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Abstract—UAM route planning for aerial tourism must 
balance passenger experience, communication reliability, and 
community acceptability. These objectives often conflict and are 
computationally expensive to evaluate, as they depend on high-
resolution urban geometry and geospatial data. We formulate 
route design as a four-objective optimization problem under 
flight-time constraints. The objectives are: (1) maximizing 
along-route landmark-exposure reward as a QoE proxy, (2) 
maximizing non-residential overflight ratio as a noise-
acceptability proxy, (3) maximizing the 10th-percentile RSRP as 
a QoS robustness proxy, and (4) minimizing route length. To 
reduce computational cost, we propose a GNN-guided NSGA-
III framework in which a graph neural network predicts 
expensive objectives from a route graph during evolutionary 
search, and the final non-dominated set is re-evaluated using the 
original simulator. In a Yokohama waterfront case study with 
24 POIs and open 3D city data, the surrogate achieves strong 
predictive accuracy, with coefficients of determination of 0.94, 
0.92, and 0.88 for Scene, Quiet, and Comm, respectively, and 
reduces expensive simulation calls by approximately 89%. After 
true re-evaluation, the proposed approach produces a 
substantially larger true non-dominated set (92 solutions vs. 20 
for the baseline) while maintaining comparable best-achieved 
objective values, enabling richer trade-off exploration for 
decision support in UAM route design. 

Keywords— Urban air mobility, UAV routing, QoS and QoE, 
multi-objective optimization, NSGA-III, surrogate model, graph 
neural network, noise-aware planning. 

I. INTRODUCTION  
Urban air mobility (UAM) services are expanding beyond 

logistics and inspection to include passenger-facing 
applications such as aerial tourism in dense urban areas. In 
such scenarios, the route itself becomes part of the service 
quality. Passengers prefer routes that pass near attractive 
landmarks. Operators must ensure reliable connectivity for 
safety-critical communication [1], [2]. In addition, flight paths 
must avoid noise-sensitive areas to maintain social acceptance 
[3]. Designing routes that simultaneously satisfy these 
heterogeneous requirements is challenging because improving 
one metric (e.g., collecting more reward) can degrade others 
(e.g., increasing distance, time, or exposure to residential 
areas). 

From a computational perspective, realistic evaluation of 
user reward and connectivity is expensive because it requires 
dense spatial sampling along candidate routes. User-centric 
reward may depend on continuous spatial exposure to 
landmarks along a trajectory, and connectivity depends on 
urban blockage and base-station deployment. These 
components act as black-box functions embedded in a 
combinatorial optimization problem. Consequently, 

evolutionary search with full simulation for every candidate 
becomes prohibitively slow as the solution space grows. 

This work addresses these challenges by combining (i) a 
multi-objective formulation that couples user-oriented reward, 
network QoS (Quality of Service) robustness, environmental 
acceptability, and operational cost under resource constraints, 
and (ii) a learning-based surrogate that accelerates many-
objective evolutionary optimization. Although the motivating 
application is an urban aerial tour, the formulation is generic 
and applies to reward-collecting UAM services that must 
remain connected and socially acceptable. 

Our main contributions are as follows: (1) We formulate 
UAM route planning as a four-objective optimization problem 
that jointly considers QoE (Quality of Experience) reward, 
noise acceptability, connectivity robustness, and operational 
cost under flight-time constraints. (2) We propose a GNN 
(Graph Neural Network)-guided Non-dominated Sorting 
Genetic Algorithm III (NSGA-III) framework where a graph 
neural network predicts expensive objectives with an R² of 
over 0.88, reducing simulation calls by 89%. (3) We 
demonstrate the framework's effectiveness on a realistic 
Yokohama scenario with 24 POIs using open 3D city data, 
showing that surrogate guidance discovers high-quality routes 
with significantly reduced computational cost. 

II. RELATED WORK 
 The UAM routing framework proposed in this study 
addresses the intersection of multiple technical challenges: 
ensuring reliable connectivity, mitigating environmental 
impact, and solving complex multi-objective optimization 
problems. Accordingly, this section reviews the related 
literature and background from four key perspectives relevant 
to our formulation: (A) communication-aware routing 
strategies; (B) noise and acceptability considerations for low-
altitude operations; (C) mathematical models for resource-
constrained reward maximization; and (D) surrogate-assisted 
optimization techniques for computationally expensive 
objectives. 

