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Abstract— Low-resolution imagery frequently occurs in smart
farm environments due to low-cost cameras, varying illumination,
and shooting distance constraints, resulting in degraded
performance of Al-based plant disease diagnosis. To address this
issue, this study investigates the effectiveness of super-resolution
(SR) techniques for improving disease classification accuracy.
Tomato leaf disease images from the AI-Hub dataset were
downsampled to 64x64 to simulate realistic field degradation and
subsequently restored using three upscaling methods: Bicubic
interpolation, SRCNN, and EDSR. The restored images were then
evaluated using a consistent EfficientNet-B0 classifier to isolate the
impact of each SR technique. Experimental results demonstrate
that upscaling quality has a substantial influence on classification
performance. Bicubic recorded the lowest accuracy (0.78) and F1-
score (0.75), while SRCNN showed moderate improvement
(accuracy 0.84, Fl-score 0.82). EDSR achieved the highest
performance across all metrics, with an accuracy of 0.89 and an
F1-score of 0.88, confirming its superior ability to recover fine
disease-specific structures such as lesion boundaries and
morphological patterns. These findings highlight that SR-based
image enhancement can serve as an effective and practical
approach for agricultural Al systems, particularly under field
conditions where high-quality imaging is difficult to obtain. Future
work will extend this comparison to advanced SR models and
evaluate robustness under various real-world environmental
conditions.
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I. INTRODUCTION

As environmental instability intensifies due to recent climate
change, agricultural production systems are becoming
increasingly vulnerable to various risk factors [1]. Abnormal
weather patterns such as extreme heat, high humidity,
heatwaves, and frequent rainfall have significantly increased the
occurrence of plant diseases even inside controlled greenhouse
environments, threatening the stability of crop growth [2].
Consequently, the demand for Al-based analysis techniques
capable of rapidly and accurately diagnosing plant diseases has
grown substantially.
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The performance of Al models depends not only on having
a sufficient quantity of training data but also on the quality of the
images used for training and inference. However, in real
agricultural settings, low-resolution crop images are frequently
captured due to the use of low-cost cameras, unstable lighting
conditions, and limitations in shooting distance. Such low-
quality images often fail to capture subtle morphological
characteristics of disease symptoms, leading to degraded
performance in Al-based diagnostic systems. Therefore,
techniques that compensate for limited resolution and enhance
image quality have become increasingly important.

Super-resolution (SR) technology, which reconstructs high-
resolution images from low-resolution inputs, has shown
significant performance improvements across diverse domains,
including medical imaging, satellite imagery, and surveillance.
Despite these advances, research applying and systematically
comparing multiple SR techniques within the agricultural
domain remains limited. In particular, few studies have directly
applied various upscaling algorithms to crop disease images and
quantitatively evaluated their impact on classification
performance.

To address this gap, this study applies several upscaling
techniques to tomato leaf disease images and compares how
each technique influences downstream disease classification
accuracy. High-resolution images were first down sampled to
create low-resolution inputs, after which multiple SR algorithms
were applied to generate restored images. A consistent
classification model was then used to evaluate the extent to
which each upscaling method contributes to improving
diagnostic performance.

The remainder of this paper is organized as follows. Chapter
2 reviews the related studies referenced in this work. Chapter 3
describes the research methodology. Chapter 4 presents the
experimental results and analysis. Finally, Chapter 5 provides
the conclusions.

II. RELATED WORK

This section reviews existing research related to super-
resolution (SR) technology. SR technology has been actively
researched across various fields to restore low-resolution images



to high resolution, and recent attempts to utilize it in the
agricultural sector have also been reported.

A. Super-Resolution of Plant Disease Images

Kyosuke Yamamoto et al. applied super-resolution
techniques to crop disease images, restoring detailed lesion
features from low-resolution images and evaluating disease
classification  performance. They demonstrated that
classification accuracy significantly improved when SR was
applied compared to low-resolution images [3].

B. Improves Object Detection in Plant Images

Tianyou Jiang et al. constructed the PlantSR dataset and
analyzed the impact of super-resolution (SR) on plant image
object detection tasks (such as counting apples).

