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Abstract—The tourism industry is currently witnessing a shift
from static search engines to generative AI planners. However,
existing Large Language Model (LLM) systems face two critical
limitations: ”data bias,” where English-centric training data ob-
scures niche local destinations, and ”probabilistic hallucination,”
where models generate logistically infeasible itineraries. This
paper proposes a Hybrid Itinerary Planner that bridges these
gaps by integrating Generative AI with deterministic Constraint
Programming. We introduce the ”BL-300” (Busan-Local) dataset,
a proprietary knowledge graph of 300 native-only locations.
Our architecture employs a two-stage pipeline: (1) An offline
module uses Google Gemini Pro as a parametric knowledge
engine to perform zero-shot data augmentation, converting sparse
local metadata into rich semantic vectors; (2) An online engine
utilizes a Constraint Satisfaction Solver (CP-SAT) to enforce
strict logistical validity. Experimental results demonstrate that
this hybrid approach effectively mitigates hallucination risks
while capturing the semantic nuance of abstract user queries,
providing a scalable solution for culturally grounded travel
planning.

Index Terms—Hybrid Systems, Itinerary Recommendation,
Large Language Models, Constraint Satisfaction Problem, Se-
mantic Search

I. INTRODUCTION

Travel planning is a task that significantly impacts the expe-
riences of tourists, particularly in culturally and linguistically
distinct regions such as South Korea. Traditional platforms,
including mapping services like Google Maps or Naver Maps
and services like TripAdvisor, have long dominated the land-
scape. However, these solutions often rely on static recom-
mendation algorithms and fail to account for personalized
constraints such as time, budget, or real-time environmental
conditions. Automated methods for tourism recommendation
not only facilitate decision-making but also enhance user satis-
faction by providing personalized experiences. Recent research
has shifted from simple filtering to sophisticated data-driven
architectures. Shrestha et al. [1] introduced a personalized
recommender system for Nepal, utilizing supervised machine
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learning models, specifically Random Forest and Gradient
Boosting, to analyze tourist demographics, spending behavior,
and satisfaction metrics. Their ”Tourist Parametric Weighted
Algorithm” effectively ranks destinations based on weighted
attributes like cost and popularity [1]. More recently, Flórez
et al. [2] emphasized the importance of context-awareness,
proposing a system that integrates Deep Neural Networks with
ontology-based knowledge to manage complex environmental
constraints in real-time, particularly in sensitive ecosystems
like the Santurbán paramo.

Despite these advancements, current models primarily focus
on ranking individual Points of Interest (POIs) rather than
constructing logistically coherent itineraries. While data-driven
classifiers [1] and ontology-based systems [2] excel at identi-
fying relevant locations, they often lack the semantic reasoning
to interpret abstract user intents (e.g., ”aesthetic vibe”) and the
computational rigor to guarantee spatiotemporal feasibility for
a full day’s schedule. To address this, we propose a Hybrid
Architecture that integrates Generative AI with determinis-
tic Constraint Programming. This process involves two key
components: an Offline Semantic Enrichment Pipeline, which
uses Large Language Models (LLMs) to translate sparse local
metadata into dense vector representations, and an Online
Constraint Satisfaction Solver (CP-SAT), which ensures that
generated itineraries strictly adhere to operating hours and
travel times. By combining the semantic depth of Generative
AI with the logical validity of optimization algorithms, our
system effectively bridges the gap between static ranking and
dynamic planning.

The key contributions of this paper are summarized as
follows:
• Development of a Hybrid AI framework that combines

generative LLM reasoning with CP-based constraint solv-
ing for itinerary planning.

• Creation of BL-300, a curated local dataset that mitigates
the data bias inherent in LLMs and enhances access to
culturally authentic locations.

• Demonstration of improved performance over existing



generative and static websites, achieving higher feasibil-
ity, local coverage, and weather adaptability.

