A Study on Training Data Influence for Identifying
Inaccurate Instances

Saneyasu Yamaguchi
Department of Information and Communications Engineering
Kogakuin University
Tokyo, Japan
sane@cc.kogakuin.ac.jp

Abstract—Understanding how individual training instances
influence model predictions is essential for improving data quality
and enhancing the performance of deep learning models.
Although prior studies have proposed influence-estimation
methods such as Tracln and influence functions, the relationship
between instance quality and influence scores remains
insufficiently explored, despite its importance for detecting
unsuitable training data. In this study, we investigate how
incorrect labels affect influence estimates by intentionally
generating mislabeled training instances and analyzing their
Tracln score distributions. Our results reveal three characteristic
distribution patterns—S-shaped, Z-shaped, and backslash-
shaped—that determine where incorrectly labeled instances tend
to appear within the score distribution. We further show that these
patterns correspond to the degree of similarity between test
instances and the training set, suggesting that the distribution
shape reflects the underlying data geometry. In addition, we
evaluate how the number of unsuitable instances impacts model
performance and demonstrate that a small number of incorrectly
labeled instances causes only limited degradation, implying a
threshold effect. These findings provide insights into how
influence estimation can reveal the behavior of unsuitable training
instances, suggesting a data-cleaning strategies and guide the
construction of higher-quality training datasets.

Keywords—Machine learning, training data quality, influence
estimation, Tracln, mislabeled data, interpretability, deep learning,
data cleaning.

I. INTRODUCTION

Improving the quality of training data is a crucial factor in
advancing the accuracy of modern Al systems. A number of
studies have proposed methods that analyze the rationale behind
an Al model’s inference in order to identify unsuitable training
instances [1][2][3]. These methods estimate the contribution of
each training instance to a model’s inference. For these methods
to be effective, clarifying the relationship between the quality of
individual instances and their influence scores is essential.
However, this relationship has not yet been thoroughly
investigated.

In this paper, we aim to clarify this relationship by focusing
on TracIn [1], one of the most widely used methods for
estimating the influence of each training instance on model
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inference. To explore how training-instance quality is reflected
in influence scores, we generate inaccurate training instances by
intentionally changing correct labels to incorrect ones and
analyze their corresponding influence scores. We then identify
trends in these scores that vary depending on the types of
instances. Our analysis highlights consistent trends in how
mislabeled instances appear within the score distribution,
revealing structural behaviors dependent on the characteristics
of the test instance.

The findings from this study not only deepen our
understanding of the relationship between instance quality and
influence estimation but also provide insights that can contribute
to the development of more effective training-data cleaning
methods and the construction of higher-quality datasets.

II. RELATED WORK

A. Providing Interpretability on Al’s Inference

Research on explaining the decision-making process of deep
learning models has grown substantially in recent years. Early
studies highlighted that deep neural networks often function as
“black boxes,” making it difficult to understand why a model
reaches a particular output. Tulio et al. [4] and Montavon et al.
[5] emphasized that the lack of interpretability raises concerns
in domains where explanations are indispensable, such as
judicial decision-making or policy decisions that affect the
public.

Tulio et al. illustrated this issue using a model trained to
distinguish between huskies and wolves [4]. Their analysis
demonstrated that the classifier relied not on the animals
themselves but on background cues, labeling images with snowy
backgrounds as wolves. They referred to this phenomenon as a
“bad model.” To address such interpretability problems, Tulio et
al. introduced LIME [4], a method that highlights which parts of
the input most strongly influence the model’s prediction.

Other approaches have also been proposed. Simonyan et al.
developed a gradient-based visualization method to identify
influential pixels in image-classification tasks [6]. Smilkov et al.
proposed SmoothGrad [7], which improves gradient-based
explanations by reducing noise. These methods estimated how



perturbations in input features affect model outputs, enabling
identification of regions that contribute most to a prediction.

Prior to the widespread use of deep learning, simpler
interpretable methods had already been explored. For example,
Shirataki et al. proposed a method for interpreting the decision
boundaries of support vector machines [8].

In addition to these works on explaining predictions using
test data, several studies have also examined methods for
extracting decision bases from training data, which directly
connect model behavior to the data that shaped it.

B. Influence Estimation from Training Data

Koh et al. [2] proposed a method for identifying the training
points that are most responsible for a given prediction, without
retraining the model. Their method uses influence functions,
which is a classical technique from robust statistics. It traces a
model's prediction through the learning algorithm and back to
its training data, and estimates how infinitesimal upweighting or
perturbation of a single training instance would affect the model
parameters and the loss on a given test point. They also
developed a simple and efficient implementation requiring only
oracle access to gradients and Hessian-vector products to adapt
the method to modern machine learning settings such as high-
dimensional deep neural networks. They showed that influence
functions can be used for explaining model behavior, detecting
incorrectly labeled or harmful training samples, identifying
domain mismatch, and even constructing adversarial training-
set attacks.

