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Abstract— Low-resolution imagery frequently occurs in smart 

farm environments due to low-cost cameras, varying illumination, 

and shooting distance constraints, resulting in degraded 

performance of AI-based plant disease diagnosis. To address this 

issue, this study investigates the effectiveness of super-resolution 

(SR) techniques for improving disease classification accuracy. 

Tomato leaf disease images from the AI-Hub dataset were 

downsampled to 64x64 to simulate realistic field degradation and 

subsequently restored using three upscaling methods: Bicubic 

interpolation, SRCNN, and EDSR. The restored images were then 

evaluated using a consistent EfficientNet-B0 classifier to isolate the 

impact of each SR technique. Experimental results demonstrate 

that upscaling quality has a substantial influence on classification 

performance. Bicubic recorded the lowest accuracy (0.78) and F1-

score (0.75), while SRCNN showed moderate improvement 

(accuracy 0.84, F1-score 0.82). EDSR achieved the highest 

performance across all metrics, with an accuracy of 0.89 and an 

F1-score of 0.88, confirming its superior ability to recover fine 

disease-specific structures such as lesion boundaries and 

morphological patterns. These findings highlight that SR-based 

image enhancement can serve as an effective and practical 

approach for agricultural AI systems, particularly under field 

conditions where high-quality imaging is difficult to obtain. Future 

work will extend this comparison to advanced SR models and 

evaluate robustness under various real-world environmental 

conditions. 
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I.  INTRODUCTION 

As environmental instability intensifies due to recent climate 
change, agricultural production systems are becoming 
increasingly vulnerable to various risk factors [1]. Abnormal 
weather patterns such as extreme heat, high humidity, 
heatwaves, and frequent rainfall have significantly increased the 
occurrence of plant diseases even inside controlled greenhouse 
environments, threatening the stability of crop growth [2]. 
Consequently, the demand for AI-based analysis techniques 
capable of rapidly and accurately diagnosing plant diseases has 
grown substantially. 

The performance of AI models depends not only on having 
a sufficient quantity of training data but also on the quality of the 
images used for training and inference. However, in real 
agricultural settings, low-resolution crop images are frequently 
captured due to the use of low-cost cameras, unstable lighting 
conditions, and limitations in shooting distance. Such low-
quality images often fail to capture subtle morphological 
characteristics of disease symptoms, leading to degraded 
performance in AI-based diagnostic systems. Therefore, 
techniques that compensate for limited resolution and enhance 
image quality have become increasingly important. 

Super-resolution (SR) technology, which reconstructs high-
resolution images from low-resolution inputs, has shown 
significant performance improvements across diverse domains, 
including medical imaging, satellite imagery, and surveillance. 
Despite these advances, research applying and systematically 
comparing multiple SR techniques within the agricultural 
domain remains limited. In particular, few studies have directly 
applied various upscaling algorithms to crop disease images and 
quantitatively evaluated their impact on classification 
performance. 

To address this gap, this study applies several upscaling 
techniques to tomato leaf disease images and compares how 
each technique influences downstream disease classification 
accuracy. High-resolution images were first down sampled to 
create low-resolution inputs, after which multiple SR algorithms 
were applied to generate restored images. A consistent 
classification model was then used to evaluate the extent to 
which each upscaling method contributes to improving 
diagnostic performance. 

The remainder of this paper is organized as follows. Chapter 
2 reviews the related studies referenced in this work. Chapter 3 
describes the research methodology. Chapter 4 presents the 
experimental results and analysis. Finally, Chapter 5 provides 
the conclusions. 

II. RELATED WORK 

This section reviews existing research related to super-
resolution (SR) technology. SR technology has been actively 
researched across various fields to restore low-resolution images 



to high resolution, and recent attempts to utilize it in the 
agricultural sector have also been reported. 

A. Super-Resolution of Plant Disease Images 

Kyosuke Yamamoto et al. applied super-resolution 
techniques to crop disease images, restoring detailed lesion 
features from low-resolution images and evaluating disease 
classification performance. They demonstrated that 
classification accuracy significantly improved when SR was 
applied compared to low-resolution images [3]. 

B. Improves Object Detection in Plant Images 

Tianyou Jiang et al. constructed the PlantSR dataset and 
analyzed the impact of super-resolution (SR) on plant image 
object detection tasks (such as counting apples). 

They demonstrated that SR is effective not only for 
classification but also for improving the performance of object 
detection models[4]. 

C. Research on the Application of an SR Agricultural Image 

Detection Model 

Hyeonggyeong Kim et al. conducted a study comparing the 
performance of YOLOv5-based crop disease and pest diagnosis 
after 4x super-resolution using Bicubic, SRCNN, and SRGAN. 
The results showed that SRGAN achieved the best improvement 
in recall [5]. 