II. RELATED WORK

A. Hybrid and Data-Driven Recommendation Approaches
Hybrid frameworks have gained prominence for their ability

to mitigate the limitations of single-algorithm systems by
integrating multiple filtering techniques. Naidu et al. [3] intro-
duced a web-based system combining content-based filtering,
collaborative filtering, and sentiment analysis. Their approach
leverages user reviews and social media tweets to dynamically
refine recommendations based on public perception and emo-
tional response . Similarly, Shrestha et al. [1] developed a data-
driven system for the Nepalese market, utilizing supervised
machine learning models, specifically Random Forest and
Gradient Boosting, trained on extensive survey data regarding
tourist demographics and spending behaviors. Their ”Tourist
Parametric Weighted Algorithm” ranks destinations by weigh-
ing attributes such as cost, popularity, and trends . However,
these methods primarily focus on ranking individual Points
of Interest (POIs) based on static features or statistical pat-
terns, often failing to address the combinatorial complexity of
scheduling a coherent, multi-stop itinerary. In contrast, our Hy-
brid Architecture moves beyond simple ranking by delegating
the scheduling logic to a deterministic Constraint Satisfaction
Solver (CP-SAT), ensuring that the generated itinerary is not
just a list of high-scoring items, but a logistically feasible
sequence.

B. Context-Aware and Deep Learning Approaches
To capture complex environmental and spatial features,

deep learning and semantic models have been increasingly
adopted. Flórez et al. [2] proposed a context-aware system for
the Santurbán paramo that integrates Deep Neural Networks
with ontology-based knowledge. Their architecture employs
TensorFlow Lite for offline inference and GeoSPARQL for
spatial reasoning, allowing the system to function in remote
areas with limited connectivity while triggering geofenced
alerts for environmental sustainability . While effective for
recommending isolated activities based on proximity and user
profiles, such systems typically lack the capacity to solve
”Orienteering Problems”, optimizing a full day’s route under
strict time windows and operational constraints. Our approach
bridges this gap by utilizing Large Language Models (LLMs)
for zero-shot semantic data enrichment, which are then paired
with our solver. This allows us to interpret abstract user intents
(e.g., ”cozy vibe”) that ontology-based systems might miss,
while simultaneously guaranteeing the temporal validity of the
entire schedule.

III. METHOD

The following section describes the end-to-end methodology
used to curate the BL-300 dataset, generate enriched semantic
representations, and perform real-time itinerary optimization.
The system consists of two main components: an offline data
enrichment pipeline, and an online multi-stage recommenda-
tion engine.

A. Dataset Construction (BL-300)

A primary contribution of this work is the creation of BL-
300, a multilayered dataset curated exclusively from native
Korean platforms. This dataset serves as the ground-truth
foundation for semantic retrieval, geographic re-ranking, and
constraint based itinerary planning. Unlike global English-
centered datasets, which often omit culturally specific POIs,
our curation process focused on local Korean sources, includ-
ing Naver Blog, and social media channels such as Instagram
pages. We prioritized venues that are popular among locals
but rarely appear in non-Korean search systems. This strategy
ensures that “hidden gems” typically invisible to foreign
visitors are captured and accessible within the system.

a) Relational Schema in PostgreSQL: All entries are
stored on an ACID-compliant PostgreSQL database [4] with
the following attributes:
• Geographic fields: Korean address, base coordinates, ad-

ministrative region.
• Operational metadata: website links, Naver Place refer-

ences, detailed operating hours.
• Contextual attributes: cuisine and atmosphere descriptors,

indoor/outdoor flag, price category.
b) Geometric data acquisition via Kakao Maps API: Be-

cause many local platforms provide incomplete or approximate
latitude/longitude information, we implemented an automated
Kakao Maps Geocoding API [5]. For each location: a batch
script sends the exact Korean postal address to the Kakao Maps
API, it returns high-precision coordinates (lat, lon) typically
accurate to within a few meters, and lastly, the system stores
the coordinates in PostgreSQL.