Our work is based on these methods that detect training data
with large impact on the inference. However, prior studies do
not provide a thorough discussion on the relationship between
training data quality and calculated influence scores.

Pruthi et al. proposed TracIn [1], a technique designed to
estimate how individual training instances contribute to a
model’s predictions. Rather than relying on a single final model,
TracIn leverages snapshots—or checkpoints—saved throughout
the training process. By examining how the loss gradients of a
training instance and a test instance align at each checkpoint, the
method assigns an influence score that reflects the extent to
which the training instance affects the final prediction.

During training with stochastic optimization methods such
as stochastic gradient descent, model parameters evolve over
many update steps. These updates lead to incremental changes
in both loss values and prediction outputs. Although actual test
data are not available during training, Pruthi et al. argued that
checkpoint models can serve as a practical surrogate for tracing
these effects [9].

Because modern training pipelines update parameters using
batches of data, Tracln requires isolating the effect of each
individual training instance. This is achieved by computing
pointwise loss gradients, enabling the method to estimate per-

instance influence even under mini-batch training conditions [9].

Formally, the TracIn score is computed by taking the inner
product between the loss gradient of the test instance and that of
each training instance across all checkpoints, weighting each
contribution by the corresponding learning rate, and summing
the results:

k
Tracin(z,z') = Z niVi(wy, z) - Vi(wy, 2)

=1

The authors further demonstrated that training instances with
large self-influence—such as mislabeled or otherwise corrupted
data—can be effectively detected using Tracln [9].

C. Extraction of Inaccurate Instances in Training Data

Several studies have examined methods for identifying
incorrectly labeled instances in training data by scoring the
influence of each instance. Garima et al. reported that incorrectly
labeled instances tend to have large positive influence scores for
themselves because such instances behave as outliers and tend
to reduce the loss with respect to their incorrect labels. Their
work is essential and forms a foundation for many subsequent
studies. Our work is also based on their findings. However,
unlike our study, they did not thoroughly investigate the
relationship between influence scores and the accuracy of
individual instances.

Hirabayashi et al. [3] proposed a method for improving the
accuracy of deep learning models by leveraging decision
interpretability to identify unsuitable training data. Their method
first splits the overall training dataset into three subsets: the
training data within the training data, the validation data within
the training data, and the testing data within the training data. It
then trains a model using the training data within the training
data, validates it on the validation data within the training data,
and tests it on the testing data within the training data. If any
instance in the testing data within the training data is
misclassified, the method selects a misclassified instance and
calculates the influence score of each training instance on that
specific misclassification using TracIn [1]. A training instance
with a strong influence on a misclassification is regarded as an
unsuitable instance, and is excluded from the training set. They
evaluated the method on a news corpus and a tweet dataset,
demonstrating that excluding unsuitable instances improved
classification accuracy. However, they did not thoroughly
discuss criteria for selecting the instances to be excluded.

III. RELATIONSHIP BETWEEN TRAINING INSTANCE QUALITY
AND INFLUENCE SCORES

In this section, we investigate the relationship between the
quality of individual instances and their influence scores. To
explore this relationship, we intentionally changed the labels of
some randomly selected instances in the training dataset from
their original correct labels to incorrect ones. These modified
instances are treated as unsuitable (i.e., inaccurate) training
instances. The proportion of label-flipped data was 2.5%;
specifically, 40 out of 1,600 training instances were assigned
incorrect labels.

We used the Rakuten dataset [10], which consists of review
texts for various products. For our experiments, we split the
dataset into 80% training, 10% validation, and 10% testing, and
performed binary sentiment classification. For Tracln score
computation, we used 10 checkpoints, which were saved at the
end of each training epoch. The learning rate was set to le-5,
and no learning-rate scheduler was applied.
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Fig. 1. Training instances and Tracln scores of nine inaccurately infered testing instances

Fig. 1 shows the distribution of TracIn scores for all training
instances with respect to nine misclassified test instances. The
horizontal axes represent the indices of training instances sorted
by their Tracln scores, and the vertical axes represent the Tracln
scores themselves. Red plots indicate incorrectly labeled
instances, and blue plots indicate correctly labeled ones.