A. Communication-aware UAV/UAM routing  

 Cellular-connected UAVs have been extensively studied 
for 4G/5G networks, highlighting challenges such as altitude-
dependent interference and urban blockage [1], [2]. Several 
works optimize trajectories to improve coverage or reliability 
under cellular constraints, often using simplified channel 
models or discrete waypoints [4]. 

B. Noise- and acceptability-aware planning 

 Noise footprints and community acceptance are 
increasingly recognized as critical for low-altitude aerial 



operations. Prior studies have considered noise-aware path 
planning using noise assessment models; however, jointly 
integrating noise, connectivity, and user reward remains 
underexplored [3]. 

C. Resource-constrained reward maximization and 
orienteering 

 The orienteering problem and its variants model route 
planning under time/budget constraints to collect spatially 
distributed rewards [5], [6]. These formulations are relevant to 
UAV data collection and user-centric routing but typically 
assume rewards that are inexpensive to evaluate. 

D. Surrogate-assisted and learning-based optimization 

  Surrogate-assisted evolutionary algorithms (SAEAs) are 
effective for expensive multi-objective optimization by 
learning approximations of costly objectives [7], [8]. Recently, 
graph neural networks have been used to represent 
combinatorial structures, enabling learning on route graphs. 
Our approach differs from end-to-end neural solvers: we use 
a GNN as a surrogate within NSGA-III to accelerate 
exploration while retaining constraint handling and final re-
evaluation with the original simulator [9]. Unlike end-to-end 
neural combinatorial solvers trained with reinforcement 
learning [9], which often struggle to strictly satisfy hard 
constraints such as flight time windows and no-fly zones, our 
proposed hybrid framework leverages the constraint-handling 
capability of NSGA-III while using GNNs solely for 
accelerating objective evaluation, ensuring the feasibility of 
the final solutions. 

Table I compares our work with prior studies across five 
key aspects. To the best of our knowledge, this is the first work 
to jointly address all five dimensions in a unified optimization 
framework. Prior UAV communication studies [1], [2], [4] 
focus on connectivity but neglect user experience and noise. 
Noise-aware path planning approaches [3] address 
community acceptance but typically neglect communication 
constraints. Orienteering formulations [5], [6] model reward 
collection but assume inexpensive evaluation. Surrogate-
assisted methods [7], [8] target generic expensive 
optimization without domain-specific route representation. 
Neural combinatorial solvers [9] learn end-to-end policies but 
lack explicit constraint handling. Our work uniquely 
combines all five aspects: user-centric QoE reward, 
communication QoS, noise acceptability, and GNN-based 
surrogate guidance within a constrained many-objective 
framework. 

Table I Comparison of related work across five key aspects. 
✓ indicates the aspect is explicitly addressed; × indicates it is 
not considered. Our work is the first to integrate all five 
dimensions within a unified optimization framework. 

 

III. PROBLEM FORMULATION 
We consider a set of points of interest (POIs) V = {v0, 

v1, ..., vN}, where v0 is a fixed depot (takeoff/landing site) 
and the remaining POIs are candidate landmarks. A route is 
an ordered sequence r = (v0, vi1, ..., viK, v0), where K ∈ [2, 
6] is the number of visited POIs (excluding the depot) and no 
POI is visited more than once. 

To capture the sequential nature of user experience, we 
discretize the polyline of the route r into sample points P(r) 
with a fixed interval dstep (as illustrated in Fig. 1(a)). At each 
sample point x ∈ P(r), we evaluate (i) a user-side reward 
(Quality of Experience, QoE proxy), (ii) a non-residential 
indicator (noise-acceptability proxy), and (iii) 
communication quality (Quality of Service, QoS proxy). 

 
A. POI-level reward as a QoE proxy 

       While visual attractiveness is subjective, we construct 
an interpretable, rule-based decomposition to obtain a 
reproducible POI reward. Each POI vi has attributes: 
iconicity Ii, visual prominence Vi, night-time attractiveness 
Ni, and waterfront/skyline relevance Wi. The POI weight 
is defined as: 

wi = 0.90 + 0.70 × (0.40Ii + 0.25Vi + 0.15Ni + 0.10Wi)   (1) 

 
which yields wi∈	[0.90, 1.53] under the above normalizations.  
 
