Pose360: Metric-Scale Visual Odometry by
Grounding Learned Features with LiDAR depth

Kemal Mudie Tosora'2, Seher Kanwal'2, Seung-lk Lee!?"
'Department of Artificial Intelligence, University of Science & Technology, Daejeon, South Korea
2Electronics & Telecommunications Research Institute, Daejeon, South Korea
kemal.tosora@etri.re.kr, seher@etri.re.kr, the_silee@etri.re.kr

Abstract—Metric-scale state estimation is a cornerstone for
autonomous systems, yet single-modality solutions often fail in
challenging real-world environments. Visual odometry suffers
from inherent scale ambiguity, while LiDAR odometry can
be fragile in geometrically sparse scenes. To overcome these
limitations, we propose Pose360, a novel Visual-LiDAR Odometry
(V-LIO) system that robustly fuses a 360° panoramic camera
and a 360° LiDAR. Our approach leverages learned features,
SuperPoint and LightGlue, to establish strong 2D visual corre-
spondences, which are then lifted into a sparse set of metric
3D-3D point correspondences using depth information from a
synchronized LiDAR point cloud. The 6-DoF relative pose is then
computed efficiently via a closed-form SVD-based solution. This
focused fusion strategy directly resolves visual scale ambiguity
without requiring complex non-linear optimization. We perform
a rigorous quantitative evaluation on a challenging 450 m real-
world dataset, demonstrating that our system achieves high global
consistency with a translation Absolute Trajectory Error (ATE)
of just 0.177m RMSE against a high-fidelity LIDAR SLAM
ground truth. We further validate its real-world applicability
by successfully integrating Lidar360Pose as the core odometry
engine in a full robotic navigation stack, proving it is an accurate
and reliable solution for metric state estimation.
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I. INTRODUCTION

Accurate 6-DoF (Degree of Freedom) pose estimation is a
fundamental capability for intelligent systems, enabling tasks
from robot navigation to augmented reality [1], [2]. While
vision-based methods using monocular cameras are highly
proficient at tracking features in textured environments [3],
they suffer from a critical, inherent limitation: scale ambiguity.
Without an external reference, a purely visual system cannot
distinguish a small motion near a close object from a large
motion near a distant one, preventing the recovery of a true
metric trajectory [4]. Depth sensors like LiDAR resolve this
ambiguity by providing direct metric measurements. However,
traditional LiDAR odometry, which relies on scan-to-scan
registration [5], can be fragile in geometrically self-similar or
sparse environments like long corridors.

This paper explores a fusion strategy that combines the
strengths of both modalities. We propose that instead of relying
on direct LiDAR scan registration for motion estimation, a
more robust approach is to use LiDAR data for the sole
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purpose of grounding strong 2D visual feature matches in
metric 3D space. State-of-the-art learned feature matchers
like SuperGlue [6] provide a robust front-end for finding
reliable correspondences. Our core idea is to leverage such
feature matchers to resolve the inherent scale ambiguity by
augmenting these 2D matches with precise depth from a
synchronized LiDAR.

To this end, we introduce Pose360, a system that imple-
ments this focused fusion strategy. Our pipeline begins by
establishing a sparse set of high-confidence 2D correspon-
dences between two 360° panoramic images. We then project
the LiDAR point cloud into the image coordinate system to
create an efficient depth lookup structure. Each 2D feature
match is lifted into a pair of 3D-3D correspondences in
metric space. This formulation transforms the problem from
a complex, non-linear visual optimization into a well-posed
absolute orientation problem that can be solved efficiently in
closed form.

Our contributions are:

e A Metric-Grounded Visual Odometry Framework:
We propose and implement a novel Pose360 pipeline that
directly resolves the scale ambiguity of a learned visual
feature front-end by augmenting 2D matches with precise
LiDAR depth.

