
Design of a Multimodal Fusion Architecture for 

Anomaly Detection in Smart Greenhouse 

Environments 

JooWon Jeong  

Department of Smart Agriculture 

Sunchon National University 

Suncheon, Republic of Korea 

jjw_res@naver.com 

KiWoong Song  

Department of Smart Agriculture 

Sunchon National University 

Suncheon, Republic of Korea 

sibyk2@naver.com 

 

 

 

Hyun Yoe* 
Department of Artificial Intelligence 

Engineering 

Sunchon National University 

Suncheon, Republic of Korea 

yhyun@scnu.ac.kr 

 

 

 

Abstract— This paper presents a multimodal fusion architecture 

for anomaly detection in smart greenhouse environments. The 

framework integrates image streams and environmental sensor 

time-series to address the limitations of single-modality systems. 

The design includes an image encoder, sensor encoder, and fusion 

layer, enabling scalable and real-time operation. A simulation-

based evaluation, derived from structural module properties, 

suggests improved detection sensitivity and reduced false-alarm 

rates. Although theoretical, the findings indicate the potential of 

the proposed architecture as a foundation for future 

implementation and validation in next-generation smart 

agriculture monitoring systems. 
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I.  INTRODUCTION 

Smart greenhouse systems integrate a variety of environmental 

sensors and camera-based monitoring devices to maintain 

optimal growing conditions and support autonomous crop 

management [1]. Environmental sensors generate structured 

measurements, such as temperature, humidity, and CO₂ 

concentration, while imaging devices provide unstructured 

visual cues that reveal color changes, canopy deformation, or 

early signs of plant stress [3]. 

However, most existing monitoring systems treat image data and 

sensor data as independent sources [5]. This separation makes it 

difficult to detect complex anomalies that emerge from 

interactions between visual conditions and environmental 

fluctuations. Recent studies highlight the increasing importance 

of intelligent sensing and data-driven management in 

greenhouse environments [1]. Image-based monitoring methods 

have demonstrated strong capability in detecting disease or 

stress symptoms [2], while time-series–driven sensor models 

show effectiveness in identifying environmental irregularities 

[4]. These complementary characteristics motivate the need for 

a multimodal approach [7]. 

To address these limitations, this paper proposes a multimodal 

anomaly detection framework that fuses spatial features 

extracted from greenhouse image streams with temporal 

embeddings derived from sensor data. By capturing cross-

modal relationships, the proposed architecture supports early 

detection of abnormal greenhouse conditions and can be 

deployed efficiently in edge–cloud hybrid environments. 

II. RELATED WORK 

A. Image-Based Monitoring in Controlled-Environment 

Agriculture 

Computer vision techniques have been widely adopted in 
controlled-environment agriculture for crop monitoring, disease 
detection, and stress assessment. CNN-based models have 
demonstrated strong capability in identifying spatial anomalies 
such as leaf discoloration, morphological deformation, and 
canopy deterioration [6]. Recent advancements have introduced 
lightweight architectures that support near real-time image 
analysis on edge devices. Despite their effectiveness, image-
only systems are sensitive to illumination variation, occlusion, 
and restricted camera perspectives, which limits their reliability 
in detecting anomalies that unfold gradually or occur outside the 
field of view. 

B. Sensor-Based Environmental Anomaly Detection 

Environmental monitoring systems in greenhouses 
frequently employ numerical sensors that measure variables 
such as temperature, humidity, CO₂ concentration, vapor 
pressure deficit and substrate moisture. Time-series analysis 
models—including regression-based predictors, statistical 
outlier detectors, autoencoders, and recurrent neural networks—
have been shown to effectively identify anomalies originating 
from equipment faults, irrigation blockage, ventilation 



malfunctions, or abrupt climate changes [5]. However, sensor-
driven approaches cannot detect anomalies that manifest 
primarily through plant appearance, revealing the need for 
integrated analysis methods. 

C. Multimodal Fusion Techniques for Anomaly Detection 

Multimodal learning has emerged as a powerful approach for 
fusing heterogeneous data sources in industrial IoT systems. By 
combining complementary modalities—such as images, time-
series sensor readings, and categorical metadata—fusion models 
capture higher-level correlations that single-modality systems 
cannot. Prior research demonstrates that multimodal fusion 
significantly enhances anomaly-detection robustness, 
particularly in environments where physical states and 
operational conditions are interdependent. However, 
greenhouse-specific multimodal frameworks remain limited, 
despite the strong coupling between plant appearance and 
environmental dynamics in such environments. 