B. Route-level QoE reward 
     For each sample point x (see Fig. 1(a)), the instantaneous 
reward aggregates contributions from nearby POIs with a 
distance attenuation kernel a(d). As shown in Fig. 1(b), this 
kernel is defined as:  
 
 

𝑆!"#$#	(𝑥) = ∑ 𝑤&& 𝑎(𝑑(𝑥, 𝑣&),  (2) 
 

𝑎(𝑑) = max	{0,1 − (𝑑 𝑑'()5 )*}   (3) 
 
The route-level QoE reward is the average over samples:  
 

𝑆𝑐𝑒𝑛𝑒(𝑟) = +
|-(/)|

∑ 𝑆!"#$#(𝑥))∈-(/) 			(4) 
 
which is a discrete approximation of a line integral along the 
route. 
 
C. Quietness (noise acceptability proxy) 
     Let Ωnonres denote the union of non-residential polygons 
(e.g., ports, parks, and waterfront commercial areas). For a 
sample point x, define q(x) = 1 if x ∈ Ωnonres and 0 otherwise. 
We define 
 

𝑄𝑢𝑖𝑒𝑡(𝑟) = +
|-(/)|

∑ 𝑞(𝑥),)∈-(/)   (5) 
 
i.e., the non-residential overflight ratio. 
 
 



D. Connectivity robustness (QoS proxy) 
      For each sample point x, we compute received signal 
reference power (RSRP) as 
 
RSRP(x) = 𝑚𝑎𝑥{3∈4}[𝑃6) − 𝐹𝑆𝑃𝐿H𝑑{3,)}I − 𝑛(𝑏, 𝑥)](6) 

 
where B is the set of base stations, Ptx is the transmit power, 
d{b,x} is the 3D distance from base station b to point x, FSPL(·) 
is the free-space path loss, and η(b,x) is an additional NLOS 
attenuation applied when the link is obstructed by buildings 
(determined via ray-intersection with the 3D city model). To 
emphasize robustness to deep fades and coverage holes, 
connectivity is evaluated by the 10th percentile along the 
route: 
 

Comm(𝑟) = 𝑃+8({𝑅𝑆𝑅𝑃(𝑥)|𝑥 ∈ 𝑃(𝑟)}).(7) 
 
E. Operational Cost and Constraints 
  We define the operational cost as the total route distance 
Dist(r) and minimize it: 
 

Dist(𝑟) = ∑ dist(𝑣&! , 𝑣&!"#)& . (8) 
 
Flight time is approximated by 
 

Time(𝑟) = 9:;<(=)
>

+𝐾 × 𝑡?/3&6 + 𝑡{@A}(9) 
 
where v is cruise speed	set to 60 km/h (1.0 km/min), torbit is 
the loiter time per visited POI (2.5 min), and tTO/L is the 
takeoff/landing overhead (≈1 min). We impose a time-
window constraint Tmin ≤Time(r) ≤Tmax (8–18 min in our 
experiments). 
  Finally, we solve a constrained four-objective optimization 
problem: maximize Scene(r), Quiet(r), and Comm(r) while 
minimizing Dist(r), subject to the above constraints. 
 

 

Fig. 1. Illustration of the QoE reward evaluation model. (a) 
Discrete approximation of the route: Sample points are 
generated along the route to measure the distance d to nearby 
POIs. (b) Distance attenuation kernel: The reward weight 
w(d) decays quadratically with distance, reaching zero at dmax 
= 3 km. 
 

IV. PROPOSED METHOD 
To efficiently solve the resource-constrained many-

objective optimization problem defined in Section III, we 
propose a framework that combines evolutionary 
computation with learning-based acceleration. Since direct 
evaluation of QoE and connectivity is computationally 
expensive, reliance on raw simulation during the search 

process is impractical. Therefore, this section details our 
approach in three parts. First, we describe the baseline 
NSGA-III algorithm for many-objective optimization. 
Second, we introduce a GNN surrogate model that predicts 
costly objectives from route structures. Third, we present the 
surrogate-guided framework that integrates both components 
to accelerate the search while preserving solution validity. 
The overall architecture of this surrogate-guided optimization 
framework is illustrated in Fig. 2. 

 
A. Baseline: NSGA-III  

We adopt NSGA-III as a baseline many-objective 
evolutionary algorithm due to its reference-direction-based 
selection, which is effective when optimizing three or more 
objectives [10]. Individuals encode a variable-length route as 
a random-key vector; a decoding step converts it to a POI 
sequence without repetition while enforcing start/end at the 
depot. 
 
B. GNN Surrogate Model 
Evaluating Scene(r), Quiet(r), and Comm(r) requires 

spatial simulation over many sample points, which becomes 
the main computational bottleneck. We learn a surrogate 
model fθ(r) that predicts these expensive objectives from the 
route structure.	While graph attention networks [11] offer 
adaptive weighting, we adopt GCN for computational 
efficiency. 

