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Abstract—UAM route planning for aerial tourism must
balance passenger experience, communication reliability, and
community acceptability. These objectives often conflict and are
computationally expensive to evaluate, as they depend on high-
resolution urban geometry and geospatial data. We formulate
route design as a four-objective optimization problem under
flight-time constraints. The objectives are: (1) maximizing
along-route landmark-exposure reward as a QoE proxy, (2)
maximizing non-residential overflight ratio as a noise-
acceptability proxy, (3) maximizing the 10th-percentile RSRP as
a QoS robustness proxy, and (4) minimizing route length. To
reduce computational cost, we propose a GNN-guided NSGA-
III framework in which a graph neural network predicts
expensive objectives from a route graph during evolutionary
search, and the final non-dominated set is re-evaluated using the
original simulator. In a Yokohama waterfront case study with
24 POIs and open 3D city data, the surrogate achieves strong
predictive accuracy, with coefficients of determination of 0.94,
0.92, and 0.88 for Scene, Quiet, and Comm, respectively, and
reduces expensive simulation calls by approximately 89%. After
true re-evaluation, the proposed approach produces a
substantially larger true non-dominated set (92 solutions vs. 20
for the baseline) while maintaining comparable best-achieved
objective values, enabling richer trade-off exploration for
decision support in UAM route design.

Keywords— Urban air mobility, UAV routing, QoS and QoE,
multi-objective optimization, NSGA-I11, surrogate model, graph
neural network, noise-aware planning.

I. INTRODUCTION

Urban air mobility (UAM) services are expanding beyond
logistics and inspection to include passenger-facing
applications such as aerial tourism in dense urban areas. In
such scenarios, the route itself becomes part of the service
quality. Passengers prefer routes that pass near attractive
landmarks. Operators must ensure reliable connectivity for
safety-critical communication [1], [2]. In addition, flight paths
must avoid noise-sensitive areas to maintain social acceptance
[3]. Designing routes that simultancously satisfy these
heterogeneous requirements is challenging because improving
one metric (e.g., collecting more reward) can degrade others
(e.g., increasing distance, time, or exposure to residential
areas).

From a computational perspective, realistic evaluation of
user reward and connectivity is expensive because it requires
dense spatial sampling along candidate routes. User-centric
reward may depend on continuous spatial exposure to
landmarks along a trajectory, and connectivity depends on
urban blockage and base-station deployment. These
components act as black-box functions embedded in a
combinatorial ~ optimization = problem.  Consequently,

evolutionary search with full simulation for every candidate
becomes prohibitively slow as the solution space grows.

This work addresses these challenges by combining (i) a
multi-objective formulation that couples user-oriented reward,
network QoS (Quality of Service) robustness, environmental
acceptability, and operational cost under resource constraints,
and (ii) a learning-based surrogate that accelerates many-
objective evolutionary optimization. Although the motivating
application is an urban aerial tour, the formulation is generic
and applies to reward-collecting UAM services that must
remain connected and socially acceptable.

Our main contributions are as follows: (1) We formulate
UAM route planning as a four-objective optimization problem
that jointly considers QoE (Quality of Experience) reward,
noise acceptability, connectivity robustness, and operational
cost under flight-time constraints. (2) We propose a GNN
(Graph Neural Network)-guided Non-dominated Sorting
Genetic Algorithm III (NSGA-III) framework where a graph
neural network predicts expensive objectives with an R? of
over 0.88, reducing simulation calls by 89%. (3) We
demonstrate the framework's effectiveness on a realistic
Yokohama scenario with 24 POIs using open 3D city data,
showing that surrogate guidance discovers high-quality routes
with significantly reduced computational cost.

II. RELATED WORK

The UAM routing framework proposed in this study
addresses the intersection of multiple technical challenges:
ensuring reliable connectivity, mitigating environmental
impact, and solving complex multi-objective optimization
problems. Accordingly, this section reviews the related
literature and background from four key perspectives relevant
to our formulation: (A) communication-aware routing
strategies; (B) noise and acceptability considerations for low-
altitude operations; (C) mathematical models for resource-
constrained reward maximization; and (D) surrogate-assisted
optimization techniques for computationally expensive
objectives.