« Real-World Robotic Evaluation: We provide a rigorous
quantitative analysis of our system’s trajectory accuracy
on a mobile robot, validating its performance against a
high-fidelity LIDAR SLAM ground truth in a large-scale,
complex environment.

o System-Level Validation: We demonstrate the practical
efficiency and robustness of our method by integrating
it as the core local odometry engine within the Visual
Teach-and-Replay navigation framework.

II. RELATED WORK

Our research is situated at the confluence of visual state
estimation, LiDAR-based mapping, and multi-sensor fusion.
We review key developments in these areas to contextualize
our contribution.

A. Visual Odometry and the Challenge of Scale

Visual Odometry (VO) estimates camera motion by tracking
features across images. Landmark-based approaches rely on
sparse, hand-crafted features like SIFT [7] or ORB [8], which



form the backbone of highly successful SLAM systems such
as ORB-SLAM3 [3]. The advent of learned local features, such
as SuperPoint [9], and graph-based matchers like SuperGlue
[6], has significantly improved the robustness of the data
association front-end. Our work deliberately leverages these
state-of-the-art learned components for their superior matching
performance.

However, a fundamental limitation of all monocular VO
systems is their inability to observe metric scale [4]. The
estimated trajectory is only known up to an arbitrary scale
factor, rendering it insufficient for many robotic tasks. While
Visual-Inertial Odometry (VIO) systems like VINS-Mono [10]
can recover metric scale through IMU (Inertial Measurement
Unit) integration, they require sufficient motion excitation and
can be sensitive to initialization. Our approach provides an
alternative and more direct method for metric scale recovery
by leveraging LiDAR.

B. LiDAR Odometry and Geometric Degeneracy

In contrast to vision, LiDAR provides direct 3D metric
measurements, eliminating scale ambiguity. LIDAR Odometry
(LO) methods typically operate by registering consecutive
point clouds. The seminal LOAM [5] achieved real-time per-
formance by extracting and matching planar and edge features,
a concept that inspired a generation of subsequent methods.
Modern LiDAR-Inertial Odometry (LIO) systems, such as
LIO-SAM [11] and FAST-LIO2 [12], achieve remarkable
accuracy by tightly fusing LiDAR and IMU data.

Despite their metric accuracy, LiDAR-based methods are
susceptible to failure in geometrically degenerate or sparse
environments. In scenes lacking distinct structural features,
such as long hallways or open fields, the registration problem
becomes ill-constrained, leading to significant drift [5]. This
reliance on geometric structure is a key motivation for our
work, where we propose to use visual features as the primary
driver for data association, side-stepping the need for robust
geometric features in the environment.

C. LiDAR-Camera Fusion Strategies

To combine the complementary strengths of these sensors,
various fusion strategies have been explored. Loosely-coupled
methods fuse the state estimates from independent VO and
LO pipelines [13], but this is sub-optimal as it does not share
raw sensor information. Tightly-coupled methods are more
powerful, jointly optimizing residuals from both sensors within
a single estimation framework.

Early tightly-coupled systems like V-LOAM [14] demon-
strated the benefits of joint optimization by using LiDAR to
provide scale to a visual odometry front-end. More recent work
has also focused on using LiDAR to enhance visual systems,
for example, by initializing 3D landmarks for visual SLAM
[15]. These approaches, however, often result in complex
optimization problems or still rely on traditional visual SLAM
back-ends.

Our work, Pose360, proposes a more focused and elegant
fusion strategy. Instead of building a complex joint optimiza-
tion problem, we use LiDAR for a single, critical purpose:

to lift robust, pre-established 2D visual correspondences into
metric 3D space. This approach is distinct from prior work in
two key ways. First, by leveraging a powerful learned matcher
(LightGlue) as our front-end, we decouple the correspondence-
finding problem from the geometric estimation problem. Sec-
ond, by transforming the problem into a simple 3D-3D align-
ment task, we use a direct closed-form solver, bypassing the
need for iterative, non-linear optimization required by many
VIO or SLAM back-ends. This makes our method simple,
computationally efficient, and directly targets the core problem
of metric pose recovery.

