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Abstract—Depression remains a significant mental health issue
worldwide. One approach being explored to address this is using
deep learning to automate depression detection from social media
texts. Besides accuracy improvement, a primary challenge in this
research area is the vast number of parameters required for
deep learning, particularly in text classification tasks involving
multiple sentences. Moreover, the issue of over-parameterization
arises, resulting in prolonged training times and an increased risk
of overfitting. To address these limitations, this study proposes
TexTKAN, a modified Temporal Kolmogorov–Arnold Network
inspired by the parameter efficiency of Kolmogorov–Arnold
Networks. Experimental results indicate that TexTKAN achieves
an accuracy of 0.816 and an F1-score of 0.802 using GloVe
embeddings, outperforming conventional recurrent architectures,
including RNN, LSTM, GRU, and BiLSTM, while requiring
fewer trainable parameters. These results highlight that Tex-
TKAN provides an effective trade-off between predictive perfor-
mance and model efficiency, making it well-suited for resource-
constrained and real-world depression detection applications.
The findings further suggest that KAN-based architectures offer
a promising direction for efficient text classification beyond
depression detection.

Index Terms—depression detection, kolmogorov-arnold net-
work, temporal model, text classification

I. INTRODUCTION

One of the most urgent needs in healthcare is the early
identification and treatment of mental health issues, as un-
derscored by their inclusion in the Sustainable Development
Goals. Mental health disorders are the foremost drivers of
global disability and should be addressed as a central con-
cern in public health policy and practice [1], [2]. Mental
disorders comprise a variety of psychological health issues,
such as dementia, bipolar disorder, anxiety, schizophrenia,
and depression [3]. The World Health Organization (WHO)
characterizes depression as a highly prevalent global disorder
that substantially influences an individual’s mood and emo-
tional functioning [4]. A subtantial portion of the population
experiences this mental health disorder, manifesting in diverse
symptoms such as insomnia, loss of interest, and thoughts of
death [5], [6].

Furthermore, mental health issues are often overlooked
by individuals, remaining undiagnosed and untreated. This

neglect often results in tragic incidents of self-harm and
suicide [7]. Key factors contributing to the oversight of these
critical human behavior issues include insufficient awareness
and acceptance, the presence of social stigma, insensitivity,
indifference, and the high costs and time-consuming nature of
clinical diagnostic and treatment processes, such as extensive
questionnaires and multiple interviews [3], [8].

In recent years, numerous studies in artificial intelligence
have concentrated on developing methods for the automatic
and early detection of depression, enabling timely intervention.
Social media has emerged as a potential data source for early
depression detection [4]. The stigma surrounding depression
often discourages individuals from seeking professional help,
leading them to express their feelings, thoughts, and emotions
through social media instead [8]. Over the years, various
approaches have been devised to address depression detection
in social media, primarily focusing on extracting textual rep-
resentations, predominantly utilizing deep learning-based text
embedding [5]. Text data processing requires models that are
capable of handling sequential data knowledge. Accordingly,
deep learning architectures such as Recurrent Neural Networks
(RNNs), Gated Recurrent Units (GRUs), and Long Short-Term
Memory (LSTM) networks are among the most commonly
adopted approaches [4], [7].

Despite their success, deep neural architectures for text-
based depression detection suffer from two fundamental limi-
tations. First, state-of-the-art models often require a large num-
ber of trainable parameters, resulting in high computational
cost, increased memory consumption, and reduced feasibility
for deployment in resource-constrained environments. Second,
over-parameterization increases the risk of overfitting, particu-
larly in mental health datasets that are relatively small, noisy,
and imbalanced. These challenges motivate the exploration of
alternative neural architectures that can achieve competitive
performance with improved parameter efficiency and general-
ization.