A. Communication-aware UAV/UAM routing

Cellular-connected UAVs have been extensively studied
for 4G/5G networks, highlighting challenges such as altitude-
dependent interference and urban blockage [1], [2]. Several
works optimize trajectories to improve coverage or reliability
under cellular constraints, often using simplified channel
models or discrete waypoints [4].

B. Noise- and acceptability-aware planning

Noise footprints and community acceptance are
increasingly recognized as critical for low-altitude aerial



operations. Prior studies have considered noise-aware path
planning using noise assessment models; however, jointly
integrating noise, connectivity, and user reward remains
underexplored [3].

C.  Resource-constrained
orienteering

reward maximization and

The orienteering problem and its variants model route
planning under time/budget constraints to collect spatially
distributed rewards [5], [6]. These formulations are relevant to
UAV data collection and user-centric routing but typically
assume rewards that are inexpensive to evaluate.

D. Surrogate-assisted and learning-based optimization

Surrogate-assisted evolutionary algorithms (SAEAs) are
effective for expensive multi-objective optimization by
learning approximations of costly objectives [7], [8]. Recently,
graph neural networks have been used to represent
combinatorial structures, enabling learning on route graphs.
Our approach differs from end-to-end neural solvers: we use
a GNN as a surrogate within NSGA-III to accelerate
exploration while retaining constraint handling and final re-
evaluation with the original simulator [9]. Unlike end-to-end
neural combinatorial solvers trained with reinforcement
learning [9], which often struggle to strictly satisfy hard
constraints such as flight time windows and no-fly zones, our
proposed hybrid framework leverages the constraint-handling
capability of NSGA-III while using GNNs solely for
accelerating objective evaluation, ensuring the feasibility of
the final solutions.

Table I compares our work with prior studies across five
key aspects. To the best of our knowledge, this is the first work
to jointly address all five dimensions in a unified optimization
framework. Prior UAV communication studies [1], [2], [4]
focus on connectivity but neglect user experience and noise.
Noise-aware path planning approaches [3] address
community acceptance but typically neglect communication
constraints. Orienteering formulations [5], [6] model reward
collection but assume inexpensive evaluation. Surrogate-
assisted methods [7], [8] target generic expensive
optimization without domain-specific route representation.
Neural combinatorial solvers [9] learn end-to-end policies but
lack explicit constraint handling. Our work uniquely
combines all five aspects: user-centric QoE reward,
communication QoS, noise acceptability, and GNN-based
surrogate guidance within a constrained many-objective
framework.

Table I Comparison of related work across five key aspects.
v indicates the aspect is explicitly addressed; x indicates it is
not considered. Our work is the first to integrate all five
dimensions within a unified optimization framework.

Study QoE QoS Noise Surrogate [Multi-obj
Reward [(Comm) [Aware Model Optim.
Zeng etal. [1] X v X X X
3GPP TR 36.777 [2] x v X X X
Tanetal. [3] X X v x x
Behjati et al. [4] X v X X X
Vansteenwegen et al. [5] v X x X X
Gunawan et al. [6] v X X x X
He etal. [7] X x x X v
Diaz-Manriquez et al. [8] X X X v v
Kool et al. [9] v X x v X
Ours v v v v v

III. PROBLEM FORMULATION

We consider a set of points of interest (POIs) V = {v0,
vl, ..., VN}, where v0 is a fixed depot (takeoff/landing site)
and the remaining POIs are candidate landmarks. A route is
an ordered sequence r = (v0, vil, ..., viK, v0), where K € [2,
6] is the number of visited POIs (excluding the depot) and no
POI is visited more than once.

To capture the sequential nature of user experience, we
discretize the polyline of the route r into sample points P(r)
with a fixed interval dswp (as illustrated in Fig. 1(a)). At each
sample point x € P(r), we evaluate (i) a user-side reward
(Quality of Experience, QoE proxy), (i) a non-residential
indicator ~ (noise-acceptability ~ proxy), and  (iii)
communication quality (Quality of Service, QoS proxy).

A. POI-level reward as a QoFE proxy

While visual attractiveness is subjective, we construct
an interpretable, rule-based decomposition to obtain a
reproducible POI reward. Each POI v; has attributes:
iconicity /i, visual prominence V;, night-time attractiveness
N;, and waterfront/skyline relevance Wi. The POI weight
is defined as:

wi=0.90+0.70 x (0.40fi + 0.25Vi+ 0.15Ni + 0.103) (1)

which yields wi€ [0.90, 1.53] under the above normalizations.