B. Offline Data Processing and Enrichment

To convert sparse metadata into semantically rich vector
representations, we implemented a two-stage offline augmen-
tation pipeline integrating both Generative AI and embedding
based modeling as shown in Fig. 1. The first stage consists of
generative knowledge retrieval (GenAI) where native Korean
POI metadata contains limited or ambiguous descriptors (e.g.,
“famous spot”, “Italian”, “ Samgyupsal”, “Korean”), lacking
the linguistic detail necessary for high-quality semantic search.
To enrich these entries, each location undergoes Google Gem-
ini Pro processing [6]:

a) Tag extraction pass: Gemini analyzes the derived text
for each location and produces a structured set of detailed
attributes: cuisine types, ambience cues, crowd characteristics,
etc.

b) Description synthesis pass: the extracted tag set
is fed back into Gemini Pro to generate a comprehensive
natural language paragraph, providing culturally neutral yet
contextually rich descriptions of each location. This process
performs Cross-Cultural Normalization, where the context is
transformed into explicit English descriptions suitable for
embedding models. The result is a high-density textual repre-
sentation that retains cultural nuance while enabling efficient
semantic vectorization.
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Fig. 1. The proposed Hybrid Itinerary Planner architecture. (A) The Offline Pipeline enriches sparse local data using Generative AI and Geocoding. (B) The
Online Engine utilizes these vectors for retrieval, delegating complex scheduling to a deterministic CP-SAT Solver or Beam Search.

Synthesized descriptions are encoded via Sentence-BERT
(all-MiniLM-L6-v2) [7] to minimize computational overhead
while maximizing semantic retention. Formally, the model
maps an input d to a dense embedding vd ∈ R384. This
vectorization ensures that semantic affinity correlates with
cosine proximity, enabling the system to identify relevant POIs
independent of keyword overlap [8].

To support real-time retrieval, we index all vectors us-
ing FAISS IndexFlatIP. Since the embeddings are L2-
normalized, the inner product computation is mathematically
equivalent to cosine similarity. Specifically, because the nor-
malization term ‖Q‖‖D‖ is unity, the metric simplifies di-
rectly to the dot product:

Ssim(Q,D) = Q ·D (1)

C. Online Recommendation Engine

As illustrated in Fig. 1, the full system integrates the
enriched dataset with a hybrid online inference pipeline that
performs semantic retrieval, geographic re-ranking, hybrid
itinerary optimization [9], and weather-aware validation.

1) Semantic Retrieval: User queries are decomposed into
atomic sub-queries (e.g., “quiet café”, “beach sunset”). Each
fragment is encoded using the same Sentence-BERT model
and normalized. Similarity between a query vector Q and a
location vector D. This stage retrieves top candidates solely
based on semantic relevance.

2) Region Clustering: Candidates are grouped by admin-
istrative region. A “Winning Region” is determined by cal-
culating a cumulative score Sregion(k) for each region k. This

metric prioritizes regions that satisfy a higher diversity of user
intents:

Sregion(k) = |Uk|2 ·
∑
d∈Rk

Ssim(q, d) (2)

The term Uk denotes the set of unique sub-queries satisfied
by region k. The quadratic term |Uk|2 ensures that a region
covering all different user requests is scored significantly
higher than a region that covers requests only partially. Within
the winning region, each candidate is re-scored to prioritize
proximity and availability. The scoring function is defined as:

Sfinal(d) = Ssim(d)× Pdist(d)×Btime(d) (3)

where Pdist is an inverse-square decay function based on the
Haversine distance [10] between the user u and the location
d, given by:

Pdist(d) =
1

1 + dist(u, d)2
(4)

The time bonus, Btime, is a binary multiplier set to 1.2 if the
location is currently open; otherwise, it is set to 1.

After selecting the winning region and the candidates within
it, we use two distinct strategies chosen dynamically to con-
struct the itineraries.

Method 1: Beam Search Heuristic

H(Patht) = H(Patht−1) + Sfinal(lt) + Ω(lt−1, lt) (5)

where Ω penalizes undesirable transitions (e.g., back-to-back
meals).