Moreover, the issue of over-parameterization arises, result-
ing in prolonged training times and elevate the likelihood
of overfitting. Overfitting refers to a condition in which a



model captures noise and dataset-specific artifacts instead of
underlying general patterns, thereby degrading its predictive
performance on previously unseen data and restricting its
practical applicability. Addressing these challenges necessi-
tates the development of novel, efficient training approaches.
Such approaches could involve techniques for reducing the
number of parameters without compromising performance,
streamlining the training process, or strategies to enhance
the model’s generalization capabilities. By overcoming these
obstacles, it may be possible to create models that are both
effective and viable for deployment in real-world scenarios.

Cutting edge technology called Kolmogorov-Arnold Net-
works (KAN) is reviving machine learning research [9]. Mo-
tivated by kolmogorov-arnold representation theorem, KAN
provides an alternative to the Multi-Layer Perceptron (MLP),
which serves as the foundation for numerous deep learn-
ing models. Unlike MLP, KAN use activation functions on
node connections that can adapt and learn during training
showcasing classification accuracy and interpretability [9]. The
Temporal Kolmogorov Arnold Network (TKAN) model [10]
is a modification of KAN that incorporates gating mechanisms
from the LSTM [11] model. This adaptation enables TKAN
to handle sequential data enhancing its performance in time
series data forecasting by managing dependencies over time.

In this work, we propose TexTKAN, a modified Tem-
poral Kolmogorov-Arnold Network specifically designed for
depression detection from social media text. By adapting the
Temporal KAN framework to sequential word representations,
TexTKAN aims to capture temporal dependencies in text while
significantly reducing model complexity. In summary, this
work makes the following primary contributions:

• In previous research by [10], TKAN has been employed
exclusively for time series data forecasting. In this study,
we apply TKAN as a novel architecture for text clas-
sification in the context of depression detection. To the
best of our knowledge, this study is the first to explore
the concept of KANs for text classification, incorporating
modifications to the TKAN model.

• We introduce architectural modifications to the Temporal
KAN framework, including an embedding-aware input
structure and a SoftMax-based output layer, enabling
effective multiclass text classification.

• We empirically demonstrate that TexTKAN achieves
competitive performance with substantially fewer train-
able parameters compared to conventional recurrent neu-
ral architectures.

This paper is organized into five sections. Related research
is reviewed in Section II. Section III presents the proposed
model along with the experimental design used for evaluation.
Section IV reports the experimental results and provides a thor-
ough analysis and discussion. Finally, Section V concludes the
study and identifies potential avenues for future investigation.

II. RELATED WORK

Numerous studies have explored the automatic detection of
depression using artificial intelligence, with a notable shift

towards deep learning techniques over traditional machine
learning algorithms. Various models have employed deep
learning approaches to identify, predict, and categorize depres-
sion citeSLR. Recent advancements in AI research have led to
significant improvements in accuracy. Researchers frequently
utilize neural network-based deep learning methods, such as
LSTM, BiLSTM, and RNN, as standalone models or in hybrid
configurations to leverage their respective strengths [4].

Research by [12] evaluated the effectiveness of RNN and
LSTM models in identifying depressive comments on Twitter.
The LSTM model demonstrated superior performance com-
pared to the simple RNN. Additionally, an ensemble approach
incorporating multiple deep learning models, including BiL-
STM, has been proposed to enhance the accuracy of detecting
depressive states from social media posts. This method capi-
talizes on the strengths of various models to improve overall
performance, particularly in real-world scenarios where data
distribution may be imbalanced [13].

Research by [14] indicates that most research on depression
detection through data from social media employ either text-
based or person-descriptive feature extraction methodologies.
The text-based approach emphasizes analyzing the linguistic
properties of social media content, analyzing elements such as
words, n-grams, parts of speech, and other linguistic features
[14]. Common techniques for feature extraction and repre-
sentation are applied to the textual content in social media
datasets to generate input feature vectors. Neural embeddings
have emerged as the preferred choice due to their superior
performance compared to handcrafted features [7]. However,
these gains are often accompanied by a substantial increase
in parameter count and training complexity. More recently,
transformer-based models such as BERT have demonstrated
strong performance in depression detection tasks. Neverthe-
less, their deployment is constrained by high computational
cost and memory requirements, which limit applicability in
real-time or edge-based mental health monitoring systems.

