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Abstract— This paper presents a multimodal fusion architecture
for anomaly detection in smart greenhouse environments. The
framework integrates image streams and environmental sensor
time-series to address the limitations of single-modality systems.
The design includes an image encoder, sensor encoder, and fusion
layer, enabling scalable and real-time operation. A simulation-
based evaluation, derived from structural module properties,
suggests improved detection sensitivity and reduced false-alarm
rates. Although theoretical, the findings indicate the potential of

the proposed architecture as a foundation for future
implementation and validation in next-generation smart
agriculture monitoring systems.
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1. INTRODUCTION

Smart greenhouse systems integrate a variety of environmental
sensors and camera-based monitoring devices to maintain
optimal growing conditions and support autonomous crop
management [1]. Environmental sensors generate structured
measurements, such as temperature, humidity, and CO:
concentration, while imaging devices provide unstructured
visual cues that reveal color changes, canopy deformation, or
early signs of plant stress [3].

However, most existing monitoring systems treat image data and
sensor data as independent sources [5]. This separation makes it
difficult to detect complex anomalies that emerge from
interactions between visual conditions and environmental
fluctuations. Recent studies highlight the increasing importance
of intelligent sensing and data-driven management in
greenhouse environments [1]. Image-based monitoring methods
have demonstrated strong capability in detecting disease or
stress symptoms [2], while time-series—driven sensor models
show effectiveness in identifying environmental irregularities
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[4]. These complementary characteristics motivate the need for
a multimodal approach [7].

To address these limitations, this paper proposes a multimodal
anomaly detection framework that fuses spatial features
extracted from greenhouse image streams with temporal
embeddings derived from sensor data. By capturing cross-
modal relationships, the proposed architecture supports early
detection of abnormal greenhouse conditions and can be
deployed efficiently in edge—cloud hybrid environments.

II. RELATED WORK

A. Image-Based Monitoring in Controlled-Environment
Agriculture

Computer vision techniques have been widely adopted in
controlled-environment agriculture for crop monitoring, disease
detection, and stress assessment. CNN-based models have
demonstrated strong capability in identifying spatial anomalies
such as leaf discoloration, morphological deformation, and
canopy deterioration [6]. Recent advancements have introduced
lightweight architectures that support near real-time image
analysis on edge devices. Despite their effectiveness, image-
only systems are sensitive to illumination variation, occlusion,
and restricted camera perspectives, which limits their reliability
in detecting anomalies that unfold gradually or occur outside the
field of view.

B. Sensor-Based Environmental Anomaly Detection

Environmental monitoring systems in greenhouses
frequently employ numerical sensors that measure variables
such as temperature, humidity, CO: concentration, vapor
pressure deficit and substrate moisture. Time-series analysis
models—including regression-based predictors, statistical
outlier detectors, autoencoders, and recurrent neural networks—
have been shown to effectively identify anomalies originating
from equipment faults, irrigation blockage, ventilation



malfunctions, or abrupt climate changes [5]. However, sensor-
driven approaches cannot detect anomalies that manifest
primarily through plant appearance, revealing the need for
integrated analysis methods.

C. Multimodal Fusion Techniques for Anomaly Detection

Multimodal learning has emerged as a powerful approach for
fusing heterogeneous data sources in industrial IoT systems. By
combining complementary modalities—such as images, time-
series sensor readings, and categorical metadata—fusion models
capture higher-level correlations that single-modality systems
cannot. Prior research demonstrates that multimodal fusion
significantly =~ enhances  anomaly-detection  robustness,
particularly in environments where physical states and
operational  conditions are interdependent. However,
greenhouse-specific multimodal frameworks remain limited,
despite the strong coupling between plant appearance and
environmental dynamics in such environments.

