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Abstract—This paper presents FIGUR (Face Image Generation
Using Robot), an interactive AI-enhanced robotic portrait system
that integrates Multimodal Large Language Models (MLLMs)
with collaborative robotics to generate personalized drawings
with expressive movements. Unlike conventional systems that
produce purely functional movements, FIGUR employs a pipeline
combining Mediapipe for face detection, morphological skele-
tonization algorithm and greedy nearest-neighbor heuristic, re-
sulting in positive user satisfaction feedback. The system employs
an Hanwha HCR-5 collaborative robot and implements expres-
sive movement primitives inspired by the ELEGNT framework
[1], including artistic flourish gestures. Real-time face detection
via MediaPipe Face Mesh with frontal-gaze scoring ensures
optimal input quality by selecting the top-ranked frames from 300
captured samples. Experimental results show an average drawing
completion time of 2.4 minutes with high line accuracy. User
feedback (N=32) indicates that theatrical flourish movements en-
hance user engagement and perceived robot creativity compared
to functional movements alone. The system also demonstrates
the ability to render distinct artistic styles while minimizing pen-
travel distance through trajectory optimization.

Keywords—Human-robot interaction, physical AI, expressive
robotics, collaborative robots, multimodal LLM

I. INTRODUCTION

The integration of artificial intelligence with collaborative
robotics has opened new possibilities for creative human-robot
interaction (HRI). While industrial robots excel at repetitive
precision tasks, their application in artistic and social contexts
remains limited by purely functional movement paradigms that
lack expressive qualities. Traditional robotic drawing systems
face two critical limitations: (1) edge-detection algorithms
produce noisy, fragmented lineart requiring extensive post-
processing, and (2) purely functional robot movements create
mechanical, uninspiring user experiences that fail to convey
artistic intention or engage users emotionally. This paper
addresses these challenges through FIGUR, a comprehensive
system that makes three primary contributions:

A. Theatrical Flourish Implementation

Drawing on principles from performing arts and the
ELEGNT framework from Apple for non-anthropomorphic
robot expressiveness, we implement post-drawing theatrical

flourish gestures—sweeping circular movements that mimic
a conductor’s final hand stroke or a stage performer’s presen-
tation bow. User studies demonstrate that these artistic flour-
ishes increase perceived robot creativity and user engagement
compared to purely functional movements.

B. Semantic Abstraction

The integration of Gemini-2.5-Flash to transform webcam
captures into single-stroke compatible line art, adhering to
specific stylistic constraints.

C. Topological Vectorization

A shift from boundary tracing to morphological skeletoniza-
tion, ensuring single-pixel width trajectories suitable for pen
plotters.

Fig. 1. FIGUR embodiment and workspace

II. RELATED WORK

A. Robotic Drawing and Creative Systems

Recent advances in robotic drawing systems have demon-
strated the potential for AI-enhanced creative robotics. FRIDA
(Framework and Robotics Initiative for Developing Arts),



developed at Carnegie Mellon University, pioneered the inte-
gration of large language models with robotic manipulation
for artistic creation [2]. FRIDA uses a collaborative robot
arm equipped with various artistic tools and employs vision-
language models to translate textual prompts into painting
actions. While FRIDA demonstrates impressive creative ca-
pabilities through iterative refinement and multi-modal feed-
back, it focuses primarily on abstract painting rather than
portrait drawing and does not address expressive movement
design. Scratch to Sketch introduced decoupled hierarchical
reinforcement learning approach for robotic sketching [3].
However, like FRIDA, it treats robot movement purely func-
tionally, optimizing for drawing accuracy without considering
the expressive or social dimensions of human-robot inter-
action. In addition to painting-oriented systems, prior work
has explored autonomous robotic portrait generation. Song
et al. proposed a multi-stage portrait drawing system that
integrates facial feature extraction with stroke-based rendering
[4]. While highly optimized for visual accuracy, their robot
motions remain purely functional without expressive elements.
Compared to these previous works, FIGUR makes two distinct
contributions: (1) integration of state-of-the-art MLLM for
line art generation, producing cleaner, more artistic outputs
than traditional edge detection or learned sketch generation;
and (2) explicit design for enhanced user experience through
expressive movements inspired by the ELEGNT framework,
treating the robot not merely as a drawing tool but as a
performing artist that communicates intentionality through
choreographed gestures.