In parallel, KANs represent an advanced neural architecture
derived from the Kolmogorov–Arnold representation (KAR)
theorem, distinguishing them from traditional neural networks
that are based on the universal approximation theorem [9]. Un-
like classical networks, which assign fixed activation functions
to neurons, KANs employ learnable activation functions on the
network edges. The Kolmogorov–Arnold theorem asserts that
arbitrary multivariate functions can be reconstructed using a
finite sum of continuous single-variable functions and additive
operations.

KANs mark a significant breakthrough in neural network
architecture by integrating the KAR theorem with B-splines,
resulting in a dynamic and robust model. The KAR theorem
offers a mechanism to decompose complex functions into
simpler components, a principle KANs utilize by imple-
menting learnable B-spline activation functions on each edge
between neurons. Experiments by [9] demonstrate that KANs
outperform MLPs in accuracy and interpretability. Notably,
significantly smaller KANs can match or even surpass the
performance of much larger MLPs in tasks such as data fitting



and addressing partial differential equations (PDEs).
The presence of KANs has inspired researchers to apply

them to various classification and prediction tasks to en-
hance deep learning performance, which traditionally relies on
MLPs. For instance, [10] developed Recurrent KAN (RKAN)
models to address sequential data problems. In subsequent
research, [10] developed TKAN, integrating the strengths of
LSTM and KAN. This innovative architecture tackles common
RNN challenges, such as long-term dependency, by incorpo-
rating layers of RKAN, thereby improving the network’s capa-
bility to process and retain both new and historical information
effectively. TKANs exhibit outstanding performance in multi-
step time series forecasting, delivering superior accuracy and
efficiency. By addressing the limitations of traditional models
in managing complex sequential patterns, the TKANs frame-
work shows great promise for advancing fields that depend on
accurate multi-step forecasting. This study bridges this gap by
extending the Temporal KAN framework to text classification,
positioning TexTKAN as a parameter-efficient alternative to
recurrent neural networks for depression detection.

III. MATERIAL AND METHOD

This section outlines the stages of depression detection
utilizing the TKAN model, as depicted in Fig. 1 . The proposed
model comprises two primary stages: text pre-processing and
classification process incorporating a modified TKAN layer,
which we have designated as Text Classification with Tempo-
ral Kolmogorov-Arnold Networks (TexTKAN).

Fig. 1. The Proposed Model Architecture Block

A. Datasets and Pre-processing

This research utilizes datasets sourced from the social media
platform Reddit. Specifically, the dataset employed is the
depression dataset published for the DepSign-LT-EDI@ACL-
2022 shared task [6], [15]. The dataset comprises two primary
attributes: a collection of sentences posted by a Reddit user
and labels indicating the user’s level of depression. The dataset
contains 16,632 entries, categorized as follows: 4,649 entries
labeled as ”not depression,” 10,494 as ”moderate depression,”
and 1,489 as ”severe depression”.

The initial step in detecting depression from social media
text involves text pre-processing. This stage plays a critical
role in refining raw textual data and converting it into a struc-
tured representation appropriate for machine learning models,
thereby improving classification accuracy and robustness. As
illustrated in Fig. 1, the pre-processing pipeline consists of the
following key operations:

• Lower Casing: All textual content is transformed into
lowercase to ensure uniform representation and prevent
case-sensitive discrepancies.

• Replacing URLs: Since URLs are highly variable and
typically do not convey meaningful semantic information
for depression detection, they are substituted with a
standardized token, .url..

• Replacing Emojis: Emojis are converted into correspond-
ing textual descriptions using regular expressions to pre-
serve the emotional information embedded in them.

• Removing Non-alphanumeric Characters: All characters
other than letters and digits, including punctuation marks,
special symbols, and redundant whitespace, are elimi-
nated.

• Converting Contractions: Contracted word forms (e.g.,
“don’t”) are expanded into their full expressions (e.g.,
“do not”) to improve linguistic consistency.

These pre-processing steps are crucial for improving the
quality and effectiveness of the subsequent text classification
models.