D. Deep Learning Architectures for Real-Time Deployment 

Recent developments in deep learning architectures have 
emphasized computational efficiency and suitability for 
deployment on resource-constrained devices. Lightweight 
CNNs, LSTM-based sequence encoders, and Temporal 
Convolutional Networks (TCNs) have been optimized to run 
inference on edge hardware such as Jetson Nano, Raspberry Pi, 
and ARM-based processors. These advancements enable real-
time analytics and local anomaly detection without reliance on 
high-performance cloud servers. Such models provide a 
foundation for greenhouse monitoring applications, where low 
latency and continuous operation are required. 

III. MULTIMODAL FUSION ARCHITECTURE DESIGN 

Before describing each module in detail, this section 
provides an overview of the proposed multimodal fusion 
architecture designed for anomaly detection in smart greenhouse 
environments. The architecture focuses on integrating 
heterogeneous data sources—specifically image streams and 
sensor time-series—into a unified structural design. The goal of 
this section is to outline the workflow, describe the function of 
each component, and explain how the fusion of modalities 
enables more robust anomaly detection compared to single-
modality systems. 

 

Figure 1. Overall architecture of the proposed multimodal anomaly detection 
framework. 

A. Overall Structural Workflow 

The architecture is composed of five primary stages: 

 

1. data acquisition, 

2. preprocessing, 

3. feature encoding, 

4. multimodal fusion,  

5. anomaly inference. 

 
Greenhouse cameras continuously generate image streams 

that capture plant morphology and spatial variations, while 
environmental sensors collect structured data reflecting 
temperature, humidity, CO₂, and other factors. Each modality 
passes through its respective preprocessing pipeline before being 
encoded into latent feature representations. The workflow 
emphasizes modularity, ensuring that individual components 
can be replaced or extended without affecting the overall design. 

B. Image Processing Architecture 

The image processing module focuses on extracting spatial 
characteristics associated with early stress indicators or 
structural abnormalities. All incoming frames are standardized 
through resizing, normalization, and illumination correction. A 
lightweight convolutional encoder (e.g., MobileNet-V3 or 
EfficientNet-Lite) is used to generate low-dimension 
embeddings suitable for edge deployment. These embeddings 
preserve texture, shape, and color variations that are often 
correlated with crop health conditions. 

C. Sensor Processing Architecture 

Sensor readings are segmented into fixed-length windows 
and encoded using a temporal model. The architecture supports 
two encoder options: 

• LSTM encoder: captures dependency patterns and long-
term environmental trends. 

• Temporal Convolutional Network (TCN): provides 
stable receptive fields and faster inference with parallel 
computation. 



The resulting latent vector represents environmental 
dynamics and abnormal fluctuations that may indicate 
equipment malfunction or climate instability. 

D. Multimodal Fusion Mechanism 

The fusion mechanism integrates spatial embeddings from 
the image module with temporal embeddings from the sensor 
module. A concatenation-based fusion strategy is adopted to 
ensure structural simplicity, while maintaining compatibility 
with advanced mechanisms such as attention-based fusion, gated 
units, or cross-modal weighting schemes. The fused vector 
serves as a comprehensive descriptor of greenhouse conditions, 
allowing the anomaly inference module to evaluate patterns that 
cannot be detected by individual modalities alone. 

E. Edge–Cloud Deployment Structure 

To support real-time operations, the architecture adopts a 
hybrid deployment model. Edge devices perform on-site 
preprocessing, feature extraction, and preliminary anomaly 
scoring to minimize latency. The cloud server manages long-
term data storage, model updates, and cross-facility analysis. 
This distributed structure ensures scalability, reduces 
communication overhead, and maintains responsiveness even in 
large greenhouse installations. 

TABLE I.  ARCHITECTURAL FEATURES SUMMARY 

Module Input Method Output Purpose 

lmage 
Encoder 

Frames CNN 
Spatial 

embedding 

Detect 

visual 

anomalies 

Sensor 

Encoder 
Time-series 

LSTM 

/TCN 

Temporal 

embedding 

Detect 
environment

al shifts 

Fusion 
Layer 

Image + 

Sensor 

embeddings 

Concatenati
on/Attention 

Fused 
vector 

Multimodal 

representati
on 

Inference 
Fused 

vector 

MLP/Thres

holding 

Anomaly 

score 

Final 

decision 

 

IV. TEMPLATE ARCHITECTURAL EVALUATION AND 

EXPECTED PERFORMANCE 

This section provides an architectural evaluation of the 
proposed multimodal fusion framework. Although real 
greenhouse data have not yet been applied, a structured 
simulation-based evaluation was conducted using the 
architectural properties of each module. The goal is to estimate 
how the designed components—image encoder, sensor encoder, 
fusion layer, and deployment structure—would behave under 
common greenhouse anomaly scenarios. 