In the S-shaped cases, such as (a), (b), and (c), incorrectly
labeled instances appear near both ends of the distribution, i.e.,
they receive large positive or large negative scores. In the Z-
shaped cases, such as (g), (h), and (i), incorrectly labeled
instances appear mainly near the center, i.e., they receive small
absolute scores. In the backslash-shaped cases, such as (d), (e),
and (f), incorrectly labeled instances are located around the
center but are more widely spread than in the Z-shaped cases.
This case can be considered intermediate between S-shaped and
Z-shaped. The differences among S-, Z-, and backslash-shaped
cases were consistent across all nine misclassified test instances,
indicating that these patterns are not instance-specific noise but
reflect underlying structural properties.

To quantify the distribution shape, we define an index of S-
shapedness. Specifically, we compute the difference between
slopes of (i) the linear regression line fitted to the sorted Tracln
scores, yellow line in the figure, and (ii) the line connecting the
top-left and bottom-right points of the plot, the green line. A
larger difference corresponds to a more S-shaped distribution,

and a smaller difference corresponds to a more Z-shaped or
backslash-shaped distribution.

Fig. 3 shows the relationship between this S-shapedness
measure and the ratio of incorrectly labeled instances located at
the distribution ends. The ratio is defined by converting each
incorrectly labeled instance’s ranked position into a percentage
distance from the center (0% at the center, 100% at either end)
and averaging these values. Strongly S-shaped cases tend to
have incorrectly labeled instances near the ends, whereas
strongly Z-shaped cases tend to have incorrectly labeled
instances near the center. This supports the qualitative trends
described above.

Next, we investigate the relationship between instance
characteristics and distribution shapes. In S-shaped cases, most
training instances have small absolute Tracln scores. We
hypothesize that this occurs when the test instance is relatively
unique and only a small number of training instances are highly
similar to it. In contrast, in Z-shaped cases, many training
instances have large absolute scores. We hypothesize that this
corresponds to test instances that have many similar training
instances. Backslash-shaped cases exhibit intermediate
characteristics.

Hypothesis: The shape of the Tracln score distribution is
influenced by the degree of similarity between the test instance
and the training instances. Higher similarity produces more Z-
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shaped distributions, while lower similarity produces more S-
shaped distributions.

To verify this hypothesis, we measured similarity between
each test instance and all training instances using BERT
embeddings. We used a BERT pre-trained model [11] fine-
tuned for sentiment analysis using the Rakuten Ichiba dataset
[10] with a learning rate of le-5 and a batch size of 32. Model
checkpoints for TracIn were saved at regular intervals during
training. The embedding vector of each instance was obtained
from the final hidden-state vector of the [CLS] token (768
dimensions), and Euclidean distance between vectors was used
as the similarity measure. Fig. 2(a) shows the average Euclidean
distance, and Fig. 2(b) shows distances sorted by training-
instance rank. Each label represents the instance ID that was
misclassified by the model and its distribution shape. For
example, “239 (Z)” indicates that test instance ID 239 produced
a Z-shaped distribution. As shown, S-shaped cases tend to have
larger distances, Z-shaped cases have smaller distances, and
backslash-shaped cases exhibit intermediate values.
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IV. NUMBER OF UNSUITABLE TRAINING INSTANCES AND
INFERENCE ACCURACY

In this section, we study the relationship between number of
unsuitable instances in training data and the accuracy of a model
trained with this training data.

As in Section III, we reversed the labels of some instances in
the training data to investigate the impact of incorrectly labeled
instances on inference accuracy. We used the Rakuten dataset
[10]. We used 80% of the dataset for training, 10% for validation,
and 10% for testing.

Fig. 4 illustrates the relationship between the proportion of
incorrect labels and inference accuracy. The results show a trend



of decreasing accuracy as the ratio of incorrect instances
increases. Based on these results, excluding unsuitable instances
from a training dataset is likely to improve performance when
the number of such instances is sufficiently large. Focusing on
cases with small ratios, we see that accuracy does not decrease
significantly. Thus, a small number of incorrect instances have
only a minimal negative impact on performance. Therefore,
excluding only a small number of incorrect instances does not
greatly improve performance, and a substantially larger number
of unsuitable instances must be excluded to achieve noticeable
improvement.

Fig. 5 shows the relationship between the proportion of
incorrectly labeled data and the training loss. Fig. 5 shows a
trend similar to that in Fig. 4. Namely, the loss is affected only
slightly by the increase in incorrectly labeled data when the
number of incorrect instances is small. On the other hand, if the
number of incorrect instances is not small, the loss increases
largely as the number of incorrect data increases.