D. Plant Disease Detection Using SR Deep Learning 

Ahsan ul Haq and Sukhjinder Kaur conducted research on 
deep learning classification after super-resolution (SR), aiming 
to enhance classification efficiency by using SR as a 
preprocessing step. They integrated the SR and classification 
pipelines into a structure that included transfer learning [6]. 

III. METHODOLOGY 

This section describes the methodology for conducting the 
research, explaining the dataset structure and upscaling 
techniques, as well as the classification model configuration and 
evaluation metrics. 

A. Dataset Composition 

This study utilized the AI-Hub tomato disease image dataset, 
which contains multiple disease categories including gray mold 
and leaf blight. All original images were resized to 256x256 and 
normalized. To simulate low-resolution field conditions (low-
cost cameras, distant shooting, and variable lighting), images 
were downsampled to 64x64, then used as input for super-
resolution experiments. 

Since the original images varied in resolution and shooting 
conditions, all images were resized to 256x256 and underwent a 
normalization process to ensure consistency in the experiments. 
Subsequently, to evaluate the performance of super-resolution 
techniques, the original images were down sampled to 64x64 to 
create low-resolution versions. This artificially recreated the 
resolution degradation scenarios encountered in actual smart 
farm environments due to low-cost cameras, long-distance 
shooting, and poor lighting conditions. 

TABLE I.  DATA PREPROCESSING 

Step Description 

Resolution 
Adjustment 

Resize the original image to 256x256 pixels 

Normalization Pixel values in the range 0 to 1 

Downsampling 256x256 -> 64x64 

Low-Resolution 

Simulation 
Models field conditions with degraded resolution. 

B. Upscaling Technique 

This study applied three super-resolution techniques to 
restore tomato disease images downsampled to low resolution 
(64x64) back to their original size (256x256). Each technique 
differs in its restoration method and model complexity. By 
comparing these techniques, we aimed to identify the most 
suitable method for improving disease classification 
performance. 

• The first is Bicubic interpolation, one of the traditional 
image upscaling methods. It calculates new pixel values 
based on surrounding pixel values and has the advantage 
of requiring no training process, but its ability to restore 
fine texture details is limited. In this study, Bicubic was 
used as the baseline comparison standard. 

• The second is SRCNN (Super-Resolution 
Convolutional Neural Network), an early deep learning-
based super-resolution model proposed by Chao Dong 
et al. (2016) [7]. SRCNN directly learns high-resolution 
features from low-resolution inputs through 
convolutional neural networks, enabling clearer 
representation of fine details during the restoration 
process. SRCNN training is performed by minimizing 
the following MSE-based reconstruction loss function. 
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• The third is EDSR (Enhanced Deep Super-Resolution 
Network), a high-performance SR model based on a 

 

Figure 1.  Example of Data Set Normalization 



residual block architecture proposed by Bee Lim et al. 
(2017) [8]. It is known to improve reconstruction quality 
by eliminating unnecessary regularization processes 
used in existing SR networks and designing a deeper 
network architecture. EDSR is trained using the 
following L1 reconstruction loss. 
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All three models applied x4 magnification to restore low-
resolution images to a size of 256x256 pixels. The restored 
images were then used for evaluating disease diagnosis 
performance through the same classification model and were 
utilized to analyze performance differences between techniques. 

C. Classification Model Configuration 

To evaluate the impact of upscaled images on disease 
classification performance, the restored images were input into 
the same classification model for performance comparison. 
Since this study aims to analyze differences between upscaling 
techniques, the classification model was designed using a 
lightweight image classification network rather than a complex 
structure, ensuring that upscaling quality directly reflects model 
performance. 

The classification model employed the base architecture of 
EfficientNet-B0, but was initialized without using pre-trained 
weights to align with the objectives of this study. This approach 
was taken to more clearly evaluate how upscaling techniques 
affect the restoration of texture, boundaries, and lesion patterns 
in the input images. 

To ensure that variables other than the upscaling technique 
did not affect performance, the following single fixed settings 
were applied. 

TABLE II.  DATA PREPROCESSING 

Item Contents 

Classification 

Model Structure 

EfficientNet-B0 (without pre-trained weights, 

trained from scratch) 

Optimizer SGD (including Momentum) 

Learning Rate 0.01 

Batch Size 16 

Epoch 20 

Loss Function Softmax-based Multiclass Classification Loss 

Data 
Partitioning 

Method 

Maintain a fixed Train/Validation/Test split 

 

Data splitting was maintained consistently across all 
experiments, with a fixed Train/Validation/Test configuration to 
ensure a fair comparison of classification performance among 
upscaling techniques. Furthermore, the model architecture and 
all training conditions were kept identical, controlling the 
experiments so that the upscaling process alone became the sole 
factor influencing classification results. 

D. Evaluation Metrics 

The following metrics were used to evaluate the image 
restoration performance and classification performance of the 
upscaling technique. 