B. Route-level QoF reward

For each sample point x (see Fig. 1(a)), the instantaneous
reward aggregates contributions from nearby POIs with a
distance attenuation kernel a(d). As shown in Fig. 1(b), this
kernel is defined as:

Sscene (X) = Xiw; a(d(x,vy), (2)
a(d) =max{0,1—(%/; )} ()
max
The route-level QoE reward is the average over samples:

1
Scene(r) = PO erP(r) Sscene (%) (4)

which is a discrete approximation of a line integral along the
route.

C. Quietness (noise acceptability proxy)

Let Quonres denote the union of non-residential polygons
(e.g., ports, parks, and waterfront commercial areas). For a
sample point x, define q(x) = 1 if X € Quonres and 0 otherwise.
We define

Quiet(r) = = Tepn (), (5)

i.e., the non-residential overflight ratio.



D. Connectivity robustness (QoS proxy)

For each sample point x, we compute received signal
reference power (RSRP) as
RSRP(x) = maxpepy[Pex — FSPL(dgp ) — n(b, x)](6)
where B is the set of base stations, P is the transmit power,
dsb.x; 1s the 3D distance from base station b to point x, FSPL(+)
is the free-space path loss, and n(b,x) is an additional NLOS
attenuation applied when the link is obstructed by buildings
(determined via ray-intersection with the 3D city model). To
emphasize robustness to deep fades and coverage holes,
connectivity is evaluated by the 10th percentile along the

route:

Comm(r) = P;,({RSRP(x)|x € P(r)}.(7)

E. Operational Cost and Constraints
We define the operational cost as the total route distance
Dist(r) and minimize it:

Dist(r) = ); dist(vi]., vij+1). (8)

Flight time is approximated by

Time(r) = Dm(r)

+ K X Lorpit T t{TO}(9)
where v is cruise speed set to 60 km/h (1.0 km/min), torbi is
the loiter time per visited POI (2.5 min), and trow is the
takeoff/landing overhead (=1 min). We impose a time-
window constraint Tmin <Time(r) <Tmax (8—18 min in our
experiments).

Finally, we solve a constrained four-objective optimization
problem: maximize Scene(r), Quiet(r), and Comm(r) while
minimizing Dist(r), subject to the above constraints.

1
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Fig. 1. Illustration of the QoE reward evaluation model. (a)
Discrete approximation of the route: Sample points are
generated along the route to measure the distance d to nearby
POIs. (b) Distance attenuation kernel: The reward weight
w(d) decays quadratically with distance, reaching zero at dmax
=3 km.

IV. PROPOSED METHOD

To efficiently solve the resource-constrained many-
objective optimization problem defined in Section III, we
propose a framework that combines evolutionary
computation with learning-based acceleration. Since direct
evaluation of QoE and connectivity is computationally
expensive, reliance on raw simulation during the search

process is impractical. Therefore, this section details our
approach in three parts. First, we describe the baseline
NSGA-III algorithm for many-objective optimization.
Second, we introduce a GNN surrogate model that predicts
costly objectives from route structures. Third, we present the
surrogate-guided framework that integrates both components
to accelerate the search while preserving solution validity.
The overall architecture of this surrogate-guided optimization
framework is illustrated in Fig. 2.

A. Baseline: NSGA-II1

We adopt NSGA-III as a baseline many-objective
evolutionary algorithm due to its reference-direction-based
selection, which is effective when optimizing three or more
objectives [10]. Individuals encode a variable-length route as
a random-key vector; a decoding step converts it to a POI
sequence without repetition while enforcing start/end at the
depot.

B. GNN Surrogate Model

Evaluating Scene(r), Quiet(r), and Comm(r) requires
spatial simulation over many sample points, which becomes
the main computational bottleneck. We learn a surrogate
model fo(r) that predicts these expensive objectives from the
route structure. While graph attention networks [11] offer
adaptive weighting, we adopt GCN for computational
efficiency.

A route is represented as a graph G=(V,E) where nodes
correspond to visited POIs. Each node vi has a feature
vector xi=[lat;,lon;,I;, Vi, N;, Wi] (normalized coordinates and
POI attributes). Directed edges follow the visiting order,
forming a closed tour with self-loops. The adjacency matrix
is symmetrically normalized: A=D"?AD "2,

We employ a two-layer Graph Convolutional Network
(GCN) [13] with hidden dimension 64: H*D=ReLU (A H
O'W ), A binary mask handles variable-length routes with
K € [2,6] visited POIs (excluding the depot), i.e., k = K+1
€ [3,7] nodes including the depot. Mean pooling over valid
nodes produces a fixed-size route embedding R*, which a
two-layer MLP maps to the three predicted
objectives (5,0,0).

