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Abstract—Understanding how individual training instances 

influence model predictions is essential for improving data quality 

and enhancing the performance of deep learning models. 

Although prior studies have proposed influence-estimation 

methods such as TracIn and influence functions, the relationship 

between instance quality and influence scores remains 

insufficiently explored, despite its importance for detecting 

unsuitable training data. In this study, we investigate how 

incorrect labels affect influence estimates by intentionally 

generating mislabeled training instances and analyzing their 

TracIn score distributions. Our results reveal three characteristic 

distribution patterns—S-shaped, Z-shaped, and backslash-

shaped—that determine where incorrectly labeled instances tend 

to appear within the score distribution. We further show that these 

patterns correspond to the degree of similarity between test 

instances and the training set, suggesting that the distribution 

shape reflects the underlying data geometry. In addition, we 

evaluate how the number of unsuitable instances impacts model 

performance and demonstrate that a small number of incorrectly 

labeled instances causes only limited degradation, implying a 

threshold effect. These findings provide insights into how 

influence estimation can reveal the behavior of unsuitable training 

instances, suggesting a data-cleaning strategies and guide the 

construction of higher-quality training datasets.  

Keywords—Machine learning, training data quality, influence 

estimation, TracIn, mislabeled data, interpretability, deep learning, 

data cleaning. 

I. INTRODUCTION 

Improving the quality of training data is a crucial factor in 
advancing the accuracy of modern AI systems. A number of 
studies have proposed methods that analyze the rationale behind 
an AI model’s inference in order to identify unsuitable training 
instances [1][2][3]. These methods estimate the contribution of 
each training instance to a model’s inference. For these methods 
to be effective, clarifying the relationship between the quality of 
individual instances and their influence scores is essential. 
However, this relationship has not yet been thoroughly 
investigated. 

In this paper, we aim to clarify this relationship by focusing 
on TracIn [1], one of the most widely used methods for 
estimating the influence of each training instance on model 

inference. To explore how training-instance quality is reflected 
in influence scores, we generate inaccurate training instances by 
intentionally changing correct labels to incorrect ones and 
analyze their corresponding influence scores. We then identify 
trends in these scores that vary depending on the types of 
instances. Our analysis highlights consistent trends in how 
mislabeled instances appear within the score distribution, 
revealing structural behaviors dependent on the characteristics 
of the test instance. 

The findings from this study not only deepen our 
understanding of the relationship between instance quality and 
influence estimation but also provide insights that can contribute 
to the development of more effective training-data cleaning 
methods and the construction of higher-quality datasets. 

II. RELATED WORK 

A. Providing Interpretability on AI’s Inference 

Research on explaining the decision-making process of deep 
learning models has grown substantially in recent years. Early 
studies highlighted that deep neural networks often function as 
“black boxes,” making it difficult to understand why a model 
reaches a particular output. Tulio et al. [4] and Montavon et al. 
[5] emphasized that the lack of interpretability raises concerns 
in domains where explanations are indispensable, such as 
judicial decision-making or policy decisions that affect the 
public.  

Tulio et al. illustrated this issue using a model trained to 
distinguish between huskies and wolves [4]. Their analysis 
demonstrated that the classifier relied not on the animals 
themselves but on background cues, labeling images with snowy 
backgrounds as wolves. They referred to this phenomenon as a 
“bad model.” To address such interpretability problems, Tulio et 
al. introduced LIME [4], a method that highlights which parts of 
the input most strongly influence the model’s prediction.  

Other approaches have also been proposed. Simonyan et al. 
developed a gradient-based visualization method to identify 
influential pixels in image-classification tasks [6]. Smilkov et al. 
proposed SmoothGrad [7], which improves gradient-based 
explanations by reducing noise. These methods estimated how 



perturbations in input features affect model outputs, enabling 
identification of regions that contribute most to a prediction.  

