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Abstract—Millimeter-wave (mmWave) bands offer large band-
width but suffer from blockage, making rapid beam re-alignment
critical for V2X communication. Conventional beam management
relies on exhaustive codebook search, causing high time-domain
overhead. Vision-aided studies reduce this cost by predicting
the best beam index, yet they still overlook when re-alignment
should occur. To address this gap, we propose a DRL-based policy
that learns optimal re-alignment timing using sector probability,
temporal stability, link fluctuations, and switching rate. The
vision-aided model shows stronger proactive behavior than non-
vision baselines, demonstrating the importance of visual cues for
early degradation detection and efficient beam management.

Index Terms—Beamforming, Millimeter-Wave Communica-
tion, Multi-Modality, Deep Reinforcement Learning

I. INTRODUCTION

Millimeter wave (mmWave) bands, including 28GHz and
57-71GHz bands, provide abundant spectral resources. There-
fore they are increasingly regarded as a major band of next-
generation wireless systems. However, due to strong straight-
ness of radio waves, it is highly vulnerable to unexpected
obstacles, which can make it significantly challenge when
performing Vehicle-to-Everything communication (V2X) com-
munication in mmWave band.

Conventional beam management performs exhaustive code-
book search, resulting in high time-domain overhead. To
address this issue, several recent works have utilized various
modalities such as computer vision. [1] has utilized position,
visual, and point cloud features to provide richer contextual
information. Using these multimodal features, their method
improves optimal beam prediction and reduces search over-
head. [2] extracts position or motion information from images
to improve mmWave beam management, and reinforcement
learning is applied to continuous beam estimation. This work
has alleviated the limitations of codebook-dependent classifi-
cation.

However, prior vision-aided mmWave beam prediction
methods mainly focus on predicting the optimal beam index
without considering when to perform beam realignment. In
addition, these methods do not incorporate sweeping overhead,
realignment costs into the optimization process. To address
these limitations, we proposed new methods which determines
the optimal trigger timing based on sector probability, link
quality variations, temporal stability features and trigger costs

by deep reinforcement learning. This approach enables us
to aware cost such as incur time and overhead costs from
beam measurements and switching overhead generated from
beam switching and adaptive beam realignment scheduling,
providing a novel direction for practical V2X mmWave beam
management.

II. SYSTEM MODEL

A. Beam management

We consider beam management defined in 3rd Generation
Partnership Project-New Radio (3GPP NR) at mmWave fre-
quencies for the V2X system composed of next-generation
NodeB (gNB) and vehicle User Equipment (UE). The
Standalone-Downlink Scheme has 4 phases: beam sweep,
beam measurement, beam determination, and beam reporting.
In beam sweeping phase, gNB periodically transmit Synchro-
nization Signal Block (SS Block) to predefined angles. As
a result of exhaustive search of codebook beam, UE detect
synchronization and reference signals. In beam measurement
phase, the UE measures the quality of the SS blocks and
the UE selects the beam which shows the maximum Signal-
to-Noise ratio (SNR) above a predefined threshold in beam
determination step. Lastly in beam reporting, the UE reports
the selected beam using a Random Access Channel (RACH)
preamble.

B. Channel model

In mmWave systems, the link quality is characterized by
the received power of reference signals (SSB/CSI-RS) across
the beam directions. Following the 3GPP NR modeling frame-
work, the received power for beam b at time t is expressed
as

Pt(b) = |ht(b)|2Ptx,

where ht(b) denotes the complex channel coefficient of beam
b, and Ptx is the transmit power. The UE then identifies the
beam with the maximum received power as the representative
link-quality metric:

yt = max
b

Pt(b).

where yt is the received power of the optimal beam pair.



C. IA and beam tracking for Beam management

For the experiment, we defined 2 assumptions to support
the experimental setup. First, periodic SSB/CSI-RS bursts are
assumed to be reliably received by the UE, and therefore signal
acquisition failures are not considered in this work. Second,
after successful Initial Access (IA), the UE is assumed to per-
form beam tracking based on continuous CSI-RS reception. In
this tracking phase, beam measurements and beam switching
are assumed to occur to maintain beam alignment.

III. PROPOSED METHOD

A. Multimodal DRL-Based Beam Realignment Framework

Our multimodal DRL model determines optimal beam re-
trigger timing under link and environmental uncertainty.

a) Data preprocessing: Several preprocessing proce-
dures were applied to the dataset before model training.
First, beam power vectors are collapsed from 64 beams to
8 coarse sectors by adding their values, making a more stable
directional representation. Second, power measurements are
normalized using mean and standard deviation across scenar-
ios. Third, using a sliding window, we made short temporal
sequences to capture recent beam dynamics and mobility.
Finally, we sampled the data in to reduce high-frequency
measurements and to match the timescale of realistic beam
dynamics.

b) YOLO-Based Visual Sector Prior: We detect the po-
sition of the UE in the input image and detected features are
passed through the Multi-Layer Perceptron (MLP) to estimate
the probability distribution of the object present in each of the
8 sectors. This feature shows the environmental changes and
movement pattern which cannot be known by mmWave power
vector, providing an important information to early predict the
future link degradation. The 8-dimensional visual features are
directly combined with the DRL policy, allowing the agent
to make a proactive beam-switching decision considering
environmental risk factors.