III. METHODOLOGY

The core of our Pose360 system is a multi-stage pipeline
designed to estimate the relative rigid-body transformation,
Ty r—1, between two consecutive sensor frames captured at
times £ — 1 and k. This transformation consists of a rotation
matrix R and a translation vector t € R3. As illustrated in
Figure III, our pipeline is organized into four main stages:
(1) Data Acquisition and Pre-processing, (2) Visual Feature
Extraction and Matching, (3) LiDAR-Visual Fusion for 3D
Point Generation, and (4) Closed-Form Pose Estimation.

A. Data Acquisition and Pre-processing

Our system is designed for a sensor suite comprising a
360° panoramic camera and a 3D LiDAR, rigidly mounted on
a mobile platform. We assume the extrinsic transformation,
T cam<«iidar, Which defines the rotation and translation from
the LiDAR frame to the camera frame, is known and has been
pre-calibrated. The sensors operate at the same frequency, and
hardware-level synchronization ensures that each panoramic
image [ has a corresponding LiDAR point cloud Pj, captured
at a minimally offset timestamp.

B. Visual Feature Extraction and Matching

To establish robust visual correspondences, we process
pairs of consecutive panoramic images, Iy—; and I;. We
employ SuperPoint [9], a deep convolutional neural network,
to detect a set of distinctive 2D keypoints and their associated
high-dimensional descriptors in each image. Let Kp_1 =
{(u;,d;) Z]-V:’“fl and K = {(uj,dj)}j-\[:’“1 be the sets of
keypoints and descriptors for images I and [}, respectively,
where u = (u,v) represents the pixel coordinates.

These two sets of local features are then fed into a learned
matcher, such as LightGlue [16] or SuperGlue [6]. These
matchers leverage graph neural networks to reason about the
geometric context of the entire scene, making them highly
effective at rejecting outliers and matching under challenging
viewpoint changes. The output is a set of high-confidence 2D-
2D matches, M = {(u;,u;)|u; € I}_; corresponds to u; €
I}

C. LiDAR-Visual Fusion for 3D Point Generation

This stage is the core of our fusion strategy, where we
leverage the LiDAR data to lift the 2D visual matches into
metric 3D space. For each LiDAR point cloud Py, we first
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Fig. 1. T
he Lidar360Pose Pipeline. Robust 2D visual matches are established between images and lifted to sparse 3D-3D correspondences
using depth from a synchronized LiDAR point cloud. An efficient, closed-form SVD-based solver then computes the final 6-DoF

transformation by aligning these point sets.

create an efficient data structure for fast depth lookups. Each
3D LiDAR point Xy;44- € Py is projected into the panoramic
image’s coordinate system. This is achieved by first transform-
ing the point into the camera frame using the known extrinsic
calibration, X o = TeametidarXiidar, and then applying
the camera’s specific projection model. For the equirectangular
projection used in our work, a 3D point X om = (X, Yz, Z¢)
is mapped to pixel coordinates (u,v). This process creates a
sparse depth map where the depth d = || X 4 || is associated
with the resulting pixel location (u,v).

For each 2D match (u;,u;) € M, we query the corre-
sponding depth maps from frames k£ — 1 and k to find the
depth values d; and d;. We perform bilinear interpolation to
find the depth at the sub-pixel keypoint location. A match
is considered valid only if depth information is available for
both keypoints, filtering out matches that fall in areas without
LiDAR coverage. On average, this filtering step discards
approximately 15% of the initial 2D matches, retaining a
sparse but high-quality set for pose estimation. For each valid
match, we back-project the 2D pixel coordinates u with its
associated depth d to a 3D point P in the camera’s local frame.
This is achieved using the inverse of the camera’s projection
model. This process results in two sets of 3D points, {Pf‘l}
and {P¥}, which represent the same set of physical scene
points as viewed from two different camera poses.