Prior to the widespread use of deep learning, simpler 
interpretable methods had already been explored. For example, 
Shirataki et al. proposed a method for interpreting the decision 
boundaries of support vector machines [8].  

In addition to these works on explaining predictions using 
test data, several studies have also examined methods for 
extracting decision bases from training data, which directly 
connect model behavior to the data that shaped it.  

B. Influence Estimation from Training Data 

Koh et al. [2] proposed a method for identifying the training 
points that are most responsible for a given prediction, without 
retraining the model. Their method uses influence functions, 
which is a classical technique from robust statistics. It traces a 
model's prediction through the learning algorithm and back to 
its training data, and estimates how infinitesimal upweighting or 
perturbation of a single training instance would affect the model 
parameters and the loss on a given test point. They also 
developed a simple and efficient implementation requiring only 
oracle access to gradients and Hessian-vector products to adapt 
the method to modern machine learning settings such as high-
dimensional deep neural networks. They showed that influence 
functions can be used for explaining model behavior, detecting 
incorrectly labeled or harmful training samples, identifying 
domain mismatch, and even constructing adversarial training-
set attacks.  

Our work is based on these methods that detect training data 
with large impact on the inference. However, prior studies do 
not provide a thorough discussion on the relationship between 
training data quality and calculated influence scores.  

Pruthi et al. proposed TracIn [1], a technique designed to 
estimate how individual training instances contribute to a 
model’s predictions. Rather than relying on a single final model, 
TracIn leverages snapshots—or checkpoints—saved throughout 
the training process. By examining how the loss gradients of a 
training instance and a test instance align at each checkpoint, the 
method assigns an influence score that reflects the extent to 
which the training instance affects the final prediction. 

During training with stochastic optimization methods such 
as stochastic gradient descent, model parameters evolve over 
many update steps. These updates lead to incremental changes 
in both loss values and prediction outputs. Although actual test 
data are not available during training, Pruthi et al. argued that 
checkpoint models can serve as a practical surrogate for tracing 
these effects [9]. 

Because modern training pipelines update parameters using 
batches of data, TracIn requires isolating the effect of each 
individual training instance. This is achieved by computing 
pointwise loss gradients, enabling the method to estimate per-
instance influence even under mini-batch training conditions [9]. 

Formally, the TracIn score is computed by taking the inner 
product between the loss gradient of the test instance and that of 
each training instance across all checkpoints, weighting each 
contribution by the corresponding learning rate, and summing 
the results: 
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The authors further demonstrated that training instances with 
large self-influence—such as mislabeled or otherwise corrupted 
data—can be effectively detected using TracIn [9]. 

C. Extraction of Inaccurate Instances in Training Data 

Several studies have examined methods for identifying 
incorrectly labeled instances in training data by scoring the 
influence of each instance. Garima et al. reported that incorrectly 
labeled instances tend to have large positive influence scores for 
themselves because such instances behave as outliers and tend 
to reduce the loss with respect to their incorrect labels. Their 
work is essential and forms a foundation for many subsequent 
studies. Our work is also based on their findings. However, 
unlike our study, they did not thoroughly investigate the 
relationship between influence scores and the accuracy of 
individual instances.  

Hirabayashi et al. [3] proposed a method for improving the 
accuracy of deep learning models by leveraging decision 
interpretability to identify unsuitable training data. Their method 
first splits the overall training dataset into three subsets: the 
training data within the training data, the validation data within 
the training data, and the testing data within the training data. It 
then trains a model using the training data within the training 
data, validates it on the validation data within the training data, 
and tests it on the testing data within the training data. If any 
instance in the testing data within the training data is 
misclassified, the method selects a misclassified instance and 
calculates the influence score of each training instance on that 
specific misclassification using TracIn [1]. A training instance 
with a strong influence on a misclassification is regarded as an 
unsuitable instance, and is excluded from the training set. They 
evaluated the method on a news corpus and a tweet dataset, 
demonstrating that excluding unsuitable instances improved 
classification accuracy. However, they did not thoroughly 
discuss criteria for selecting the instances to be excluded. 