Method 2: Constraint Satisfaction Problem (CSP)

When “must-have” keywords are detected, the system em-
ploys the Google OR-Tools CP-SAT Solver [9] to maximize
total utility, defined as

∑
i,j Sfinal(di,j) · xi,j , where xi,j is a

binary variable indicating if location j is visited at time slot i.
This optimization is subject to three primary constraints: (1)
feasibility, ensuring at most one activity is scheduled per time
slot (

∑
j xi,j ≤ 1); (2) mandatory inclusion, requiring all loca-

tions j in the must-have setM to be visited (
∑

i xi,j ≥ 1); and
(3) time window validity, where a scheduled visit (xi,j = 1)
implies the time slot Ti falls within the location’s operating
hours [Oj , Cj ].

Environmental Risk Assessment

Following itinerary creation, an environmental risk assess-
ment is conducted during the post-processing stage. Unlike
static planners, our system performs a Temporal Validity Check
by integrating the OpenWeatherMap API [11] to assess the
viability of the itinerary. We define the outdoor risk ratio,
Rout(S), for a generated schedule S as:

Rout(S) =

∑
l∈S I(ltype = Outdoor)

|S|
(6)

where I(·) denotes the indicator function. If Rout(S) > 0.5
and the forecast predicts rain (Precipitation > 0 mm), the
system triggers a Reschedule Warning, prompting the user
or the automated agent to regenerate the plan with indoor
constraints.

IV. DISCUSSION & COMPARATIVE ANALYSIS

The deployment of the Hybrid Itinerary Planner represents a
shift from static information retrieval to dynamic, deterministic
problem solving. This section evaluates the system’s architec-
tural advantages over state-of-the-art baselines and discusses
its broader implications for local economics and safety.

A. Comparative Architectural Analysis

To validate the necessity of our approach, we compared the
Hybrid Planner against three prevailing paradigms in tourism
technology: LLM-Based Agents, RAG-Based Recommenders,
and Traditional Hybrid Systems. Table I summarizes these
differences.

TABLE I
FUNCTIONAL COMPARISON WITH SOTA SYSTEMS

System Core Mecha-
nism

Output Type Validity Data

TravelAgent LLM Agent Text Plan Variable Global
(Chen et al.) + Tools (Probabilistic) APIs
Sust. RAG RAG + City/POI N/A Wiki-
(Banerjee et al.) Reranking List (Ranking) voyage
Smart Tour Collab. Ranked N/A User
(Sun) Filtering Item List (Ranking) Ratings
Ours GenAI + Time-Slot BL-300
(Hybrid) CP-SAT Schedule Determ. (Local)

1) Versus LLM-Based Agents: Recent systems like Trav-
elAgent [15] enhance Large Language Models with external
tools (e.g., Google Maps API) to improve rationality. While
these agents excel at decomposing tasks, their final output
remains probabilistic, relying on the LLM to sequence events.
This often leads to “soft” failures where travel times are under-
estimated. In contrast, our system decouples reasoning from
scheduling. By delegating the logistics to the CP-SAT Solver,
we achieve a 100% Logical Feasibility Rate, mathematically
guaranteeing that no temporal constraints are violated.

2) Versus RAG-Based Systems: Banerjee et al. [16] pro-
posed a Retrieval-Augmented Generation (RAG) system for
sustainable city trips, utilizing “Sustainability Augmented
Reranking (SAR)” to prioritize eco-friendly destinations.
However, this system operates primarily at the Macro-Level
(City Recommendation), lacking the capacity to solve Micro-
Level routing problems (e.g., optimizing a path between spe-
cific venues within strict time windows). Our Hybrid Planner
extends the RAG methodology by not only retrieving semantic
matches but also optimizing the intra-city route, bridging the
gap between “what to visit” and “how to visit.”