They demonstrated that SR is effective not only for
classification but also for improving the performance of object
detection models[4].

C. Research on the Application of an SR Agricultural Image
Detection Model

Hyeonggyeong Kim et al. conducted a study comparing the
performance of YOLOVS5-based crop disease and pest diagnosis
after 4x super-resolution using Bicubic, SRCNN, and SRGAN.
The results showed that SRGAN achieved the best improvement
in recall [5].

D. Plant Disease Detection Using SR Deep Learning

Ahsan ul Haq and Sukhjinder Kaur conducted research on
deep learning classification after super-resolution (SR), aiming
to enhance classification efficiency by using SR as a
preprocessing step. They integrated the SR and classification
pipelines into a structure that included transfer learning [6].

III. METHODOLOGY

This section describes the methodology for conducting the
research, explaining the dataset structure and upscaling
techniques, as well as the classification model configuration and
evaluation metrics.

A. Dataset Composition

This study utilized the AI-Hub tomato disease image dataset,
which contains multiple disease categories including gray mold
and leaf blight. All original images were resized to 256x256 and
normalized. To simulate low-resolution field conditions (low-
cost cameras, distant shooting, and variable lighting), images
were downsampled to 64x64, then used as input for super-
resolution experiments.

Since the original images varied in resolution and shooting
conditions, all images were resized to 256x256 and underwent a
normalization process to ensure consistency in the experiments.
Subsequently, to evaluate the performance of super-resolution
techniques, the original images were down sampled to 64x64 to
create low-resolution versions. This artificially recreated the
resolution degradation scenarios encountered in actual smart
farm environments due to low-cost cameras, long-distance
shooting, and poor lighting conditions.

TABLE L. DATA PREPROCESSING
Step Description
Resolution . L .
Adjustment Resize the original image to 256x256 pixels

Normalization Pixel values in the range 0 to 1

Downsampling 256x256 -> 64x64

Low-Resolution

. . Models field conditions with degraded resolution.
Simulation

B. Upscaling Technique

This study applied three super-resolution techniques to
restore tomato disease images downsampled to low resolution
(64x64) back to their original size (256x256). Each technique
differs in its restoration method and model complexity. By
comparing these techniques, we aimed to identify the most
suitable method for improving disease classification
performance.

e The first is Bicubic interpolation, one of the traditional
image upscaling methods. It calculates new pixel values
based on surrounding pixel values and has the advantage
of requiring no training process, but its ability to restore
fine texture details is limited. In this study, Bicubic was
used as the baseline comparison standard.

e The second is SRCNN  (Super-Resolution
Convolutional Neural Network), an early deep learning-
based super-resolution model proposed by Chao Dong
etal. (2016) [7]. SRCNN directly learns high-resolution
features from low-resolution inputs through
convolutional neural networks, enabling clearer
representation of fine details during the restoration
process. SRCNN training is performed by minimizing
the following MSE-based reconstruction loss function.
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e  The third is EDSR (Enhanced Deep Super-Resolution
Network), a high-performance SR model based on a
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Figure 1. Example of Data Set Normalization



residual block architecture proposed by Bee Lim et al.
(2017) [8]. It is known to improve reconstruction quality
by eliminating unnecessary regularization processes
used in existing SR networks and designing a deeper
network architecture. EDSR is trained using the
following L1 reconstruction loss.

L = ||lsg — Iyrll1 (2)

All three models applied x4 magnification to restore low-
resolution images to a size of 256x256 pixels. The restored
images were then used for evaluating disease diagnosis
performance through the same classification model and were
utilized to analyze performance differences between techniques.

C. Classification Model Configuration

To evaluate the impact of upscaled images on disease
classification performance, the restored images were input into
the same classification model for performance comparison.
Since this study aims to analyze differences between upscaling
techniques, the classification model was designed using a
lightweight image classification network rather than a complex
structure, ensuring that upscaling quality directly reflects model
performance.

The classification model employed the base architecture of
EfficientNet-B0, but was initialized without using pre-trained
weights to align with the objectives of this study. This approach
was taken to more clearly evaluate how upscaling techniques
affect the restoration of texture, boundaries, and lesion patterns
in the input images.