III. RELATIONSHIP BETWEEN TRAINING INSTANCE QUALITY 

AND INFLUENCE SCORES 

In this section, we investigate the relationship between the 
quality of individual instances and their influence scores. To 
explore this relationship, we intentionally changed the labels of 
some randomly selected instances in the training dataset from 
their original correct labels to incorrect ones. These modified 
instances are treated as unsuitable (i.e., inaccurate) training 
instances. The proportion of label-flipped data was 2.5%; 
specifically, 40 out of 1,600 training instances were assigned 
incorrect labels. 

We used the Rakuten dataset [10], which consists of review 
texts for various products. For our experiments, we split the 
dataset into 80% training, 10% validation, and 10% testing, and 
performed binary sentiment classification. For TracIn score 
computation, we used 10 checkpoints, which were saved at the 
end of each training epoch. The learning rate was set to 1e-5, 
and no learning-rate scheduler was applied. 



Fig. 1 shows the distribution of TracIn scores for all training 
instances with respect to nine misclassified test instances. The 
horizontal axes represent the indices of training instances sorted 
by their TracIn scores, and the vertical axes represent the TracIn 
scores themselves. Red plots indicate incorrectly labeled 
instances, and blue plots indicate correctly labeled ones. 

In the S-shaped cases, such as (a), (b), and (c), incorrectly 
labeled instances appear near both ends of the distribution, i.e., 
they receive large positive or large negative scores. In the Z-
shaped cases, such as (g), (h), and (i), incorrectly labeled 
instances appear mainly near the center, i.e., they receive small 
absolute scores. In the backslash-shaped cases, such as (d), (e), 
and (f), incorrectly labeled instances are located around the 
center but are more widely spread than in the Z-shaped cases. 
This case can be considered intermediate between S-shaped and 
Z-shaped. The differences among S-, Z-, and backslash-shaped 
cases were consistent across all nine misclassified test instances, 
indicating that these patterns are not instance-specific noise but 
reflect underlying structural properties. 

To quantify the distribution shape, we define an index of S-
shapedness. Specifically, we compute the difference between 
slopes of (i) the linear regression line fitted to the sorted TracIn 
scores, yellow line in the figure, and (ii) the line connecting the 
top-left and bottom-right points of the plot, the green line. A 
larger difference corresponds to a more S-shaped distribution, 

and a smaller difference corresponds to a more Z-shaped or 
backslash-shaped distribution. 

Fig. 3 shows the relationship between this S-shapedness 
measure and the ratio of incorrectly labeled instances located at 
the distribution ends. The ratio is defined by converting each 
incorrectly labeled instance’s ranked position into a percentage 
distance from the center (0% at the center, 100% at either end) 
and averaging these values. Strongly S-shaped cases tend to 
have incorrectly labeled instances near the ends, whereas 
strongly Z-shaped cases tend to have incorrectly labeled 
instances near the center. This supports the qualitative trends 
described above. 

Next, we investigate the relationship between instance 
characteristics and distribution shapes. In S-shaped cases, most 
training instances have small absolute TracIn scores. We 
hypothesize that this occurs when the test instance is relatively 
unique and only a small number of training instances are highly 
similar to it. In contrast, in Z-shaped cases, many training 
instances have large absolute scores. We hypothesize that this 
corresponds to test instances that have many similar training 
instances. Backslash-shaped cases exhibit intermediate 
characteristics.  

Hypothesis: The shape of the TracIn score distribution is 
influenced by the degree of similarity between the test instance 
and the training instances. Higher similarity produces more Z-
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Fig. 1. Training instances and TracIn scores of nine inaccurately infered testing instances 



shaped distributions, while lower similarity produces more S-
shaped distributions.  