B. TexTKAN: Temporal KAN for Text Classification Task

TexTKAN is our proposed model that leverages the KAN
architecture [9] for text classification tasks. As depicted in Fig.
1, TexTKAN classifier model comprises three main layers: the
embedding layer, the TKAN layer, and the output layer. The
word embedding layer maps each word in the input sentence
to a dense vector representation. The embedding matrix E
is of size V × D, where V is the size of the vocabulary,
D represent the dimension of the word embeddings, and
each row represents the embedding of a word wd in the
vocabulary. Equation (1) show the input sentence X with
length T representation in embedding layer of our TexTKAN
model.

X = [wd1, wd2, . . . , wdT ] with wdi ∈ {1, 2, . . . , V }
(1)

These indices are then used to look up their corresponding
embedding vectors from the embedding matrix, transforming
the input words into dense vectors, denoted as Xembed =
E [X] ∈ RT×D.

Following the embedding layer, the TKAN layer processes
these dense vectors to capture temporal dependencies within
the sequence of words. The TKAN layer refines the KAN
architecture by integrating recurrent and gating mechanisms,
akin to those in LSTM layers [10]. The Kolmogorov-Arnold
representation theorem states that any multivariate continuous



function can be expressed as a sum of individual univariate
functions.

f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
(2)

where ϕq,p are univariate functions mapping each input vari-
able (xp), with ϕq,p : [0, 1] → R and ϕq : R → R.
Additionally, a single KAN layer is defined as

Φ = {ϕq,p}, p = 1, 2, · · · , nin, q = 1, 2, · · · , nout, (3)

where ϕq,p are parameterized functions of learnable parame-
ters.

Fig. 2. A Single Layer TKAN Block [10]

The recurrent mechanism is crucial for TKAN layers to
learn from sequences where the context and order of data
are significant. Fig. 2 illustrates the mechanism of a single
TKAN layer in processing input from the embedding layer.
This mechanism modifies each transformation function ϕl,j,i

in (2) to be time-dependent. We denote hl,i(t) as a memory
function that captures the history of node i in the l-th layer:

xl+1,j(t) =

nl∑
i=1

x̃l,j,i(t) =

nl∑
i=1

ϕl,j,i,t(xl,i(t), hl,i(t)),

j = 1, . . . , nl+1

(4)

The ”memory” step hl,i(t) is defined as a combination of
past hidden states, such as:

hl,i(t) = Whhhl,i(t− 1) +Whzxl,i(t) (5)

where W is a vector of weights that determine the impor-
tance of past values relative to the most recent input. In the
RKAN layer, the network now embeds memory management
at each layer:

KAN(x, t) = (ΦL−1,t ◦ ΦL−2,t ◦ · · · ◦ Φ1,t ◦ Φ0,t) (x, t) (6)

To facilitate memory retention, the TKAN layer is designed
by drawing inspiration from the gating mechanism of Long

Short-Term Memory (LSTM) networks. This layer employs
multiple internal vectors and gating units to control infor-
mation propagation over time. Specifically, the forget gate,
characterized by the activation vector ft,

ft = σ(Wfxt + Ufht−1 + bf ), (7)

regulates which components of the previous cell state should
be discarded. The input gate, defined by the activation vector
it,

it = σ(Wixt + Uiht−1 + bi), (8)

determines the extent to which new information is incorporated
into the cell state.

The output gate, represented by the activation vector ot,

ot = σ(KAN(x⃗, t)), (9)

controls the information exposed to the next layer based on
the output of KAN(x⃗, t) as defined in (6). The cell state ct is
updated according to

ct = ft ⊙ ct−1 + it ⊙ c̃t, (10)

where the candidate memory state is given by

c̃t = σ(Wcxt + Ucht−1 + bc).

All internal states are assumed to have a dimensionality of h.
The hidden state ht, which represents the output of the TKAN
unit at time step t, is computed as

ht = ot ⊙ tanh(ct). (11)

For multiclass depression level classification, the network is
augmented with a final prediction layer composed of a fully
connected layer followed by a SoftMax activation function.
Upon processing the complete input sequence, the hidden state
at the final time step, ht, is utilized as the discriminative
representation for classification.