A route is represented as a graph G=(V,E) where nodes 
correspond to visited POIs. Each node vi has a feature 
vector xi=[lati,loni,Ii,Vi,Ni,Wi] (normalized coordinates and 
POI attributes). Directed edges follow the visiting order, 
forming a closed tour with self-loops. The adjacency matrix 
is symmetrically normalized: 𝐴\=D−1/2AD−1/2. 

We employ a two-layer Graph Convolutional Network 
(GCN) [13] with hidden dimension 64: H (l+1) = ReLU (Â H 
(l) W (l)).  A binary mask handles variable-length routes with 
K ∈ [2,6] visited POIs (excluding the depot), i.e., k = K+1 
∈ [3,7] nodes including the depot. Mean pooling over valid 
nodes produces a fixed-size route embedding ℝ64, which a 
two-layer MLP maps to the three predicted 
objectives (𝑆\,𝑄],𝐶\). 

The surrogate was trained offline on 5,000 randomly 
generated routes evaluated by the true simulator. We used 
Adam optimizer (learning rate 10−3) for 100 epochs, 
minimizing MSE with feature-wise normalization. To 
validate surrogate accuracy, we held out 500 routes for testing. 
Evaluation results showed that the GNN achieves R² = 0.94 
for Scene, R² = 0.92 for Quiet, and R² = 0.88 for Comm, 
confirming sufficient accuracy for guiding evolutionary 
search. 

 
C. Surrogate-guided NSGA-III 

 During evolutionary search, we compute Dist(r) and 
Time(r) exactly (computationally inexpensive), while 
replacing expensive objectives with surrogate predictions: 
(Ŝcene, Q̂uiet, Ĉomm)=f_θ(r).	Infeasible routes violating the 
time-window constraint are penalized using constraint 
violation values following standard practice in constrained 
multi-objective optimization [12]. NSGA-III selection is 
performed based on the predicted objective vector and the 
exact distance objective. After optimization, we re-evaluate 



the final non-dominated set with the original simulator to 
report true objective values. This hybrid approach preserves 
constraint handling and solution validity while significantly 
reducing expensive simulations inside the evolutionary loop. 
 

 
Fig. 2. Overview of the proposed GNN-guided NSGA-III 
framework. Left: offline training phase where the GNN 
surrogate is trained on 5,000 randomly sampled routes. Right: 
online optimization phase where the surrogate predicts 
expensive objectives (Scene, Quiet, Comm) during 
evolutionary search, and only the final Pareto set undergoes 
true evaluation. 
 

V. EXPERIMENTAL SETUP 
A. Urban scenario and data 
    We evaluate the proposed method in a realistic urban 
environment: the Yokohama waterfront district. The area 
contains dense high-rise buildings and mixed land-use 
(commercial/waterfront vs residential blocks), making it 
suitable to study the trade-off between user reward, 
connectivity robustness, and noise acceptability. We 
prepared a set of 24 POIs, including the depot at Landmark 
Tower and major landmarks (e.g., Red Brick Warehouse, 
Osanbashi Pier, Yamashita Park, marine structures, and high-
rise buildings). POI attributes (Ii,Vi,Ni,Wi) were computed 
based on explicitly defined rules described in Section III-A. 
Building geometry was obtained from open 3D city model 
data (e.g., CityGML/PLATEAU), and land-use polygons 
were used to define non-residential regions [14]. Base-station 
locations were synthetically generated following typical 
urban macro-cell deployment patterns (inter-site distance 500 
m, antenna height 25 m). 
 
B. Parameters  

Unless stated otherwise, we used dstep= 100 m for route 
sampling, dmax= 3 km for the QoE kernel, cruise speed v= 60 
km/h, torbit = 2.5 min per POI and tTO/L≈ 1.0 min. The number 
of visited POIs was constrained to K ∈	 [2, 6]. The time 

constraint was set to 8 ≤ Time(r) ≤ 18 minutes. The flight 
altitude was fixed at 150 m above ground level. 