To verify this hypothesis, we measured similarity between 
each test instance and all training instances using BERT 
embeddings. We used a BERT pre-trained model [11] fine-
tuned for sentiment analysis using the Rakuten Ichiba dataset 
[10] with a learning rate of 1e-5 and a batch size of 32. Model 
checkpoints for TracIn were saved at regular intervals during 
training. The embedding vector of each instance was obtained 
from the final hidden-state vector of the [CLS] token (768 
dimensions), and Euclidean distance between vectors was used 
as the similarity measure. Fig. 2(a) shows the average Euclidean 
distance, and Fig. 2(b) shows distances sorted by training-
instance rank. Each label represents the instance ID that was 
misclassified by the model and its distribution shape. For 
example, “239 (Z)” indicates that test instance ID 239 produced 
a Z-shaped distribution. As shown, S-shaped cases tend to have 
larger distances, Z-shaped cases have smaller distances, and 
backslash-shaped cases exhibit intermediate values.  

IV. NUMBER OF UNSUITABLE TRAINING INSTANCES AND 

INFERENCE ACCURACY 

In this section, we study the relationship between number of 
unsuitable instances in training data and the accuracy of a model 
trained with this training data.  

As in Section III, we reversed the labels of some instances in 
the training data to investigate the impact of incorrectly labeled 
instances on inference accuracy. We used the Rakuten dataset 
[10]. We used 80% of the dataset for training, 10% for validation, 
and 10% for testing.  

Fig. 4 illustrates the relationship between the proportion of 
incorrect labels and inference accuracy. The results show a trend 

 
(a) Average Euclidean distance 

 
(b) Euclidean distance of each instance 

Fig. 2. Disrtances of the testing instance and every training instances 
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Fig. 4. Num. of incorrectly labeled data and accuracy 

 

Fig. 5. Num. of incorrectly labeled data and loss 
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of decreasing accuracy as the ratio of incorrect instances 
increases. Based on these results, excluding unsuitable instances 
from a training dataset is likely to improve performance when 
the number of such instances is sufficiently large. Focusing on 
cases with small ratios, we see that accuracy does not decrease 
significantly. Thus, a small number of incorrect instances have 
only a minimal negative impact on performance. Therefore, 
excluding only a small number of incorrect instances does not 
greatly improve performance, and a substantially larger number 
of unsuitable instances must be excluded to achieve noticeable 
improvement. 

Fig. 5 shows the relationship between the proportion of 
incorrectly labeled data and the training loss. Fig. 5 shows a 
trend similar to that in Fig. 4. Namely, the loss is affected only 
slightly by the increase in incorrectly labeled data when the 
number of incorrect instances is small. On the other hand, if the 
number of incorrect instances is not small, the loss increases 
largely as the number of incorrect data increases. 

V. DISCUSSION 

A. Identification of Unsuitable Training Instances 

We discuss how model performance can be improved by 
excluding unsuitable training instances. The results in Section 
IV indicate that excluding only a small number of instances has 
little impact on model accuracy. Therefore, excluding a larger 
number of instances may be necessary to achieve meaningful 
improvement. If the accuracy on the “testing data within the 
training dataset” (as defined in Section II.C) is low, it suggests 
that the quality of the training data is poor and that many 
instances may be incorrectly labeled. In such cases, excluding a 
substantial number of unsuitable instances may improve the 
model's accuracy. Even if exclusion does not immediately affect 
accuracy, removing incorrectly labeled instances can still be 
beneficial. Such exclusion may have a positive long-term impact 
on inference, especially when additional training data are 
incorporated into the dataset in the future. 

B. Additional Perspectives on Influence-Score Distributions 

Our findings imply that the shape of the influence-score 
distribution can serve as an indicator of underlying 
characteristics of the training dataset or a specific test instance. 
For example, S-shaped distributions indicate that only a small 
subset of training instances substantially interacts with the test 
instance, suggesting that the test instance is relatively unique or 
potentially problematic. Evaluating whether such test instances 
themselves are suitable may therefore be valuable. If many test 
instances exhibit S-shaped distributions, the dataset may be 
sparse or highly diverse, indicating a need for targeted data 
augmentation or additional data collection. 

