An empirical study on radio propagation estimation
for UAVs flying at low-altitude
with machine learning
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Abstract—This paper presents a hybrid approach with
machine learning and light-weight radio propagation model
to estimate wireless communication range between Unmanned
Aerial Vehicles (UAVs) flying at low altitude and their oper-
ators for crop-spraying in orchards. Additionally, it clarifies
key factors to realize the approach by comparing measured
data in a real field and simulation results. Simulation and
measurement results shown in this paper reveals significant
discrepancies between Irregular Terrain Model (ITM) and ray-
tracing simulation results and some different patterns of signal
attenuation due to vegetation and artificial obstacles such as
trees and buildings between UAVs and their operators. The
authors show that 3D special information, which is voxelized
point cloud data measured in a real field, can improve the accu-
racy of results of the light-weight radio propagation model and
discuss on detailed design of our approach with consideration
of radio propagation characteristics.

Index Terms—UAV, BVLOS, low-altitude flight, radio prop-
agation, machine learning

I. Introduction

Crop-spraying by man-hand is grueling work for farmers
because it makes them walk around their farmlands with a
few gallons of liquid agricultural chemicals. Crop-sprayers,
Unmanned Aerial Vehicles (UAVs) with a sprayer and a
tank filled with liquid agricultural chemicals, can be a
solution to help farmers.

There are some issues on flying crop-sprayers in farm-
lands in Japan. There are normally farmlands in moun-
tainous areas or residential areas due to a few of flat lands
in Japan. Especially, orchards are often located in river
valleys because land with good drainage, that is suitable
for orchards, are located in such mountainous areas. Fig. 1
shows a crop-sprayer that is actually operated in an
orchard in Japan. Crop-spraying by UAVs must always
fly at low altitudes to ensure that agricultural chemicals
are sprayed onto crops while preventing the agricultural
chemicals from drifting onto other nearby objects. Addi-
tionally, houses, power lines, and other obstacles surround
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Fig. 1. Crop-spaying with UAV in an orange orchard in Japan

the orchard and make it difficult to fly the crop-sprayer
with line-of-sight. For this reason, it is necessary not only
to be careful when flying UAVs, but also to operate UAVs
in BVLOS (Beyond Visual Line of Sight) environment.

Current crop-sprayers are often operated in VLOS
(Visual Line of Sight) areas due to strict regulations for
BVLOS [1], [2]. The regulations claim operators to always
monitor UAVs by video real-time streamed from cameras
installed on UAVs. The BVLOS regulations require UAVs
and operators to keep stable wireless communication
enough to transmit and receive control commands, teleme-
try data, and video streams simultaneously.

There are some radio systems that can be used for UAVs
in Japan: U169, U2.4, U5.7, [3] and DR-IoT [4]. U169, U2.4
and Ub.7 are wireless communication systems operating
for UAVs in the licensed 169 MHz, 2.4 GHz and 5.7 GHz
bands, respectively, and widely used for UAV operation
in Japan. The maximum transmission power of U2.4 and



U5.7 is 1 W, while the maximum power of U169 is limited
up to 10mW due to domestic regulations. The modulation
schemes are not regulated in the bands. U169 and U2.4
are majorly used for transferring commands and telemetry
data. U5.7 are used for video transmission. Since frequency
is higher, communication range is narrower, U5.7 has less
coverage than U2.4. The narrow communication range of
U5.7 limits UAV flight area in BVLOS environment.
DR-IoT (Diversified-Range/Disaster Response IoT) is a
VHF-band wireless and is being regulated in Japan. Its
modulation scheme is GMSK. Its maximum transmission
power is 5 W on the ground and 1 W in the air
so that it has higher transmit power than the U169
system, which uses the same VHF band, enabling DR-
TIoT to achieve a wider communication range. DR-IoT
has multiple channels with different bitrates and allows
users to change more adaptive channel for their use. For
this reason, DR-IoT have potential to transmit commands,
telemetry data, and video streams simultaneously.
Therefore, we propose a method that accurately es-
timates communication range of UAVs by combining a
lightweight propagation simulation with a machine learn-
ing model. The proposed method improves the simulation
results of light-weight radio propagation models such as
Irregular Terrain Model (ITM) by inputting the results
and 3D spatial information captured by sensor devices
installed on UAVs such as 3D LiDAR devices to machine-
learning. In this paper, we evaluate the differences between
ITM and ray tracing simulation results targeted in an
actual orchard for detailed design of the proposed system.