D. Closed-Form Pose Estimation

With the two sets of 3D-3D correspondences,
{(Pf‘l,Pf)}igl, the final task is to compute the relative

transformation Ty, ;1 that best aligns them. This is a
classic absolute orientation problem, which can be solved
efficiently and non-iteratively. We seek to find the rotation R
and translation t that minimize the sum of squared Euclidean

distances:
[M]
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We employ the closed-form method of Arun et al. [17],
which utilizes Singular Value Decomposition (SVD). First,
we compute the centroids of both point sets, P*~! and P*.
Then, we construct the covariance matrix H from the centered
points:

[M]
H=3) (P! - PP} - PYT &)

i=1

We compute the SVD of H = UX V7. The optimal rotation
and translation are then given by:

R=VU7? 3)

t = P¥ - RPF! 4)

A final check on the determinant of R is performed to
handle potential reflection cases. This closed-form solution
is computationally efficient and provides a highly accurate
estimate of the 6-DoF relative pose, which forms the output
of our odometry system.

IV. EXPERIMENTAL RESULTS

We conducted a comprehensive experiment to rigorously
evaluate the end-to-end performance of our Pose360 odometry
pipeline. The system was integrated onto a mobile robotic
platform and tested on a long-term trajectory in a challenging,
real-world environment.



A. Experimental Setup

The experiments were performed using data from a mobile
robot equipped with an Ouster OS1-64 LiDAR and a Ricoh
Theta Z1 panoramic camera. Our evaluation dataset was
recorded at the ETRI campus in Daejeon, Republic of Korea,
covering a 450 m trajectory through mixed indoor and outdoor
environments. As a ground truth reference, we utilized a high-
fidelity LIDAR SLAM system run in localization mode against
a pre-built map. We evaluate the raw output of our system to
assess its real-world performance.

B. Quantitative and Qualitative Analysis

To ensure a fair and accurate comparison, the estimated and
ground truth trajectories were first synchronized by associating
poses with the closest timestamps. An SE(3) transformation
was then used to align the starting poses. All subsequent
metrics are computed on these processed trajectories.

We first evaluate the global consistency of the trajectory us-
ing the Absolute Trajectory Error (ATE), which measures the
direct difference between the ground truth and the estimated
trajectory after alignment. The results, summarized in Table I,
show an exceptionally low Root Mean Square Error (RMSE)
of 0.177m over the entire 450 m course. This quantitatively
demonstrates the system’s high global accuracy and minimal
accumulated drift.

TABLE I
ABSOLUTE TRAJECTORY ERROR (ATE) FOR TRANSLATION
Metric | RMSE (m) | Mean (m) | Median (m) | Max (m)
ATE 0.177 0.149 0.142 0.354

To analyze the local tracking accuracy, we compute the
Relative Pose Error (RPE), shown in Table II. The low mean
error of approximately 8.9cm confirms the system’s high
precision and low rate of drift.

TABLE II
RELATIVE POSE ERROR (RPE) FOR TRANSLATION (PER FRAME)
Metric | RMSE (m) | Mean (m) | Std (m) | Max (m)
RPE 0.138 0.089 0.106 0.814

Figure 2 provides a qualitative view of the system’s perfor-
mance. The aligned 3D trajectory in Fig. 2(a) visually confirms
the high accuracy reported by the ATE, showing a remarkable
structural similarity between the estimated path and the ground
truth. Figure 2(b) shows the performance per-axis over time.
The RPE plot in Fig. 2(c) it reveals that a initial error spike,
due to a lidar slam initial localization in the start of the system,
then remains consistently low, validating the effectiveness and
stability of our metric-grounded visual odometry approach.

C. System Integration Validation

To demonstrate real-world applicability, we integrated
Pose360 as the odometry source within the Teach and Replay
navigation framework on our mobile robots. We successfully

executed a full autonomous navigation mission, validating our
system’s robustness and suitability for integration into complex
robotic systems.