In contrast, if many test instances exhibit Z-shaped 
distributions, the model relies on a more homogeneous set of 
neighbors. This provides a new perspective on influence 
estimation beyond identifying mislabeled instances: the global 
geometry of influence scores reflects dataset density, 
redundancy, and locality. Such patterns may reveal highly dense 
regions where redundancy is high, in which active data pruning 
may be beneficial. 

C. Implications for Model Robustness and Generalization 

The results in Section IV indicate that the effect of unsuitable 
training data on inference accuracy is nonlinear. A small number 
of mislabeled instances does not substantially harm accuracy, 
but once the number exceeds a certain threshold, the negative 
impact increases rapidly. This behavior is consistent with 
findings in robust statistics and adversarial training, where 
models exhibit phase-transition-like sensitivity to data 
corruption. Understanding how the shapes of influence-score 
distributions relate to this threshold could lead to new theoretical 
insights into the robustness and generalization properties of deep 
neural networks. 

D. Further Improvement Beyond Exclusion 

While this study focuses on excluding unsuitable training 
instances, additional responses become possible once such 
instances are identified. For example, when an instance is highly 
likely to have an incorrect label, relabeling rather than excluding 
may be a more effective approach. When the confidence is lower, 
adjusting the instance’s weight based on its estimated influence 
may be appropriate. Because S-shapedness provides a 
quantitative indicator of distribution structure, this index may 
help determine which corrective action is most suitable for each 
instance. By integrating influence estimation into the training 
process itself, it may be possible to achieve more robust learning 
under noisy or heterogeneous datasets. 

E. Limitations 

This study has several limitations. First, we intentionally 
introduced synthetic label noise, which may not fully reflect 
naturally occurring annotation errors. Second, all experiments 
were conducted on a single text dataset, and further validation 
across other domains and modalities is needed. Third, our 
analysis focused solely on TracIn, and other influence-
estimation methods may exhibit different distribution behaviors. 

VI. CONCLUSION 

In this paper, we investigated the relationship between the 
quality of training instances and their influence scores, focusing 
on TracIn as a representative method for estimating per-instance 
influence. By intentionally generating incorrectly labeled 
instances and analyzing their TracIn score distributions, we 
found that the distributions of incorrectly labeled data follow 
three characteristic distribution patterns. Specifically, we 
identified three characteristic distribution patterns, which are S-
shaped, Z-shaped, and backslash-shaped. In the case of S-shaped 
distribution, the incorrectly labeled data tend to be located near 
both ends of distribution, i.e., with large absolute TracIn scores. 
In the Z-shaped cases, the incorrectly labeled data tend to appear 
near the center, with small absolute TracIn scores. Backslash-
shaped cases exhibit intermediate behavior between the S-
shaped and Z-shaped cases. In addition, we showed that these 
patterns correlate with the degree of similarity between test and 
training instances. Our findings suggest that the shape of the 
influence score distribution reflects the structural relationship 
between data points in the embedding space. We also examined 
how the number of unsuitable instances affects model 
performance. The results indicate that a small number of 
incorrect instances has only a limited negative impact on 
accuracy, implying that exclusion of only a few such instances 



does not substantially improve model performance. However, 
when many incorrectly labeled instances exist in the training 
data, their exclusion becomes essential for improving the model. 
We expect that this study provides empirical insights into how 
influence estimation can reveal the behavior of unsuitable 
training instances and guide effective data cleaning strategies. 
These findings contribute to a deeper understanding of training-
data-based interpretability and provide a foundation for future 
work on automated identification and exclusion of low-quality 
data. 

For future work, we plan to improve methods for enhancing 
model performance by excluding unsuitable training data, 
building on the findings of this study. We also plan to examine 
whether the observed trends hold across different datasets and 
other influence-estimation methods such as influence functions. 
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