II. Related Work

Radio propagation models such as two-lay ground and
irregular terrain model are widely used for modeling
and estimating wireless communication range in various
scenarios. Machine learning has emerged as the dominant
paradigm to overcome the computational complexity and
limited accuracy of traditional model-driven (e.g., ray
tracing) and interpolation-based techniques. The existing
wireless communication range estimation methods can be
categorized as the following:

e Model-Driven Methods: These are traditional meth-
ods based on physics and empirical models (e.g., Friis,
log-distance). While the methods are computationally
efficient, their accuracy degrades significantly in com-
plex, actual propagation conditions.

o Data-Driven Methods: These methods solely rely on
measured or simulated data to train machine learning
models to estimate RF parameters at unmeasured lo-
cations. They are highly flexible and excel in complex
environments, however; it requires users to collect
large amount of measurements in the real world.

e Hybrid Model-Data Driven Methods: These ap-
proaches strategically integrate domain knowledge
(the physics of radio propagation) into the data-
driven model structure or loss function. This fusion

aims to achieve high accuracy with greater general-
ization and robustness,

Model-driven methods are relatively computationally
light and lightweight, making it easy to calculate sim-
ulation results. They are well-suited for estimating UAV
communication range on site, as calculations can be easily
performed by bringing computational resources like a
laptop to the actual location where the drone will fly.

Meanwhile, many methods employ abstract models that
cannot account for signal attenuation caused by obstacles
on the ground. Irregular Terrain Model calculates signal
level attenuation with consideration of height difference
due to terrain, but that model does not consider the effect
of obstacles. Ray tracing simulation can include signal
level attenuation and multi-path effect due to obstacles
such as buildings and trees. However, current ray-tracing
models requires a long time to calculate results and
much computational resources for its execution [5]. These
models are often limited to calculate the behavior of radio
propagation due to specific geographical conditions, such
as attenuation and fading by building and other obsta-
cles on the ground. Consequently, they are insufficient
for estimating UAVs communication range, where these
conditions vary depending on the flight path.

Data-driven methods can achieve the most realistic
estimation accuracy by basing their estimates on data
measured within the flight range. However, collecting
measurement data by flying a UAV remains practically
impossible in BVLOS environments. Furthermore, Raju,
et al. reported in [6] that the existing radio map estimation
systems were designed with less empirical validation and
machine-learning-based radio map estimation requires a
large amount of training data. Collecting such measure-
ment data is not easily implemented.

Hybrid model-data driven methods are suitable to esti-
mate communication range for UAV operation in BVLOS
environment. They roughly estimate a communication
range using a light-weight radio propagation model, then
corrects the estimation results of that light-weight model
using other methods. Therefore, depending on the com-
bined technique, it has the potential to improve accuracy
or reduce computation time.

Nagao et al. [7] and Imai et al. [8] proposed a method
that takes aerial photographs of the target area as input
and outputs estimated received signal strength values
that account for the influence of artificial structures
such as buildings captured in the aerial photographs.
However, in the farmland targeted by this paper, while it is
naturally necessary to consider the presence of buildings,
there is the challenge that aerial photographs struggle
to represent terrain undulations, building heights, and
visibility between drones flying low near the ground and
their operators—making it difficult to provide information
related to the vertical dimension.

Current hybrid-driven methods focus on supplementing
measurements in specific conditions to other geographical



conditions. However, as far as we know, there is not a light-
weight wireless communication range estimation method
that can incorporate factors such as obstacle-induced
shielding and fading into its estimation results in a manner
comparable to ray tracing simulation, yet simultaneously
achieve results with minimal computational resources
during estimation, similar to model-driven methods.

Since crop-sprayers fly at low altitudes, they are closer
to obstracles like trees, utility poles, buildings and the
ground during flying. This makes it hard for UAVs and
their operators to secure Fresnel zones, which are elliptic
spaces between a sender and receiver and are necessary
to propagate radio waves effectively. Therefore, it is
important to consider not only obstacles like buildings
but also the effects of vegetation. Additionaly, radio
propagation in lower frequencies bands such as VHF-
band easily changes by vegetation because the behavior of
diffraction is affected by the amount and density of leafs
and trees, it is also significant to consider the changes of
vegeation in the four seasons.

Radio propagation models such as ray tracing simu-
lation models include the signal attenuation by multi-
path and fading effect by buildings, trees, and other
obstructions and has potential to estimate more accurate
received signal strength than other models. There are
imaging method and launcing method for ray tracing
simulation. The computational effort of both methods
are O(MY) and O(L x S). M is the number of surfaces
and N is the number of reflections. L and S are the
number of rays and steps to follow a ray, respectively.
The enormous amount of computational effort shows that
ray tracing models requires high-performance computation
servers to be performed. Therefore, the proposed system
uses machine learning to rapidly obtain estimation results
equivalent to ray tracing.