The surrogate was trained offline on 5,000 randomly
generated routes evaluated by the true simulator. We used
Adam optimizer (learning rate 107%) for 100 epochs,
minimizing MSE with feature-wise normalization. To
validate surrogate accuracy, we held out 500 routes for testing.
Evaluation results showed that the GNN achieves R? = 0.94
for Scene, R? = 0.92 for Quiet, and R? = 0.88 for Comm,
confirming sufficient accuracy for guiding evolutionary
search.

C. Surrogate-guided NSGA-II1

During evolutionary search, we compute Dist(r) and
Time(r) exactly (computationally inexpensive), while
replacing expensive objectives with surrogate predictions:
(Scene, Quiet, Comm)=f_6(r). Infeasible routes violating the
time-window constraint are penalized using constraint
violation values following standard practice in constrained
multi-objective optimization [12]. NSGA-III selection is
performed based on the predicted objective vector and the
exact distance objective. After optimization, we re-evaluate



the final non-dominated set with the original simulator to
report true objective values. This hybrid approach preserves
constraint handling and solution validity while significantly
reducing expensive simulations inside the evolutionary loop.

Offline Training Phase Online Optimization Phase

Random Routes ‘ NSGA-IIl || GNN Predict Selection &

T Pop Init (fast) Mutation
True Eval | 4
(N=5000) | Final Pareto Set

]

) ]
Train GNN
Surrogate True Evaluation
(Final solutions only)

Fig. 2. Overview of the proposed GNN-guided NSGA-III
framework. Left: offline training phase where the GNN
surrogate is trained on 5,000 randomly sampled routes. Right:
online optimization phase where the surrogate predicts
expensive objectives (Scene, Quiet, Comm) during
evolutionary search, and only the final Pareto set undergoes
true evaluation.

V. EXPERIMENTAL SETUP

A. Urban scenario and data

We evaluate the proposed method in a realistic urban
environment: the Yokohama waterfront district. The area
contains dense high-rise buildings and mixed land-use
(commercial/waterfront vs residential blocks), making it
suitable to study the trade-off between user reward,
connectivity robustness, and noise acceptability. We
prepared a set of 24 POlIs, including the depot at Landmark
Tower and major landmarks (e.g., Red Brick Warehouse,
Osanbashi Pier, Yamashita Park, marine structures, and high-
rise buildings). POI attributes (Ii,Vi,Ni,Wi) were computed
based on explicitly defined rules described in Section I1I-A.
Building geometry was obtained from open 3D city model
data (e.g., CityGML/PLATEAU), and land-use polygons
were used to define non-residential regions [ 14]. Base-station
locations were synthetically generated following typical
urban macro-cell deployment patterns (inter-site distance 500
m, antenna height 25 m).

B. Parameters

Unless stated otherwise, we used dstep= 100 m for route
sampling, dmax= 3 km for the QoE kernel, cruise speed v= 60
km/h, torwit= 2.5 min per POI and tror~ 1.0 min. The number
of visited POIs was constrained to K € [2, 6]. The time

constraint was set to 8 < Time(r) < 18 minutes. The flight
altitude was fixed at 150 m above ground level.

For the communication model, we assumed a carrier
frequency of 2.1 GHz and a base station transmit power of 43
dBm. The path loss was calculated using the Free Space Path
Loss (FSPL) model with additional attenuation for non-line-
of-sight (NLOS) conditions caused by building blockages.

NSGA-III was configured with a population size of 250
and run for 200 generations. We utilized Simulated Binary
Crossover (SBX) with a probability of p~= 1.0 and a
distribution index of 77 .= 20. Polynomial Mutation was
applied with a probability of pm=1/L (where L is the number
of variables) and a distribution index of 77.,= 20. Reference
directions were generated using the Das—Dennis structured
method with division parameter p = 12; because the number
of directions can exceed the population size, the niching
procedure reuses reference directions as needed. The
surrogate was queried for Scene, Quiet, and Comm
predictions, while Dist and Time were computed exactly.