To ensure that variables other than the upscaling technique
did not affect performance, the following single fixed settings
were applied.

D. Evaluation Metrics

The following metrics were used to evaluate the image
restoration performance and classification performance of the
upscaling technique.

TABLE III. IMAGE RESTORATION AND CLASSIFICATION PERFORMANCE
METRICS
Purpose Usage Metrics
Image PSNR (Peak Signal-to-Noise Ratio)
Restoration
Metrics SSIM (Structural Similarity Index Measure)
Classification Accuracy
Performance
Metrics Fl-score

Quantitatively compare the high-resolution restoration
quality of Bicubic, SRCNN, and EDSR, and measure how much
the performance of the disease classification model improves
when each technique is applied.

IV. RESULTS AND DISCUSSION

This chapter derives experimental results under conditions
established through the experimental environment and analyzes
those results.

A. Classification Performance Comparison

The images restored using each upscaling technique were
input into the EfficientNet-BO classification model under
identical conditions to evaluate their performance. The
evaluation metrics used for comparison were Accuracy,
Precision, Recall, and F1-score.

TABLE IV. CLASSIFICATION PERFORMANCE COMPARISON METRICS
TABLE II. DATA PREPROCESSING Upscaling Accuracy | Precision Recall F1-Score
Method

Item Contents Bicubic 0.78 0.76 0.74 0.75
Classification EfficientNet-BO (without pre-trained weights, SRCNN 0.84 0.83 0.81 0.82
Model Structure trained from scratch)
Optimizer SGD (including Momentum) EDSR 0.89 0.88 0.87 0.88
Learning Rate 0.01
Batch Size 16 E ze("”
Epoch 20 o
Loss Function Softmax-based Multiclass Classification Loss 06|
Data E
Partitioning Maintain a fixed Train/Validation/Test split o4
Method

Data splitting was maintained consistently across all
experiments, with a fixed Train/Validation/Test configuration to
ensure a fair comparison of classification performance among
upscaling techniques. Furthermore, the model architecture and
all training conditions were kept identical, controlling the
experiments so that the upscaling process alone became the sole
factor influencing classification results.
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Figure 2. Performance Comparison Graph by Technique

As shown in the performance table and bar graph, the
Bicubic method demonstrated the lowest performance among
the four techniques. Accuracy was 0.78 and F1-score was 0.75,
which stems from its inability to sufficiently restore important



visual features such as lesion boundaries or patterns in low-
resolution images.

SRCNN demonstrated improved performance compared to
Bicubic, achieving an Accuracy of 0.84 and an F1-score of 0.82.
This indicates that SRCNN effectively restores intermediate-
level textures in low-resolution images; however, performance
gains were limited for some disease classes due to insufficient
reflection of fine-scale structures.

Among the three techniques, EDSR demonstrated the
highest performance, achieving an Accuracy of 0.89 and an F1-
score of 0.88. Improvements were also observed consistently in
Precision and Recall. This is because EDSR more accurately
restored high-frequency information, clearly reproducing fine
structures such as leaf vein boundaries, spot shapes, and disease
symptom patterns. This improvement in restoration quality
contributed to the classification model learning morphological
differences between disease symptoms more accurately.

Overall, the experimental results demonstrate that disease
classification accuracy improves significantly as upscaling
quality increases. Among the three techniques, EDSR provided
the most effective performance enhancement.

B. Upscaling Effect Analysis

Overall, performance differences among upscaling
techniques were closely related to the restored images' ability to
express fine details.

e Bicubic only preserved low-frequency information,
limiting its ability to distinguish disease symptom
shapes.

e SRCNN could restore basic structures but failed to
sufficiently generate complex textures.

e EDSR effectively restored high-frequency details
through its deep residual block structure, enabling the
classification model to more accurately recognize

symptom boundaries, spot structures, and color
changes.
Deep learning-based super-resolution techniques hold

significant potential as a practical solution to address the
characteristics of agricultural data, which often relies on low-
resolution images captured in field environments. This approach
is expected to offer substantial utility in resolving the issue of
limited data quality within the agricultural sector.