For the communication model, we assumed a carrier 
frequency of 2.1 GHz and a base station transmit power of 43 
dBm. The path loss was calculated using the Free Space Path 
Loss (FSPL) model with additional attenuation for non-line-
of-sight (NLOS) conditions caused by building blockages. 
 NSGA-III was configured with a population size of 250 
and run for 200 generations. We utilized Simulated Binary 
Crossover (SBX) with a probability of pc= 1.0 and a 
distribution index of η c= 20. Polynomial Mutation was 
applied with a probability of pm=1/L (where L is the number 
of variables) and a distribution index of ηm= 20. Reference 
directions were generated using the Das–Dennis structured 
method with division parameter p = 12; because the number 
of directions can exceed the population size, the niching 
procedure reuses reference directions as needed. The 
surrogate was queried for Scene, Quiet, and Comm 
predictions, while Dist and Time were computed exactly. 
 
C. Rationale for baseline selection 
      We compare the proposed GNN-guided approach against 
standard NSGA-III with true evaluation rather than other 
surrogate methods (e.g., GP-based SAEA) for the following 
reasons: (1) Isolation of contribution: Using the same NSGA-
III framework for both methods isolates the effect of the GNN 
surrogate, enabling fair assessment of surrogate guidance 
without confounding algorithmic differences. (2) Practical 
relevance: NSGA-III with true evaluation represents the 
realistic baseline that practitioners would use without 
surrogate assistance, making our comparison directly 
relevant to operational deployment. (3) Computational focus: 
Our primary claim is efficiency improvement through 
surrogate prediction; comparing against the same algorithm 
with/without surrogate directly validates this claim. 
 
D. Evaluation protocol 

After the optimization, we extracted the non-dominated 
solutions and evaluated them with the true simulator. We 
report the number of non-dominated solutions, best-achieved 
objective values, and representative routes. 

VI. RESULTS AND DISCUSSION 
A. Quantitative comparison of Pareto solutions 

Table Ⅱ summarizes	 the	 non-dominated	 solutions	
obtained	 by	 each	 method	 after	 true	 re-evaluation.	 The	
proposed	 GNN-guided	 approach	 yields	 a	 substantially	

Table Ⅱ Performance comparison of Pareto-optimal solutions after true evaluation. Arrows indicate optimization direction 
(↑: higher is better, ↓: lower is better). Bold values indicate superior performance. 
 

Method #ND Best  
QoE (Scene)↑ 

Best Quiet↑ Best  
QoS (Comm)↑ 

Min  
Dist [km]↓ 

Avg  
Time [min] 

Baseline 20 23.7 1 -45.05 0.97 17.33 
Proposed  
(GNN-guided) 

92 23.72 1 -45.27 0.97 17.5 

 Table Ⅲ Summary of objective statistics computed from the true non-dominated sets (provided by the experiment outputs). 

 
 



larger	 true	non-dominated	set	(92	solutions)	compared	
to	 the	 baseline	 (20	 solutions).	 This	 indicates	 that	
surrogate	guidance	can	expand	the	set	of	candidate	trade-
off	 routes	available	 for	decision	makers,	even	when	the	
final	reporting	is	done	on	true	objective	values.	
In	 terms	 of	 best-achieved	 objective	 values,	 the	 two	

methods	 are	 comparable:	 both	 reach	 the	 maximum	
quietness	 value	 (1.0)	 and	 the	 same	minimum	 distance	
(0.97	 km).	 The	 proposed	method	 slightly	 improves	 the	
best	Scene	reward	(23.72	vs.	23.70),	while	 the	baseline	
achieves	 a	marginally	 better	 best	 communication	 value	
(−45.05	dBm	vs.	−45.27	dBm;	higher	is	better).	Average	
flight	time	remains	similar	(17.50	vs.	17.33	min).	Overall,	
these	 results	 suggest	 that	 the	 surrogate-guided	 search	
can	 maintain	 solution	 quality	 while	 providing	 a	 richer	
Pareto	set.	

Table III summarizes the statistics of the obtained non-
dominated solutions. It is noteworthy that while the Baseline 
solutions are clustered in a narrow region (resulting in lower 
variance and seemingly better averages for distance), the 
Proposed method exhibits a much broader distribution of 
objective values. This statistical difference indicates that the 
GNN-guided surrogate successfully prevents premature 
convergence and enables the exploration of diverse trade-off 
regions—such as routes that maximize quietness or rewards 
at the cost of longer distances—that the Baseline failed to 
discover. Consequently, the proposed framework provides 
decision makers with a significantly more comprehensive set 
of options (92 vs. 20 solutions).	
Computational	 cost	 is	 where	 the	 proposed	 method	