B. Image Processing for Line Art Generation

Traditional approaches to lineart extraction rely on edge
detection algorithms including Canny, Sobel, and Laplacian
operators. While computationally efficient, these methods
struggle with noise sensitivity, parameter tuning requirements,
and inability to distinguish foreground from background el-
ements. Recent work has explored deep learning approaches
including U-Net architectures for sketch synthesis, but most
require extensive training datasets specific to portrait sketch-
ing. Stable Diffusion, based on latent diffusion models (LDMs)
[5], enables high-fidelity image-to-image generation through a
compressed latent space representation. The ControlNet archi-
tecture introduced conditional control for diffusion models[6],
enabling precise image-to-image translation tasks. ControlNet-
Lineart, specifically pretrained for line drawing extraction,
provides robust performance across diverse input conditions
without requiring task-specific fine-tuning. Our work applied
this architecture to robotic drawing systems, demonstrating
practical advantages for collaborative robot applications.

C. Expressive Movement in Robotics and Performing Arts

The ELEGNT framework [1] introduced a dual-utility
model for robot movement design, combining functional ob-
jectives (task completion, efficiency) with expressive objec-
tives (intention, attention, emotion). The framework proposes
a Markov Decision Process (MDP) formulation where the total

utility U combines functional utility Uf and expressive utility
Ue:

U = Uf + γ · Ue (1)

where γ controls the balance between functional and ex-
pressive components. User studies demonstrated that expres-
sive movements (γ > 0) significantly enhance engagement,
particularly in social-oriented tasks, while maintaining task
completion quality. However, ELEGNT introduced lamp-like
robots with continuous presence as a prototype and did not
address single-interaction creative tasks like portrait drawing.
Beyond robotics, the concept of expressive gestures has deep
roots in performing arts. The flourish—a decorative, exag-
gerated gesture used to draw audience attention or grace-
fully conclude a performance—appears across disciplines:
orchestral conductors’ final hand sweeps that signal musical
completion while conveying interpretive emotion [7], stage
magicians’ presentation gestures (the ”ta-da!” reveal) that
transform functional object display into theatrical moments
[8], and dancers’ curtain call bows that acknowledge applause
while expressing gratitude. These theatrical movements serve
dual purposes: functional completion (signaling the end) and
expressive communication (conveying pride, satisfaction, invi-
tation to applaud). This connection between functional com-
pletion and expressive communication is well established in
performing arts literature, where gestures serve both semantic
and aesthetic purposes [7]–[9]. Such insights directly inform
our design of the robotic flourish gesture as a performative act
rather than a mechanical transition. Prior HRI studies demon-
strate that subtle variations in robot body, head, or arm motion
significantly influence user perception of communicative intent
and affect [10], [11]. These findings motivate our use of
expressive gestures not merely as aesthetic embellishment but
as meaningful communicative cues within the interaction. Our
work translates this performing arts principle into collaborative
robotics by extending the ELEGNT framework to discrete
creative interactions. This enables non-anthropomorphic robots
to convey artistic intentionality through purposeful flourishes.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Fig. 2. FIGUR portrait generation pipeline

Figure 2 illustrates the complete FIGUR system pipeline,
consisting of five integrated modules: (1) intelligent acqui-
sition, (2) generative stylization, (3) vectorization and path
optimization, (4) robot coordinate transformation, and (5)
expressive drawing execution with theatrical flourish gestures.



A. Intelligent Acquisition

Unlike conventional webcam capture that relies on manual
user positioning, FIGUR implements an automated frontal-
gaze detection system using MediaPipe Face Mesh. The
system captures 300 frames over a 5-second interval while
continuously computing a frontal-gaze score F for each frame:

F =
(
1−|dx,eyes|

)
·
(
1−|dy,eyes|

)
·
(
1−|θhead|

)
·Ssymmetry (2)

where dx,eyes and dy,eyes measure horizontal and vertical eye-
alignment deviations from center, θhead represents head rota-
tion from frontal orientation, and Ssymmetry quantifies bilateral
facial-landmark symmetry. The system automatically selects
the top-3 highest-scoring frames for subsequent processing,
ensuring optimal input quality regardless of user experience
level.

B. MLLM-Driven Stylization

FIGUR incorporates Google Gemini-2.5-flash to perform
image-to-image translation. Unlike pixel-level filters, the
MLLM interprets the semantic content of the input. We utilize
prompt engineering to enforce strict rendering constraints:
”pure black line-art,” ”white background,” and ”absence of
shading.” The system accepts user-defined style parameters
(e.g., ’Ghibli’, ’Webtoon’) via the interface, modulating the
prompt to alter the character design and line simplification
level while preserving the subject’s identity.