TABLE III.  IMAGE RESTORATION AND CLASSIFICATION PERFORMANCE 

METRICS 

Purpose Usage Metrics 

Image 
Restoration 

Metrics 

PSNR (Peak Signal-to-Noise Ratio) 

SSIM (Structural Similarity Index Measure) 

Classification 
Performance 

Metrics 

Accuracy 

F1-score 

Quantitatively compare the high-resolution restoration 
quality of Bicubic, SRCNN, and EDSR, and measure how much 
the performance of the disease classification model improves 
when each technique is applied. 

IV. RESULTS AND DISCUSSION 

This chapter derives experimental results under conditions 
established through the experimental environment and analyzes 
those results. 

A. Classification Performance Comparison 

The images restored using each upscaling technique were 
input into the EfficientNet-B0 classification model under 
identical conditions to evaluate their performance. The 
evaluation metrics used for comparison were Accuracy, 
Precision, Recall, and F1-score. 

TABLE IV.  CLASSIFICATION PERFORMANCE COMPARISON METRICS 

Upscaling 

Method 
Accuracy Precision Recall F1-Score 

Bicubic 0.78 0.76 0.74 0.75 

SRCNN 0.84 0.83 0.81 0.82 

EDSR 0.89 0.88 0.87 0.88 

 

As shown in the performance table and bar graph, the 
Bicubic method demonstrated the lowest performance among 
the four techniques. Accuracy was 0.78 and F1-score was 0.75, 
which stems from its inability to sufficiently restore important 

 

Figure 2.  Performance Comparison Graph by Technique 



visual features such as lesion boundaries or patterns in low-
resolution images. 

SRCNN demonstrated improved performance compared to 
Bicubic, achieving an Accuracy of 0.84 and an F1-score of 0.82. 
This indicates that SRCNN effectively restores intermediate-
level textures in low-resolution images; however, performance 
gains were limited for some disease classes due to insufficient 
reflection of fine-scale structures. 

Among the three techniques, EDSR demonstrated the 
highest performance, achieving an Accuracy of 0.89 and an F1-
score of 0.88. Improvements were also observed consistently in 
Precision and Recall. This is because EDSR more accurately 
restored high-frequency information, clearly reproducing fine 
structures such as leaf vein boundaries, spot shapes, and disease 
symptom patterns. This improvement in restoration quality 
contributed to the classification model learning morphological 
differences between disease symptoms more accurately. 

Overall, the experimental results demonstrate that disease 
classification accuracy improves significantly as upscaling 
quality increases. Among the three techniques, EDSR provided 
the most effective performance enhancement. 

B. Upscaling Effect Analysis 

Overall, performance differences among upscaling 
techniques were closely related to the restored images' ability to 
express fine details. 

• Bicubic only preserved low-frequency information, 
limiting its ability to distinguish disease symptom 
shapes. 

• SRCNN could restore basic structures but failed to 
sufficiently generate complex textures. 

• EDSR effectively restored high-frequency details 
through its deep residual block structure, enabling the 
classification model to more accurately recognize 
symptom boundaries, spot structures, and color 
changes. 

Deep learning-based super-resolution techniques hold 
significant potential as a practical solution to address the 
characteristics of agricultural data, which often relies on low-
resolution images captured in field environments. This approach 
is expected to offer substantial utility in resolving the issue of 
limited data quality within the agricultural sector. 

V. CONCLUSION 

This study quantitatively evaluated the impact of three super-
resolution techniques—Bicubic, SRCNN, and EDSR—on 
tomato leaf spot classification performance under identical 
conditions. Experimental results showed that Bicubic exhibited 
the lowest performance with an accuracy of 0.78 and an F1 score 
of 0.75. SRCNN demonstrated moderate improvement with an 
accuracy of 0.84 and an F1 score of 0.82. In contrast, EDSR 
achieved the highest performance across all metrics: accuracy 
0.89, precision 0.88, recall 0.87, and F1 score 0.88. This 
experimentally demonstrates that EDSR more precisely restores 
the fine structure, boundaries, and high-frequency information 

of lesions, enabling the classification model to learn 
morphological differences between diseases more clearly. 

Furthermore, these results suggest that super-resolution-
based preprocessing techniques can substantially improve 
classification model performance even when low-resolution 
images are collected due to field photography constraints. This 
demonstrates the practical value of super-resolution technology 
as a cost-effective data quality enhancement strategy capable of 
compensating for problems frequently encountered in 
agricultural environments, such as uneven lighting, long-
distance photography, and image degradation caused by low-
cost sensors. Future research plans to expand the comparison 
scope to include more advanced generative super-resolution 
models such as SRGAN, ESRGAN, and SwinIR. We also intend 
to validate the models' generalization performance using real 
farm data featuring diverse resolution, lighting, and noise 
conditions. Furthermore, we aim to analyze the correlation 
between restoration quality metrics like PSNR and SSIM and 
classification accuracy to derive the most efficient super-
resolution application strategy for agricultural image processing. 
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