c) GRU-Based Temporal Stability Encoder: To model
these temporal dynamics effectively, we utilized a Gated
Recurrent Unit (GRU) as the time series encoder. The input
sequence is consisted of power of each sectors and visual
sector probabilities by YOLO. The hidden-state sequence Ht

that summarizes changes across time is made as a result. This
hidden state captures fluctuations in beam probability distribu-
tion, instantaneous instability, and direction of the movement.
The final hidden state Ht is mapped into a scalar stability
indicator. By capturing short-term temporal consistency in link
dynamics, the GRU may also help alleviate reliance on visual
inputs when visual sensing is uncertain.

d) State Fusion Model: This study designed a state
fusion module that combines multiple features into a single
integrated state vector so that the agent can decide the action
using information obtained from various modalities. This
module includes the normalized power value, recent power
change, the distance between the current sector and the optimal
sector, and the image model integrates visual features such as

TABLE I
TRAINING HYPERPARAMETERS USED IN PROPOSED MODEL

Parameter Value

Learning rate 5× 10−5

Batch size 64
PPO epochs per update 5
Discount factor γ 0.98
Clipping ratio ϵ 0.25

sector probability. In addition, the Ht extracted from the past
power sequence, visual sector probabilities through GRU is
included to reflect the temporal stability of the link. Layer
normalization is applied to stably combine heterogeneous
features of different scales, and the final state st is used as the
input of the PPO policy network. This structure enables more
reliable proactive decision-making by simultaneously utilizing
spatial, visual, and temporal cues that are difficult to capture
with a single modality.

e) PPO-Based Decision Policy: The policy is optimized
using Proximal Policy Optimization (PPO). PPO uses a clip-
ping mechanism to limit the amount of policy updates. This
prevents excessive deviations from the previous policy and
enables stable convergence with less samples. The policy
network is composed of an actor head that makes action
probabilities and a critic head that estimates the state value.
Considering the strong temporal correlation in mmWave envi-
ronment, we used a small batch size and multi-epoch updates.

IV. MULTIMODAL DRL-BASED BEAM REALIGNMENT
ALGORITHM VERIFICATION

A. DeepSense 6G For Model Verification

In this work, we employ the DeepSense 6G dataset for
training and evaluating the proposed method. DeepSense 6G
is real-world multimodal dataset which captures synchronized
wireless, visual, and position data for 6G research. Especially,
we use 4 V2I scenarios, 1, 6, 8, 9. These scenarios are
different the conditions cover diverse LoS/NLoS, mobility and
environmental conditions.

B. Performance Evaluation Metrics

We evaluate our model with 4 metrics. First, the Proactive
Trigger Success rate (PTSR) measures whether the policy
successfully initiates re-alignment before link degradation oc-
curs, reflecting its predictive capability. Second, the Missed
Degradation Rate (MDR) indicates insufficient sensitivity to
early instability. Third, the False Trigger Rate (FTR) repre-
sents unnecessary re-alignments measuring decision overhead.
Finally, the lead time indicates how many steps the model an-
ticipates degradation in advance, directly capturing the degree
of proactive behavior.

C. Model Verification Result

The proposed method is trained using PPO with a CNN-
GRU architecture. Important hyperparameters, including learn-
ing rates, batch sizes, and PPO coefficients, are defined in



TABLE II
COMPARISON OF IMAGE-BASED MODEL AND NON-IMAGE ABLATION

MODEL

Metric Image Non-image
Average Reward (R) -18.48 -28.90
Switch Rate Avg. 0.46 0.03
Average Realignment Interval (τ ) [steps] 2.17 7.246
Proactive Trigger Metrics
PTSR (Proactive Success Rate) 0.448 0.062
MDR (Missed Degradation Rate) 0.379 0.920
FTR (False Trigger Rate) 0.237 0.381
Average Lead Time [steps] 2.292 0.000

Fig. 1. The red dashed line marks the onset of link degradation, and the shaded
region shows the degradation phase. Our policy triggers a switch before this
point—indicated in blue—demonstrating successful proactive detection.

Table I. Fig. 1, 2 and Table II are the results of the proposed
model (w/ vision) and the base model (w/o vision) using the
50 validation episode subset of the DeepSense 6G dataset.

The model we proposed had an average reward of -18.48,
which was higher than the -28.90 of the non-image model,
suggesting that visual features help the agent to infer future
link states more accurately. Fig. 1 shows the characteristics of
the image-based model. In the image-based model, the average
re-alignment interval (τ̄ ) was 2.17 steps, which means that the
policy responded more promptly to changes. The PTSR was
0.448 and the average lead time was 2.292 steps, confirming
that when using images, the model can frequently anticipate
future link deterioration and adjust the beam in advance.
The image-based policy performed preemptive switching by
detecting changes in stability embeddings (Ht) and probability
distributions from images before the link quality decline.

Fig. 2 shows the characteristics of the non-image model.
In the ablation model, the average re-alignment interval (τ̄ )
was exceptionally high, indicating that the agent failed to
initiate switching even when the link quality was severely
degraded. PTSR was 0.062 and the MDR was 0.920, showing
that the non-image policy could not switch before degradation
occurred in most cases. Visual information enabled proactive
and early detection of degradation, while the non-image model

Fig. 2. Non-image model result on the same episode. The policy fails to
trigger beam management before link degradation and reacts only after degra-
dation begins, exhibiting purely reactive behavior without visual information.

failed to anticipate future degradation. These results show
that visual information is important when predicting future
degradation.

V. CONCLUSION

In this work, we proposed an DRL-based trigger policy that
determines the optimal beam re-alignment timing using link
variations and environmental uncertainty. The proposed model
showed the performance of early detection of future degrada-
tion while reducing unnecessary switching when using state
expression that includes visual features and power changes.
In future studies, we plan to extend the policy to choose the
best beam candidates that can maintain link stability for future
intervals.
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