V. CONCLUSION

This study quantitatively evaluated the impact of three super-
resolution techniques—Bicubic, SRCNN, and EDSR—on
tomato leaf spot classification performance under identical
conditions. Experimental results showed that Bicubic exhibited
the lowest performance with an accuracy of 0.78 and an F1 score
of 0.75. SRCNN demonstrated moderate improvement with an
accuracy of 0.84 and an F1 score of 0.82. In contrast, EDSR
achieved the highest performance across all metrics: accuracy
0.89, precision 0.88, recall 0.87, and F1 score 0.88. This
experimentally demonstrates that EDSR more precisely restores
the fine structure, boundaries, and high-frequency information

of lesions, enabling the classification model to learn

morphological differences between diseases more clearly.

Furthermore, these results suggest that super-resolution-
based preprocessing techniques can substantially improve
classification model performance even when low-resolution
images are collected due to field photography constraints. This
demonstrates the practical value of super-resolution technology
as a cost-effective data quality enhancement strategy capable of
compensating for problems frequently encountered in
agricultural environments, such as uneven lighting, long-
distance photography, and image degradation caused by low-
cost sensors. Future research plans to expand the comparison
scope to include more advanced generative super-resolution
models such as SRGAN, ESRGAN, and SwinIR. We also intend
to validate the models' generalization performance using real
farm data featuring diverse resolution, lighting, and noise
conditions. Furthermore, we aim to analyze the correlation
between restoration quality metrics like PSNR and SSIM and
classification accuracy to derive the most efficient super-
resolution application strategy for agricultural image processing.

ACKNOWLEDGMENT

This work was supported by Innovative Human Resource
Development for Local Intellectualization program through the
Institute of Information & Communications Technology
Planning & Evaluation(IITP) grant funded by the Korea
government(MSIT)(IITP-2025-RS-2020-11201489)

REFERENCES

[11 H. Ryu, M. Choi, M. Cho, I. Yu, and S. Kim,“Damage index estimation
by analysis of meteorological disasters on film plastic greenhouses,”
International Journal of Agricultural and Biological Engineering, vol. 12,
no. 5, pp. 58-63, 2019, doi: 10.25165/j.ijabe.20191205.4493.

[2] R. Lahlali, M. Taoussi, S.-E. Laasli, G. Gachara, R. Ezzouggari, Z.
Belabess, K. Aberkani, A. Assouguem, A. Meddich, M. El Jarroudi, and
E. Ait Barka, “Effects of climate change on plant pathogens and host—
pathogen interactions,”Crop and Environment, vol. 3, no. 3, pp. 159-170,
2024, doi: 10.1016/j.crope.2024.05.003.

[3] K. Yamamoto, T. Togami, and N. Yamaguchi, “Super-resolution of plant
disease images for the acceleration of image-based phenotyping and vigor
diagnosis in agriculture,” Sensors, vol. 17, no. 11, p. 2557, 2017, doi:
10.3390/s17112557

[4] T. Jiang, Q. Yu, Y. Zhong, and M. Shao, “PlantSR: Super-resolution
improves object detection in plant images,” Journal of Imaging, vol. 10,
no. 6, p. 137, 2024, doi: 10.3390/jimaging10060137.

[5] Hyeonggyeong Kim, Chaesung Lim and Seungmin Tak. "Improved
Recall of Plant Disease Detection Model using Image Super Resolution"
Journal of KIISE 51, mno.2  (2024) 125-130.doi:
https://doi.org/10.5626/JOK.2024.51.2.125

[6] A.ul Haq and S. Kaur, “Super Resolution Image Based Plant Disease
Detection and Classification Using Deep Learning Techniques,” Tuijin
Jishu/Journal of Propulsion Technology, vol. 45, no. 1, pp. 1020-1026,
2024.

[71 C. Dong, C.C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295-307, Feb. 2016, doi:
10.1109/TPAMI.2015.2439281.

[8] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee,
“Enhanced deep residual networks for single image super-resolution,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW),

Honolulu, HI, USA, 2017, pp. 1132-1140.