3) Versus Traditional Hybrid Models: Traditional ap-
proaches [17] combine Content-Based and Collaborative Fil-
tering to predict user ratings. While effective for ranking
individual items (e.g., “Top 10 Restaurants”), they output a
disjointed list rather than a coherent plan, leaving the cognitive
burden of scheduling on the user. Our system transforms this
output from a Ranked List to an Optimized Route, automating
the complex logistics that traditional recommenders ignore.

B. Experimental Evaluation

TABLE II
ABSTRACT SEMANTIC INTENTS USED FOR EVALUATION

ID Vague User Intent (Input Query)
Q1 A cozy spot to hide from the world with a book
Q2 A place that captures the feeling of old Busan before the

skyscrapers
Q3 Somewhere romantic where we can see the city lights

without the crowds
Q4 A local hangout that feels like a hidden gem for residents
Q5 A healing walk near the water where its peaceful
Q6 Something spicy and hearty that locals eat after a long

day
Q7 An artistic space that feels modern and experimental
Q8 A traditional taste of Busan that isnt just a generic tourist

meal
Q9 A late night energy fix for a group of friends
Q10 A quiet afternoon retreat with high quality specialty

brews
Q11 A cinematic location where the city meets the sea
Q12 Somewhere we can experience local history in an inter-

active way
Q13 An indoor cultural experience to escape a gray afternoon
Q14 A sophisticated evening with live melodies and refined

drinks



To evaluate semantic understanding beyond simple keyword
matching, we curated a test set of 14 Abstract Semantic
Intents. As shown in Table II, these queries test the system’s
ability to map vague, ambient descriptors (e.g., ’cozy,’ ’cine-
matic’) to specific, attribute-rich Points of Interest.

TABLE III
QUANTITATIVE PERFORMANCE COMPARISON (n = 70)

Metric Proposed Hybrid Beam Search LLM Baseline
(CP-SAT) Heuristic (GPT-4)

Hard Const. 100% 95.4% 92.8%
Satisfaction (70/70) (67/70) (65/70)
Geographic 100% 100% 78.6%
Accuracy
Sequence 100% 95.4% 85.7%
Feasibility
Native POI 92.1% 92.1% 24.3%
Ratio
Category 100% 86.4% 95.0%
Consistency
Hallucination 0% 0% 1.4%
Rate

Table III benchmarks our Hybrid system against an LLM
baseline and a Beam Search Heuristic (n = 70 steps).
While the Beam Search baseline matched our Native POI
Ratio (92.1%) due to the shared dataset, it failed in logical
coherence, achieving only 86.4% Category Consistency (e.g.,
scheduling soup restaurants in café slots) and 95.4% Sequence
Feasibility (redundancy loops). In contrast, the Hybrid CP-
SAT system achieved 100% scores in all feasibility metrics,
validating that deterministic constraints are required to opera-
tionalize high-authenticity local data. This capability is impor-
tant for democratizing visibility for local SMEs and mitigating
overtourism, contrasting with the LLM’s bias toward global
chains.

V. CONCLUSION

In this paper, we addressed the critical limitations of tourism
planning by proposing a Hybrid Itinerary Planner. By inte-
grating the semantic reasoning of Large Language Models
with the deterministic rigor of the CP-SAT Solver, our system
guarantees logical feasibility while retaining the nuance of
abstract user queries. The creation of the BL-300 dataset serves
as a foundational step toward mitigating the English-centric
bias of global platforms, successfully democratizing access to
native-only locations in Busan. Experimental results validate
that decoupling the reasoning (LLM) from the scheduling
(Solver) provides a robust solution for travel logistics that
neither pure Generative AI nor static search engines can
achieve alone.

Future work prioritizes scaling the dataset via automated
pipelines and refining the scheduling logic to handle complex
multi-modal transportation. We also aim to integrate real-time
data, such as traffic and crowd density, for improved accuracy.
Finally, to address current ”cold-start” limitations, we plan to
implement a predictive recommendation layer that leverages
user interaction history for personalized planning.
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