provides	a	clear	advantage.	We	define	a	“true	evaluation”	
as	a	call	to	the	expensive	simulator	that	computes	Scene,	
Quiet,	 and	 Comm	 for	 a	 route.	 The	 baseline	 required	
approximately	 Npop×Ngen=250×200=50,000	 true	
evaluations.	 In	 contrast,	 the	proposed	method	 required	
5,000	 true	 evaluations	 for	 surrogate	 training,	 plus	Nfinal	

true	evaluations	to	re-evaluate	predicted	non-dominated	
candidates	 after	 removing	duplicates	 (Nfinal=400	 in	 our	
setup),	totaling	5,400	true	evaluations	(≈89%	reduction).	
Fig.	 3	 visualizes	 this	 reduction,	 highlighting	 the	

efficiency	benefit	of	surrogate-guided	search.	
 

B. Representative routes  
    Fig. 4 visualizes representative routes for each method in 
(a) and (b), and summarizes the route overview in (c). The 
surrogate-guided solutions tend to concentrate on a compact 
high-reward corridor in the waterfront area, consistent with 
the spatial distribution of high-weight landmarks. In contrast, 
the baseline often explores more spatially dispersed routes. 
This qualitative difference is useful for decision support: 
corridor-focused routes can be attractive when planners 
prefer concentrated flight paths (e.g., for monitoring, public 
communication, or operational regularity), whereas more 
dispersed routes may be preferred when emphasizing other 
objectives such as connectivity robustness. 
 

Fig. 3. Comparison of computational cost. The proposed 
GNN-guided method reduces the number of expensive 
simulation calls by approximately 89% compared to the 
baseline. 
 

 
 
(c) 

 
Fig. 4. Representative routes in the Yokohama district (baseline vs proposed). (a) Balance-route example (red: baseline, blue: 
proposed, green: noise-sensitive area). (b) Showcase-route example (legend as in (a)). (c) Route sequences and the corresponding 
evaluation metrics for the representative routes.  

(a) (b) 



C. Trade-off analysis  
In the studied district, user reward and quietness are often 

aligned because attractive landmarks are located along the 
waterfront where non-residential overflight is possible.    

However, connectivity robustness can conflict with 
distance and reward when the best-connected region (close to 
base stations) does not coincide with the highest-reward 
corridor. This highlights the need for true multi-objective 
optimization rather than single-metric routing, and motivates 
the use of Pareto sets for operational decision making. 

 
D. Limitations and future work  

Our study has several limitations that suggest directions for 
future research. First, the quietness metric is a land-use proxy 
and does not model acoustic propagation; integrating 
physics-based noise footprint models (e.g., helicopter noise 
contours) would strengthen environmental validity. Second, 
the QoE reward uses a distance-based kernel; incorporating 
3D viewshed analysis with building occlusion would better 
capture visual exposure. Third, while the GNN surrogate 
accelerates search, it may reduce Pareto diversity; 
uncertainty-aware active learning could mitigate this. Finally, 
our evaluation uses a single urban scenario with 24 POIs; 
larger-scale studies across multiple cities would improve 
generalizability. 

VII. CONCLUSION 
This paper introduced a QoS- and QoE-aware route-

planning framework for reward-collecting UAM services in 
dense urban environments, where passenger experience, 
connectivity robustness, and community acceptability must 
be balanced under strict flight-time constraints. We 
formulated route design as a constrained four-objective 
optimization problem—maximizing scenic exposure reward 
(QoE), non-residential overflight ratio (noise-acceptability 
proxy), and 10th-percentile RSRP (QoS robustness) while 
minimizing route length—and proposed a GNN-guided 
NSGA-III framework to reduce the cost of expensive route-
level simulations. 

In a realistic Yokohama waterfront case study with 24 
POIs and open 3D city data, the learned GNN surrogate 
achieved strong predictive accuracy (R² ≥ 0.88 for the 
expensive objectives) and reduced expensive simulator calls 
by approximately 89%. After true re-evaluation, the proposed 
method produced a substantially larger true non-dominated 
set (92 vs. 20 routes) while maintaining comparable best-
achieved objective values. These results indicate that 
surrogate-guided many-objective optimization can serve as a 
practical decision support approach for designing UAM 
routes that are attractive to users and operationally feasible 
without incurring prohibitive simulation cost. 

Future work will incorporate higher-fidelity 3D viewshed 
and physics-based noise propagation models, and extend 
surrogate guidance with uncertainty-aware active learning to 
improve robustness and scalability to larger urban instances 
and operational settings. 
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