V. DISCUSSION

A. Identification of Unsuitable Training Instances

We discuss how model performance can be improved by
excluding unsuitable training instances. The results in Section
IV indicate that excluding only a small number of instances has
little impact on model accuracy. Therefore, excluding a larger
number of instances may be necessary to achieve meaningful
improvement. If the accuracy on the “testing data within the
training dataset” (as defined in Section I1.C) is low, it suggests
that the quality of the training data is poor and that many
instances may be incorrectly labeled. In such cases, excluding a
substantial number of unsuitable instances may improve the
model's accuracy. Even if exclusion does not immediately affect
accuracy, removing incorrectly labeled instances can still be
beneficial. Such exclusion may have a positive long-term impact
on inference, especially when additional training data are
incorporated into the dataset in the future.

B. Additional Perspectives on Influence-Score Distributions

Our findings imply that the shape of the influence-score
distribution can serve as an indicator of underlying
characteristics of the training dataset or a specific test instance.
For example, S-shaped distributions indicate that only a small
subset of training instances substantially interacts with the test
instance, suggesting that the test instance is relatively unique or
potentially problematic. Evaluating whether such test instances
themselves are suitable may therefore be valuable. If many test
instances exhibit S-shaped distributions, the dataset may be
sparse or highly diverse, indicating a need for targeted data
augmentation or additional data collection.

In contrast, if many test instances exhibit Z-shaped
distributions, the model relies on a more homogeneous set of
neighbors. This provides a new perspective on influence
estimation beyond identifying mislabeled instances: the global
geometry of influence scores reflects dataset density,
redundancy, and locality. Such patterns may reveal highly dense
regions where redundancy is high, in which active data pruning
may be beneficial.

C. Implications for Model Robustness and Generalization

The results in Section IV indicate that the effect of unsuitable
training data on inference accuracy is nonlinear. A small number
of mislabeled instances does not substantially harm accuracy,
but once the number exceeds a certain threshold, the negative
impact increases rapidly. This behavior is consistent with
findings in robust statistics and adversarial training, where
models exhibit phase-transition-like sensitivity to data
corruption. Understanding how the shapes of influence-score
distributions relate to this threshold could lead to new theoretical
insights into the robustness and generalization properties of deep
neural networks.

D. Further Improvement Beyond Exclusion

While this study focuses on excluding unsuitable training
instances, additional responses become possible once such
instances are identified. For example, when an instance is highly
likely to have an incorrect label, relabeling rather than excluding
may be a more effective approach. When the confidence is lower,
adjusting the instance’s weight based on its estimated influence
may be appropriate. Because S-shapedness provides a
quantitative indicator of distribution structure, this index may
help determine which corrective action is most suitable for each
instance. By integrating influence estimation into the training
process itself, it may be possible to achieve more robust learning
under noisy or heterogeneous datasets.

E. Limitations

This study has several limitations. First, we intentionally
introduced synthetic label noise, which may not fully reflect
naturally occurring annotation errors. Second, all experiments
were conducted on a single text dataset, and further validation
across other domains and modalities is needed. Third, our
analysis focused solely on Tracln, and other influence-
estimation methods may exhibit different distribution behaviors.

VI. CONCLUSION

In this paper, we investigated the relationship between the
quality of training instances and their influence scores, focusing
on Tracln as a representative method for estimating per-instance
influence. By intentionally generating incorrectly labeled
instances and analyzing their TracIn score distributions, we
found that the distributions of incorrectly labeled data follow
three characteristic distribution patterns. Specifically, we
identified three characteristic distribution patterns, which are S-
shaped, Z-shaped, and backslash-shaped. In the case of S-shaped
distribution, the incorrectly labeled data tend to be located near
both ends of distribution, i.e., with large absolute Tracln scores.
In the Z-shaped cases, the incorrectly labeled data tend to appear
near the center, with small absolute TracIn scores. Backslash-
shaped cases exhibit intermediate behavior between the S-
shaped and Z-shaped cases. In addition, we showed that these
patterns correlate with the degree of similarity between test and
training instances. Our findings suggest that the shape of the
influence score distribution reflects the structural relationship
between data points in the embedding space. We also examined
how the number of unsuitable instances affects model
performance. The results indicate that a small number of
incorrect instances has only a limited negative impact on
accuracy, implying that exclusion of only a few such instances



does not substantially improve model performance. However,
when many incorrectly labeled instances exist in the training
data, their exclusion becomes essential for improving the model.
We expect that this study provides empirical insights into how
influence estimation can reveal the behavior of unsuitable
training instances and guide effective data cleaning strategies.
These findings contribute to a deeper understanding of training-
data-based interpretability and provide a foundation for future
work on automated identification and exclusion of low-quality
data.

For future work, we plan to improve methods for enhancing
model performance by excluding unsuitable training data,
building on the findings of this study. We also plan to examine
whether the observed trends hold across different datasets and
other influence-estimation methods such as influence functions.
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