A. Evaluation Methodology and Simulation Procedure 

To derive quantitative expectations, a three-stage pseudo-
evaluation pipeline was constructed based solely on the 
architectural design: 

1) Feature Behavior Modeling 

Each module's output characteristics were modeled: 

• Image encoder: expected feature variance under 
illumination shifts was estimated using standard CNN 
feature stability metrics reported in lightweight 
architectures. 

• Sensor encoder (LSTM/TCN): expected temporal 
gradient stability and sensitivity to fluctuations were 
analyzed to simulate sensor anomaly responses. 

• Fusion layer: feature complementarity was modeled by 
measuring the estimated overlap between spatial and 
temporal embeddings. 

2) Scenario-Based Simulation 

         Three representative greenhouse anomaly scenarios were 

simulated: 

 

• Visual anomalies: modeled by altering image feature 
variance patterns 

• Sensor anomalies: modeled through synthetic time-
series fluctuations 

• Cross-modal anomalies: simulated by synchronizing 
perturbations in both modalities 

The architecture’s components were evaluated under these 
synthetic conditions to infer expected detection 
outcomes. 

3) Performance Estimation Formula 

Expected sensitivity and false-alarm rates were computed 

using: 

 

Expected Score = 𝑎 ∙ 𝑆𝑖𝑚𝑔 + 𝐵 ∙ 𝑆𝑠𝑒𝑛𝑠 + 𝑟 ∙ 𝑆𝑓𝑢𝑠𝑖𝑜𝑛  (1)  

 

where 

• 𝑆𝑖𝑚𝑔= stability score of image encoder 

• 𝑆𝑠𝑒𝑛𝑠= fluctuation tolerance of sensor encoder 

• 𝑆𝑓𝑢𝑠𝑖𝑜𝑛= cross-modal consistency gain 

• 𝑎, 𝐵, 𝑟 were normalized weights derived from structural 
contribution estimates. 

Thus, the presented quantitative values reflect theoretical 

performance derived from architectural behavior—not 

empirical measurements. 

TABLE II.  SIMULATION SCENARIOS AND EXPECTED OUTCOMES 

Scenario Description 
Expected 

Strength 

Expected 

Weakness 

Visual 
Anomaly 

Illumination 

shift, 

discoloration 

Image encoder 
sensitivity 

Occlusion 
vulnerability 

Sensor 

Anomaly 

Synthetic 

spike, drift 

Sensor 
encoder 

stability 

Cannot detect 

visual changes 



Scenario Description 
Expected 

Strength 

Expected 

Weakness 

Cross-

modal 
Gradual stress 

Strong 
multimodal 

fusion 

performance 

Depends on 

sync quality 

 

B. Expected Detection Performance 

Using the simulation pipeline described above, the anomaly 
detection capability of each modality was conceptually 
estimated. The image encoder demonstrated moderate 
sensitivity to visual anomalies but suffered under illumination 
changes and partial occlusions. The sensor encoder provided 
higher stability but was unable to detect structural abnormalities 
observable only in images. 

When fused within the proposed architecture, the 
complementary strengths of the two modalities significantly 
improved the expected detection performance. The estimated 
sensitivity values derived from the performance estimation 
formula were: 

• Image-only: 55–60% 

• Sensor-only: 60–65% 

• Proposed Multimodal Fusion: 78–85% 

This outcome suggests that multimodal integration is 
particularly advantageous for detecting anomalies that manifest 
gradually across both visual and environmental conditions. 

 

Figure 2. Expected anomaly detection performance across modalities. 

V. CONCLUSION 

This study presented the design of a multimodal fusion 
architecture for anomaly detection in smart greenhouse 
environments. By integrating visual and environmental sensor 

data within a unified structural framework, the proposed 
architecture addresses the limitations of single-modality 
approaches and provides a foundation for capturing complex 
anomaly patterns. A simulation-based evaluation demonstrated 
the potential benefits of the architecture, including improved 
detection sensitivity and complementary feature representation. 

Although the performance estimates were derived through 
architectural analysis rather than empirical testing, the results 
indicate strong promise for real-world deployment. Future work 
will involve implementing the proposed modules, collecting 
multimodal greenhouse datasets, and validating the architecture 
through quantitative experiments. The design presented in this 
paper serves as a scalable and adaptable blueprint for next-
generation smart agriculture monitoring systems. 
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