C. Vectorization and Path Optimization

Generated lineart images must be converted to vector paths
suitable for robot pen control. We implement a two-stage
pipeline integrating morphological skeletonization with greedy
path optimization to ensure both aesthetic fidelity and kine-
matic efficiency.

1) Stage 1: Morphological Vectorization Pipeline: Tra-
ditional contour tracing algorithms (e.g., Potrace) typically
extract the boundaries of a stroke, resulting in double-line
artifacts that are unsuitable for thin-pen plotting. To resolve
this, we employ the Zhang-Suen thinning algorithm [12]
to extract the topological medial axis of the line art. The
pipeline proceeds as follows: (1) The raster image undergoes
Otsu’s thresholding and morphological closing to repair minor
discontinuities. (2) The binary foreground is skeletonized to a
single-pixel width, preserving the structural connectivity of the
subject. (3) Connected components are converted into vector
polylines using chain approximation. To mitigate robotic jitter
caused by excessive control points, we apply the Douglas-
Peucker algorithm to approximate the curves, retaining essen-
tial geometric features while reducing data density.

2) Stage 2: Greedy Trajectory Optimization: The raw vec-
tor extraction yields N unordered strokes. Naı̈ve sequential
execution results in excessive non-drawing (pen-up) travel time
and erratic manipulator movements. We formulate the path
planning as a variant of the Traveling Salesperson Problem
(TSP) and implement a greedy nearest-neighbor heuristic. Let
Pcurr be the current position of the end-effector. The algorithm

iteratively selects the next unvisited stroke Si that minimizes
the transition distance from Pcurr to either the start (P i

start)
or end (P i

end) point of Si. Crucially, the algorithm permits
bidirectional traversal; if the endpoint is closer, the stroke
vector is reversed. This optimization reduces the total air-time
travel distance, directly contributing to the 2.4-minute average
completion time.

D. Robot Coordinate Transformation

Vector paths defined in normalized image coordinates
[0, 1]× [0, 1] must be transformed to the HCR-5 robot’s base
frame through a multi-stage transformation pipeline. First,
we map normalized coordinates to physical paper dimensions
while preserving aspect ratio and applying margins. Then, the
paper origin Opaper = (x0, y0, z0) is defined in robot base
coordinates, with paper orientation θ relative to the robot X-
axis. For each paper point (xp, yp), the robot coordinates are
computed via a rotation transformation.

Each stroke generates a waypoint sequence: (1) move to
stroke start with pen up (z = ztravel), (2) lower pen (z =
zdraw), (3) traverse stroke points with pen down, (4) raise
pen. Waypoints are serialized to JSON format with x, y, z, pen
attributes for XML-RPC transmission to the robot controller.

E. Expressive Drawing Execution with Theatrical Flourish

Upon completion of the drawing, FIGUR performs an
expressive presentation gesture inspired by performing arts
traditions, rather than immediately retracting to home position
(purely functional, Ue = 0). The robot executes a sweeping
circular flourish that mimics the graceful hand movement of
an artist stepping back to present their completed work. This
choreographed gesture consists of three integrated phases:

1) Elevation Phase: Move to position above drawing center
Pcenter = (xc, yc, zobserve) at observation height zobserve =
zdraw + 50mm, with the pen-holding end-effector oriented
toward the portrait. This establishes a ”viewpoint” for admiring
the completed work.

2) Circular Flourish Sweep: Execute a smooth, sweeping
circular gesture in the XY-plane with radius r = 100mm,
parameterized as:

x(t) = xc + r · cos(2πt), y(t) = yc + r · sin(2πt), t ∈ [0, 1]

The circular path is discretized into 20 uniformly distributed
waypoints to ensure fluid motion. Velocity is reduced to
60% of the drawing speed (vexpress = 90mm/s vs. vdraw =
150mm/s), creating a deliberately theatrical pace that signals
presentation.

3) Graceful Retreat with Vertical Ascent: During the circu-
lar sweep, the robot gradually elevates in the Z-axis: z(t) =
zobserve+(zhome−zobserve)·t This creates a three-dimensional
spiral trajectory, evoking a performer’s courtly bow or a
conductor’s final flourish through combined XY-circular and
Z-linear motion.