C. Rationale for baseline selection

We compare the proposed GNN-guided approach against
standard NSGA-III with true evaluation rather than other
surrogate methods (e.g., GP-based SAEA) for the following
reasons: (1) Isolation of contribution: Using the same NSGA-
[T framework for both methods isolates the effect of the GNN
surrogate, enabling fair assessment of surrogate guidance
without confounding algorithmic differences. (2) Practical
relevance: NSGA-III with true evaluation represents the
realistic baseline that practitioners would use without
surrogate assistance, making our comparison directly
relevant to operational deployment. (3) Computational focus:
Our primary claim is efficiency improvement through
surrogate prediction; comparing against the same algorithm
with/without surrogate directly validates this claim.

D. Evaluation protocol

After the optimization, we extracted the non-dominated
solutions and evaluated them with the true simulator. We
report the number of non-dominated solutions, best-achieved
objective values, and representative routes.

VI. RESULTS AND DISCUSSION

A. Quantitative comparison of Pareto solutions

Table II summarizes the non-dominated solutions
obtained by each method after true re-evaluation. The
proposed GNN-guided approach yields a substantially

Table II Performance comparison of Pareto-optimal solutions after true evaluation. Arrows indicate optimization direction
(1: higher is better, |: lower is better). Bold values indicate superior performance.

Method #ND Best Best Quiet? Best Min Avg

QoE (Scene)t QoS (Comm)? Dist [km]| Time [min]
Baseline 20 23.7 1 -45.05 0.97 17.33
Proposed 92 23.72 1 -45.27 0.97 17.5
(GNN-guided)

Table Il Summary of objective statistics computed from the true non-dominated sets (provided by the experiment outputs).

method  nd scene_ |[quiet_ma comm max |dist min scene_m quiet_mean comm_meal|dist_mea ‘timefminfm time_min_m [time_min_me
- max  [x - - ean - n n in lax lan

baseline 20.00] 23.70 1.00] -45.05| 0.97 23.46 1.00] -48.30, 1.33 16.97] 17.71] 17.33

lguided 92.00] 23.72 1.00 -45.27, 0.97| 23.44 1.00 -51.44 1.51 16.97 18.00] 17.51




larger true non-dominated set (92 solutions) compared
to the baseline (20 solutions). This indicates that
surrogate guidance can expand the set of candidate trade-
off routes available for decision makers, even when the
final reporting is done on true objective values.

In terms of best-achieved objective values, the two
methods are comparable: both reach the maximum
quietness value (1.0) and the same minimum distance
(0.97 km). The proposed method slightly improves the
best Scene reward (23.72 vs. 23.70), while the baseline
achieves a marginally better best communication value
(—45.05 dBm vs. —45.27 dBm; higher is better). Average
flight time remains similar (17.50 vs. 17.33 min). Overall,
these results suggest that the surrogate-guided search
can maintain solution quality while providing a richer
Pareto set.

Table III summarizes the statistics of the obtained non-
dominated solutions. It is noteworthy that while the Baseline
solutions are clustered in a narrow region (resulting in lower
variance and seemingly better averages for distance), the
Proposed method exhibits a much broader distribution of
objective values. This statistical difference indicates that the
GNN-guided surrogate successfully prevents premature
convergence and enables the exploration of diverse trade-off
regions—such as routes that maximize quietness or rewards
at the cost of longer distances—that the Baseline failed to
discover. Consequently, the proposed framework provides
decision makers with a significantly more comprehensive set
of options (92 vs. 20 solutions).

Computational cost is where the proposed method
provides a clear advantage. We define a “true evaluation”
as a call to the expensive simulator that computes Scene,
Quiet, and Comm for a route. The baseline required
approximately NpopXNgen=250%200=50,000 true
evaluations. In contrast, the proposed method required
5,000 true evaluations for surrogate training, plus Nfinal
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Green: Noise
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’/ ms Blue: Proposed

(GNN-Guided)

true evaluations to re-evaluate predicted non-dominated
candidates after removing duplicates (Nfina=400 in our
setup), totaling 5,400 true evaluations (=89% reduction).

Fig. 3 wvisualizes this reduction, highlighting the
efficiency benefit of surrogate-guided search.