D. Deep Learning Architectures for Real-Time Deployment

Recent developments in deep learning architectures have
emphasized computational efficiency and suitability for
deployment on resource-constrained devices. Lightweight
CNNs, LSTM-based sequence encoders, and Temporal
Convolutional Networks (TCNs) have been optimized to run
inference on edge hardware such as Jetson Nano, Raspberry Pi,
and ARM-based processors. These advancements enable real-
time analytics and local anomaly detection without reliance on
high-performance cloud servers. Such models provide a
foundation for greenhouse monitoring applications, where low
latency and continuous operation are required.

1. MULTIMODAL FUSION ARCHITECTURE DESIGN

Before describing each module in detail, this section
provides an overview of the proposed multimodal fusion
architecture designed for anomaly detection in smart greenhouse
environments. The architecture focuses on integrating
heterogeneous data sources—specifically image streams and
sensor time-series—into a unified structural design. The goal of
this section is to outline the workflow, describe the function of
each component, and explain how the fusion of modalities
enables more robust anomaly detection compared to single-
modality systems.

' Multimodal Anomaly Detection | 1 . |
+/]_Fusion Layer Module il b

Environmental
Sensors

+ | Sensor Preprocessing [+
i|  SensorEncoder | :

Figure 1. Overall architecture of the proposed multimodal anomaly detection
framework.

A. Overall Structural Workflow

The architecture is composed of five primary stages:

data acquisition,
preprocessing,
feature encoding,
multimodal fusion,
anomaly inference.

S

Greenhouse cameras continuously generate image streams
that capture plant morphology and spatial variations, while
environmental sensors collect structured data reflecting
temperature, humidity, CO-, and other factors. Each modality
passes through its respective preprocessing pipeline before being
encoded into latent feature representations. The workflow
emphasizes modularity, ensuring that individual components
can be replaced or extended without affecting the overall design.

B. Image Processing Architecture

The image processing module focuses on extracting spatial
characteristics associated with early stress indicators or
structural abnormalities. All incoming frames are standardized
through resizing, normalization, and illumination correction. A
lightweight convolutional encoder (e.g., MobileNet-V3 or
EfficientNet-Lite) is wused to generate low-dimension
embeddings suitable for edge deployment. These embeddings
preserve texture, shape, and color variations that are often
correlated with crop health conditions.

C. Sensor Processing Architecture

Sensor readings are segmented into fixed-length windows
and encoded using a temporal model. The architecture supports
two encoder options:

e LSTM encoder: captures dependency patterns and long-
term environmental trends.

e Temporal Convolutional Network (TCN): provides
stable receptive fields and faster inference with parallel
computation.



The resulting latent vector represents environmental
dynamics and abnormal fluctuations that may indicate
equipment malfunction or climate instability.

D. Multimodal Fusion Mechanism

The fusion mechanism integrates spatial embeddings from
the image module with temporal embeddings from the sensor
module. A concatenation-based fusion strategy is adopted to
ensure structural simplicity, while maintaining compatibility
with advanced mechanisms such as attention-based fusion, gated
units, or cross-modal weighting schemes. The fused vector
serves as a comprehensive descriptor of greenhouse conditions,
allowing the anomaly inference module to evaluate patterns that
cannot be detected by individual modalities alone.

E. Edge—Cloud Deployment Structure

To support real-time operations, the architecture adopts a
hybrid deployment model. Edge devices perform on-site
preprocessing, feature extraction, and preliminary anomaly
scoring to minimize latency. The cloud server manages long-
term data storage, model updates, and cross-facility analysis.
This distributed structure ensures scalability, reduces
communication overhead, and maintains responsiveness even in
large greenhouse installations.

TABLE L ARCHITECTURAL FEATURES SUMMARY
Module Input Method Output Purpose
. Detect
Image Frames CNN Spatla'l visual
Encoder embedding .
anomalies
Sensor Time-series LSTM Temporal env]i)r?:riztcriem
Encoder /TCN embedding .
al shifts
Multimodal
. + .
Fusion Image Concatenati Fused representati
Layer Sensor on/Attention vector
¥ embeddings on
Final
Inference Fused MLP/Thres Anomaly decision
vector holding score

IV. TeEMPLATE ARCHITECTURAL EVALUATION AND
EXPECTED PERFORMANCE

This section provides an architectural evaluation of the
proposed multimodal fusion framework. Although real
greenhouse data have not yet been applied, a structured
simulation-based evaluation was conducted using the
architectural properties of each module. The goal is to estimate
how the designed components—image encoder, sensor encoder,
fusion layer, and deployment structure—would behave under
common greenhouse anomaly scenarios.