This gesture embodies expressive utility Ue > 0 in the
ELEGNT framework, with velocity scaling that embodies the
expressive utility parameter γ = 0.6. The circular path and



reduced speed convey organic intentionality, transforming the
robot from a task executor to a collaborative artist. Post-study
interviews (N=32) revealed that participants perceived the tran-
sition as shifting from ”finishing the artwork” (functional) to
”presenting the result with pride” (expressive), validating the
design’s impact on user engagement and perceived creativity.

IV. EXPERIMENTAL RESULTS AND EVALUATION

We conducted comprehensive experiments to evaluate
FIGUR’s performance across three dimensions: (1) lineart
generation quality, (2) vectorization and drawing accuracy, and
(3) theatrical flourish impact on user experience.

A. Lineart Generation Quality Comparison

We evaluated the performance of our proposed Gemini-2.5-
flash based pipeline against two baseline methods: (1) Canny
Edge Detection[13] (traditional gradient-based method) and
(2) DexiNed (Deep Learning-based Dense Extreme Inception
Network for Edge Detection)[14]. The dataset consisted of
50 frontal face portraits captured via our acquisition system
under varying lighting conditions. We assessed quality using
three metrics: Line Continuity (percentage of stroke segments
> 10px without fragmentation), Noise Ratio (ratio of isolated
artifact pixels to structural edge pixels), and Semantic Coher-
ence (qualitative assessment of facial feature preservation).

TABLE I
COMPARISON OF LINE ART VECTORIZATION METHODS

Method Line Continuity (↑) Noise Ratio (↓) Semantic Coherence
Canny + Otsu 62.4% 18.5% Low
DexiNed 78.1% 8.2% Medium
Proposed (Gemini 2.5) 94.3% 1.2% High

As shown in Table I, our MLLM-driven approach sig-
nificantly outperforms pixel-level baselines. While DexiNed
captures detailed edges, it often produces excessive texture
noise unsuitable for single-stroke robotic drawing. In contrast,
the Gemini-2.5-flash pipeline achieves a 94.3% line continu-
ity, demonstrating superior capability in abstracting semantic
features into clean, continuous vectors. This reduction in frag-
mentation is critical for minimizing robotic pen-lift frequency.

B. Vectorization and Drawing Performance

We evaluated the efficiency of our Morphological Skele-
tonization and Greedy Optimization pipeline compared to a
naive contour-following baseline. Metrics included Pen Travel
Distance (non-drawing movement in air) and Total Drawing
Time. The naive approach, which processes contours in the
raw order of extraction, resulted in excessive cross-canvas
transitions. Our proposed method, which employs skeletoniza-
tion for centerline extraction combined with a greedy nearest-
neighbor heuristic, achieved a 31% reduction in pen travel
distance. This optimization directly translates to a reduced
average completion time (2.4 minutes vs. 3.1 minutes for
the baseline). Furthermore, the skeletonization process ensures
consistent single-pixel stroke widths, improving the aesthetic
quality of the physical output compared to variable-width
contour filling.

C. Theatrical Flourish Impact: User Study

Qualitative Feedback:
Participants provided open-ended comments that explicitly

referenced performing arts metaphors:
• “The sweeping flourish—like a magician’s ‘ta-da!’ ges-

ture—made it feel like the robot was proudly presenting
its creation, not just finishing a task.” (P18)

• “That elegant hand movement at the end, like a conductor
finishing a symphony, completely changed how I saw the
robot—from a machine to an artist.” (P24)

• “Without the flourish, it just felt mechanical. The circular
gesture with that slower pace made me actually want to
applaud, like at the end of a performance.” (P7)

• “The way it stepped back and presented the drawing
reminded me of an artist unveiling a painting at a
gallery—there was pride and intentionality in that move-
ment.” (P31)

These comments validate our design intent to translate
performing arts gesture vocabulary into robotic movement,
demonstrating that users readily interpret the theatrical flourish
through familiar cultural references (conductors, magicians,
gallery unveilings).

V. CONCLUSION

This paper presented FIGUR, an autonomous system that
bridges the gap between semantic image understanding and
physical robotic rendering. By integrating MLLM for stylistic
abstraction and employing rigorous morphological processing
and path optimization, FIGUR achieves a high level of artistic
fidelity and mechanical efficiency. Future work will investigate
the integration of closed-loop visual feedback, enabling the
robot to self-correct drawing deviations in real-time.
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