£ 60000

§ 50000

S 40000

= 30000

E 20000

%S 10000 -89% | ¢
b 0 —

g Baseline (NSGA-III) Proposed (GNN-
= Guided)

Fig. 3. Comparison of computational cost. The proposed
GNN-guided method reduces the number of expensive
simulation calls by approximately 89% compared to the
baseline.

B. Representative routes

Fig. 4 visualizes representative routes for each method in
(a) and (b), and summarizes the route overview in (c). The
surrogate-guided solutions tend to concentrate on a compact
high-reward corridor in the waterfront area, consistent with
the spatial distribution of high-weight landmarks. In contrast,
the baseline often explores more spatially dispersed routes.
This qualitative difference is useful for decision support:
corridor-focused routes can be attractive when planners
prefer concentrated flight paths (e.g., for monitoring, public
communication, or operational regularity), whereas more
dispersed routes may be preferred when emphasizing other
objectives such as connectivity robustness.

Showcase Route

Red: Baseline

——— Blue: Proposed
(GNN-Guided)

Green: Noise
sensitive area
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()
method rep n_poi [route scene quiet dist_km |comm time_min
baseline showcase 6.00|LM -> QA -> QB -> QC -> CC -> CN -> KP -> LM 23.70 1.00 1.69 -45.57| 17.69
baseline balanced 6.00[LM -> QA -> QB -> QC -> CC -> KP -> NM -> LM 23.63 1.00 1.40 -45.49 17.40
guided showcase 6.00[LM -> QA -> QB -> QC -> KP -> CC -> CN -> LM 23.72 1.00 1.96 -45.55 17.96
guided balanced 6.00[LM -> QA -> QB -> QC ->IC -> CC -> NM -> LM 23.57 1.00 1.35 -49.04 17.35

Fig. 4. Representative routes in the Yokohama district (baseline vs proposed). (a) Balance-route example (red: baseline, blue:
proposed, green: noise-sensitive area). (b) Showcase-route example (legend as in (a)). (c) Route sequences and the corresponding
evaluation metrics for the representative routes.



C. Trade-off analysis

In the studied district, user reward and quietness are often
aligned because attractive landmarks are located along the
waterfront where non-residential overflight is possible.

However, connectivity robustness can conflict with
distance and reward when the best-connected region (close to
base stations) does not coincide with the highest-reward
corridor. This highlights the need for true multi-objective
optimization rather than single-metric routing, and motivates
the use of Pareto sets for operational decision making.

D. Limitations and future work

Our study has several limitations that suggest directions for
future research. First, the quietness metric is a land-use proxy
and does not model acoustic propagation; integrating
physics-based noise footprint models (e.g., helicopter noise
contours) would strengthen environmental validity. Second,
the QoE reward uses a distance-based kernel; incorporating
3D viewshed analysis with building occlusion would better
capture visual exposure. Third, while the GNN surrogate
accelerates search, it may reduce Pareto diversity;
uncertainty-aware active learning could mitigate this. Finally,
our evaluation uses a single urban scenario with 24 POls;
larger-scale studies across multiple cities would improve
generalizability.

VII. CONCLUSION

This paper introduced a QoS- and QoE-aware route-
planning framework for reward-collecting UAM services in
dense urban environments, where passenger experience,
connectivity robustness, and community acceptability must
be balanced under strict flight-time constraints. We
formulated route design as a constrained four-objective
optimization problem—maximizing scenic exposure reward
(QoE), non-residential overflight ratio (noise-acceptability
proxy), and 10th-percentile RSRP (QoS robustness) while
minimizing route length—and proposed a GNN-guided
NSGA-III framework to reduce the cost of expensive route-
level simulations.

In a realistic Yokohama waterfront case study with 24
POIs and open 3D city data, the learned GNN surrogate
achieved strong predictive accuracy (R? > 0.88 for the
expensive objectives) and reduced expensive simulator calls
by approximately 89%. After true re-evaluation, the proposed
method produced a substantially larger true non-dominated
set (92 vs. 20 routes) while maintaining comparable best-
achieved objective values. These results indicate that
surrogate-guided many-objective optimization can serve as a
practical decision support approach for designing UAM
routes that are attractive to users and operationally feasible
without incurring prohibitive simulation cost.

Future work will incorporate higher-fidelity 3D viewshed
and physics-based noise propagation models, and extend
surrogate guidance with uncertainty-aware active learning to
improve robustness and scalability to larger urban instances
and operational settings.
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