V. DISCUSSION

The experimental results provide compelling, quantitative
evidence for the efficacy of our proposed fusion strategy. The
low ATE RMSE of 0.177 m over a long-term, 450 m trajectory
(Table I) indicates of the system’s high global accuracy and
minimal drift. The initial large error seen in the RPE plot is
clearly shown to be an isolated artifact and does not affect the
system’s long-term stability.

The success of Pose360 can be attributed to its fundamental
design: it leverages a state-of-the-art learned visual matcher
for robust data association and uses LiDAR for the one task it
excels at—providing precise, unambiguous metric scale. This
decouples the problem of finding correspondences from the
problem of geometric registration. By grounding a sparse set
of high-quality visual features in 3D, our system avoids the
fragility of pure LiDAR odometry in geometrically sparse
areas while completely resolving the scale ambiguity of pure
monocular odometry. The successful integration into our nav-
igation framework further substantiates that this approach is
not just accurate, but also robust and reliable enough for use
in a complete robotic application.

A. Limitations and Future Work

It is important to distinguish Pose360 as a pure odometry
system, not a full Simultaneous Localization and Mapping
(SLAM) system. As an odometry pipeline, it estimates query
to a database or frame-to-frame motion but does not perform
loop closure detection or global optimization to correct for
accumulated drift over very long trajectories. While our results
demonstrate low drift, this architectural distinction informs our
future work.

Furthermore, despite the strong performance, our system
has other limitations. Our reliance on a visual front-end
means that performance will inevitably degrade in globally
textureless environments or under extreme weather conditions
where the feature matcher fails. In scenarios with dense fog
or heavy rain, where both the camera and LiDAR data may
be compromised, the system’s accuracy would be significantly
impacted. While the use of learned features provides a degree
of robustness to moderate lighting changes, severe visual
degradation remains a challenge. This motivates our primary
direction for future research: extending the odometry pipeline
to a full SLAM system. This would involve:

1) Pose Graph Optimization: Developing a back-end that
incorporates our V-LIO pose estimates as factors in a
pose graph. This would allow for the integration of
other odometry sources (e.g., IMU, wheel encoders) as
additional factors for improved robustness.

2) Loop Closure Detection: Integrating a place recogni-
tion module to detect when the robot has returned to
a previously visited area. Adding these loop closure
constraints to the pose graph would allow the system
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Fig. 2. Trajectory evaluation results. (a) The aligned 3D trajectory shows high global accuracy against the ground truth. (b) Per-axis plots confirm close
tracking over time. (¢) The RPE plot reveals an initial artifact, followed by consistently low local error, demonstrating the system’s stability.

to correct for any accumulated drift, enabling true long-
term SLAM.

3) Dynamic Environment Handling: Incorporating robust
estimation techniques or a dynamic object segmentation
front-end to identify and reject features that lie on mov-
ing objects, a known challenge for all visual odometry
systems.

VI. CONCLUSION

In this paper, we presented Lidar360Pose, a novel Visual-
LiDAR odometry system that resolves the inherent scale
ambiguity of visual methods by grounding 2D learned feature
matches with precise 3D depth from a synchronized LiDAR.
Our approach transforms the pose estimation problem into
an efficient, closed-form 3D alignment task. We demonstrated
through a rigorous real-world experiment on a mobile robot
that our system achieves high accuracy and global consistency,
attaining a translation ATE of just 0.177m RMSE when
evaluated against a high-fidelity LIDAR SLAM ground truth.
Furthermore, the successful integration of our system into
a full-scale robotic navigation stack validates its practical
utility and robustness. By elegantly fusing the complementary
strengths of vision and LiDAR, Lidar360Pose offers an effec-
tive and reliable solution for metric state estimation, a critical
enabler for autonomous systems in real-world environments.
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