C. Evaluation Setup
The evaluation of our proposed TexTKAN model’s perfor-

mance was carried out across three different testing scenarios.
The first scenario involved testing to determine the impact
of various word embedding methods on TexTKAN’s perfor-
mance. We employed several widely-used word embedding
methods for text vector representation, including Word2Vec
[16], FastText [17], and Global Vectors for Word Repre-
sentation (GloVe) [18]. The TexTKan model utilizes pre-
trained word embeddings to initialize the embedding layer
with the pre-trained vectors. The configuration details for each
embedding method are provided in Table I.

The second evaluation scenario involved a performance
comparison between the TexTKAN model and various com-
monly used deep learning models for text classification, par-
ticularly in the context of depression detection. In the last
scenario, we assessed the impact of the number of neurons
in the TKAN layer on the accuracy and the number of
trainable parameters in the detection model. This evaluation
was conducted to demonstrate that our proposed model can
achieve high accuracy with a relatively low number of train-
able parameters.



TABLE I
WORD EMBEDDING METHOD CONFIGURATION FOR TEXTKAN

Embedding
Method

Pre-trained Model Parameter
Setup

Word2Vec
[16]

Gensim twitter word2vec model,
word embeddings trained on 400
million microposts.

Embedding-
dimension: 200
Vocabulary-size:
15,000
Input-length: 300

FastText [17] The ‘cc.en.300.bin’ model is
trained on the Common Crawl
corpus, which is a massive dataset
collected from a wide range of
web sources.

GloVe [18] The Twitter word embeddings, re-
ferred to as ‘glove.twitter.27B.zip’,
consisting of 2 billion tweets,
which contain a total of 27 billion
tokens.

IV. RESULTS AND DISCUSSION

All experiments for training and evaluation of the TexTKAN
model were carried out on an NVIDIA A100 GPU with 40 GB
of memory. Table II reports the comparative performance of
TexTKAN under different word embedding strategies. Using
Word2Vec [16], the model achieves an F1 score of 0.782
and an accuracy of 0.794, reflecting a balanced yet moderate
classification capability. The adoption of FastText [17] yields a
slight performance gain, with the F1 score increasing to 0.788
and accuracy to 0.797. Among the evaluated embeddings,
GloVe [18] demonstrates the strongest performance, attaining
an F1 score of 0.802 and an accuracy of 0.816. This outcome
indicates that GloVe embeddings provide more discriminative
representations for the TexTKAN framework. GloVe leverages
both local context (word co-occurrences within a context win-
dow) and global statistical information (word co-occurrence
probabilities across the entire corpus). This dual approach
allows GloVe to capture a more comprehensive representation
of word relationships and meanings.

The subsequent testing results are detailed in Table III,
which compares the performance of the TexTKAN model with
various previously used deep learning models. In addition to
the depression detection performance metrics, as shown in
Table III, we also examined the number of trainable parameters
generated by each model. To ensure fairness, the comparisons
for all models were conducted using GloVe embeddings and
the hyperparameter configurations specified in Table I.

TABLE II
PERFORMANCE COMPARISON OF EMBEDDING METHODS ON

TEXTKAN MODEL

Method F1 Score Accuracy
Word2Vec [16] 0.782 0.794
FastText [17] 0.788 0.797
GloVe [18] 0.802 0.816

Table III shows that the TexTKAN model exhibits a well-
balanced performance across all metrics, demonstrating its
effectiveness and efficiency in depression detection compared
to other deep learning models. The TexTKAN model demon-
strates superior performance with the highest F1 score of

TABLE III
PERFORMANCE COMPARISON OF TEXTKAN WITH EXISTING DEEP

LEARNING MODELS FOR DEPRESSION DETECTION

Model Trainable Parameter F1 Score Accuracy
RNN 42,499 0.781 0.783
GRU 127,107 0.791 0.807
LSTM 168,835 0.796 0.808
BiLSTM 337,667 0.795 0.805
TexTKAN 127,586 0.802 0.816