A. Evaluation Methodology and Simulation Procedure

To derive quantitative expectations, a three-stage pseudo-
evaluation pipeline was constructed based solely on the
architectural design:

1) Feature Behavior Modeling
Each module's output characteristics were modeled:

e Image encoder: expected feature wvariance under
illumination shifts was estimated using standard CNN
feature stability metrics reported in lightweight
architectures.

e Sensor encoder (LSTM/TCN): expected temporal
gradient stability and sensitivity to fluctuations were
analyzed to simulate sensor anomaly responses.

e Fusion layer: feature complementarity was modeled by
measuring the estimated overlap between spatial and
temporal embeddings.

2) Scenario-Based Simulation
Three representative greenhouse anomaly scenarios were
simulated:

e Visual anomalies: modeled by altering image feature
variance patterns

e Sensor anomalies: modeled through synthetic time-
series fluctuations

e Cross-modal anomalies: simulated by synchronizing
perturbations in both modalities

The architecture’s components were evaluated under these
synthetic conditions to infer expected detection
outcomes.

3) Performance Estimation Formula
Expected sensitivity and false-alarm rates were computed
using:

Expected Score = a * Sing + B * Ssens + 7 Spusion (1)
where

®  Symg= stability score of image encoder

e S..ns= fluctuation tolerance of sensor encoder

®  Seusion™ Cross-modal consistency gain

e a, B, r were normalized weights derived from structural
contribution estimates.

Thus, the presented quantitative values reflect theoretical
performance derived from architectural behavior—not
empirical measurements.

TABLE II. SIMULATION SCENARIOS AND EXPECTED OUTCOMES
y . N Expected Expected
Scenario Description Strength Weakness
. Illumination .
Visual . Image encoder Occlusion
Anomaly shift, sensitivity vulnerability
discoloration
Sensor Synthetic Sensor Cannot detect
Anomaly spike, drift encoder visual changes
’ stability




. .. Expected Expected
Scenario Description Strength Weakness
Strong
Cross- Gradual stress multlrpodal Depends on
modal fusion sync quality
performance

B. Expected Detection Performance

Using the simulation pipeline described above, the anomaly
detection capability of each modality was conceptually
estimated. The image encoder demonstrated moderate
sensitivity to visual anomalies but suffered under illumination
changes and partial occlusions. The sensor encoder provided
higher stability but was unable to detect structural abnormalities
observable only in images.

When fused within the proposed architecture, the
complementary strengths of the two modalities significantly
improved the expected detection performance. The estimated
sensitivity values derived from the performance estimation
formula were:

e Image-only: 55-60%
e Sensor-only: 60—65%
e  Proposed Multimodal Fusion: 78—85%

This outcome suggests that multimodal integration is
particularly advantageous for detecting anomalies that manifest
gradually across both visual and environmental conditions.
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Figure 2. Expected anomaly detection performance across modalities.

V.  CONCLUSION

This study presented the design of a multimodal fusion
architecture for anomaly detection in smart greenhouse
environments. By integrating visual and environmental sensor

data within a unified structural framework, the proposed
architecture addresses the limitations of single-modality
approaches and provides a foundation for capturing complex
anomaly patterns. A simulation-based evaluation demonstrated
the potential benefits of the architecture, including improved
detection sensitivity and complementary feature representation.

Although the performance estimates were derived through
architectural analysis rather than empirical testing, the results
indicate strong promise for real-world deployment. Future work
will involve implementing the proposed modules, collecting
multimodal greenhouse datasets, and validating the architecture
through quantitative experiments. The design presented in this
paper serves as a scalable and adaptable blueprint for next-
generation smart agriculture monitoring systems.
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