization and long-horizon consistency.

F. Summary

Overall, DT+FM achieves higher returns, improved stabil-
ity, and stronger robustness in low-data regimes across both
locomotion and manipulation benchmarks. The experimental
results confirm that integrating FM significantly enhances DT
by improving distributional modeling and reducing compound-
ing errors in offline RL.

V. CONCLUSION

This work presented DT+FM, a unified offline RL frame-
work that integrates FM with the DT. The approach addresses
two major limitations of standard DT: restricted generalization
due to sample-based training and the accumulation of autore-
gressive prediction errors. By learning a context-conditioned
vector field in latent action space, FM provides distribution-
aware supervision that guides noisy action samples toward
data-consistent trajectories.

Experimental results across MuJoCo locomotion and
RoboMimic manipulation tasks demonstrate that DT+FM
offers improved stability, faster convergence, and stronger
performance under both full and data-limited regimes. In
particular, DT+FM shows substantial robustness when training
data are scarce, indicating enhanced distributional coverage
and reduced sensitivity to out-of-distribution states.

Overall, DT+FM offers a simple yet effective enhancement
to sequence-modeling approaches for offline RL by combining
long-horizon temporal reasoning with continuous, flow-based
action generation. Future work will focus on extending the
framework to sim-to-real transfer scenarios, including high-
fidelity locomotion tasks in IsaacGym using the Unitree Go1
quadruped, as well as incorporating visual observations and
online fine-tuning to further improve robustness in real-world
robotic deployments.
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