0.802 and accuracy of 0.816, indicating its enhanced ability to
identify and classify instances of depression correctly. While
LSTM and GRU models also exhibit strong performance, with
F1 scores of 0.796 and 0.791, and accuracies of 0.808 and
0.807, respectively, TexTKAN still leads in these metrics.
Regarding the number of trainable parameters, TexTKAN
has 127,586 parameters, which is higher than RNN (42,499)
but lower than LSTM (168,835) and BiLSTM (337,667).
The proposed TexTKAN achieves its superior performance
with a relatively moderate number of trainable parameters,
highlighting its potential as a more reliable and efficient model
for depression detection task compared to other popular deep
learning approaches.

Based on the results in Table III, additional experiments
were conducted to analyze the scalability of TexTKAN with
respect to trainable parameters. The proposed TexTKAN
framework seeks to reduce parameter complexity while main-
taining competitive detection accuracy. Fig. 3 illustrates how
variations in the number of neurons affect the trainable param-
eter count and accuracy of TexTKAN, in comparison with the
LSTM model, which achieved the second-highest performance
in the previous evaluation.

Fig. 3. A Comparison Between The Accuracy and Trainable Parameters of
The LSTM and TexTKAN Models as the Number of Units Increases

As shown in Fig. 3, there is a notable difference in the
increase of trainable parameters between the TexTKAN and
LSTM models, with the gap widening as the number of
units increases. TexTKAN has significantly fewer trainable
parameters compared to LSTM for the same number of
units. Despite having fewer trainable parameters, TexTKAN
consistently achieves higher accuracy than LSTM across all
unit counts. For the TexTKAN model, with 16 units, there are
11,106 trainable parameters, yielding an accuracy of 80.56%.
As the units increase to 32, 64, and 128, the trainable param-



eters grow to 23,138, 51,810, and 127,586, respectively, with
corresponding accuracy improvements to 81.06%, 81.11%,
and 81.67%. With 256 units, the trainable parameters reach
352,866, and the accuracy remains high at 81.23%.

The experimental results demonstrate that TexTKAN con-
sistently outperforms conventional recurrent architectures
while maintaining a moderate number of trainable param-
eters. This improvement can be attributed to the adaptive
activation functions in the KAN framework, which enable
more expressive representations without increasing network
depth or width. Unlike LSTM-based models that rely on fixed
nonlinearities, TexTKAN dynamically learns transformation
functions on network edges, allowing more efficient encoding
of semantic and temporal patterns.

Importantly, the observed performance gains, although nu-
merically modest, are achieved with a significantly reduced
parameter footprint. In resource-constrained deployment sce-
narios, such as mobile mental health monitoring systems,
this trade-off is particularly valuable. The results therefore
highlight that TexTKAN’s novelty lies not only in accuracy
improvement, but in demonstrating that depression detection
models can be redesigned to be both effective and computa-
tionally efficient.

V. CONCLUSION

This study proposed TexTKAN, a modified Temporal Kol-
mogorov–Arnold Network architecture tailored for text-based
depression detection from social media data. The experimental
findings indicate that TexTKAN delivers competitive and
reliable performance across major evaluation metrics, notably
F1-score and accuracy, demonstrating its effectiveness for
depression detection. Using GloVe-based word embeddings,
TexTKAN attained an accuracy of 0.816 and an F1-score of
0.802, outperforming conventional recurrent neural network
architectures, including RNN, GRU, LSTM, and BiLSTM.
Beyond predictive performance, TexTKAN exhibits a favor-
able trade-off between accuracy and model complexity. These
findings indicate that KAN based architectures offer a promis-
ing alternative to traditional deep learning models for text
classification, particularly in applications where computational
efficiency and generalization are critical. Future work will
investigate the explainability potential of KAN-based models
to enhance interpretability in mental health applications. In
addition, further performance improvements will be explored
through architectural refinements and integration of TexTKAN
with transformer-based language representations, aiming to
combine parameter efficiency with richer contextual modeling.
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