III. Radio propagation estimation with machine learning
with 3D spatial information

The proposed method involves a UAV with sensors
to capture 3D spatial information and a ground control
station (GCS) to control the UAV. The proposed method
estimates received signal strength values in the field by
improving light-weight simulation results using machine-
learning.

The UAV has some sensor devices such as 3D LiDAR
devices and cameras. The sensor devices collect 3D special
information, for example, point cloud data captured by the
3D LiDAR devices, or images by the cameras. Since the
terrain characteristics are unlikely to change significanly in
the short term, the 3D special information can be collected
by a UAV with the sensor devices different from crop-
sprayers. GCS builds detailed terrain characteristics with
the sensor data and calculates received signal strength
values in the flight area.

The calculation of received signal strength estimates are
performed by the following two steps. GCS calculates the
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Fig. 2. Basic concept of the proposed method

estimates of received signal strength in the flight area using
a light-weight radio propagation model. GCS executes a
machine-learning model with the simulation results and
the 3D special information as input and obtains correction
values of the simulation results or more accurate received
signal strength values from the machine-learning model.

The measurement data using the sensor devices are
stored as 3D point cloud data. They are transferred to
GCS during the UAV is flying in the target field when the
UAV have a wide-band communication link or after the
UAYV lands on the ground.

The proposed system uses ITM as a light-weight simula-
tion model because the results of I'TM simulation include
the signal level attenuation due to terrain elevation,
instead of radio propagation models such as ray tracing
models. The altitude data can be imported from public
geographical database such as the Geospatial Information
Authority of Japan (GSI) map.

GCS executes a reinforcement learning to obtain cor-
rection values to the simulation results or directly obtain
more accurate received signal strength values. It inputs
the 3D spacial data and light-weight simulation results to
the model after voxelizing the original point cloud data
to reduce data size. Unsupervisored learning using actual
received signal strength values is idealy suitable to obtain
accurate estimation results, however, it is not realistic to
measure the values due to enormous patterns of crop-
sprayers operation conditions. Therefore, reinforcement
learning with the 3D special information can be better
than other learning methods.

IV. Comparison of simulation and measurement results

This section shows the simulation results and measured
values we measured by flying an UAV with multiple
sensors in an actual orchard and evaluates the results.



TABLE I
Simulation parameters

Frequency

2480 [MHz] (U2.4)
220 [MHz] (DR-IoT)

TX power

250 [mW] (24 [dBm])

TX antenna height

1.0 lm

RX antenna height 1.5 [m
TX/RX antenna gain | 2.15 [dB]
TX/RX cable loss 0.9 [dB]
Mesh size 1 [m]

Propagation model

ITM and Ray tracing

Ray tracing algorithm

Imaging

Ray tracing reflection

1

A. Scenario

We measured actual signal strength values when an
UAV with sensor devices flying in an actual mandarin
orange orchard. The orange orchard is located in Konan
city, Kochi prefecture, Japan. Additionaly we performed
radio propagation simulation using ITM and ray tracing
model in the same field.

Fig. 3 shows the bird-eye view of the orange orchard.
White lines in that figure are boundaries of the orchard
and other farms. The area surrounded by white dotted
lines is a simulation area we configured for this evaluation.
The simulation area is approximately a 120 x 80 m rect-
angle. We installed a DR-IoT fixed station next to a work
shed located on the northen side of the orange orchard
because we heard from the crop-sprayer’s operators that
they usually stand and manupulate their UAVs around
that point in current operation.

Fig. 5 shows a heat map of altitude in the same field.
The orange farm is terraced with its elevation decreasing
as it slopes southward. The south side of the orage farm
is out of line of sight from the work shed because of the
terraced farm and mandarin orange trees between the work
shed and the southen area of the farm.

We implemented an UAV for 3D special infomration col-
lection and received signal strength measurement. Fig. 5
shows the overview of the UAV. The UAV has a Avia 3D
LiDAR sensor, a high-resolution camera, a DR-IoT radio
and a Jetson Orin Nano. The Jetson Orin nano collects
point cloud data and videos during flying over the orchard
with 3D LiDAR sensor and high-resolution camera. The
DR-IoT radio periodically transmits a 100-byte packet to
the DR-IoT fixed station installed next to the work sched
for the station to record received signal strength values.

Table I shows parameters of ITM and ray tracing
simulation. We performed the simulations for U2.4 and
DR-IoT. We used point cloud data measured by AViA
LiDAR (Avia) [9] to consider obstacles obstructing line of
sight between the work shed and UAV. The point cloud
data we collected exceeded 100,000 points.

Since ray tracing simulation with the enormous amount
of point cloud data takes a long time to calculate results,
we voxelized the point cloud data to shrink the size of that
data as shown in Fig. 6. We divided the simulation field

TABLE II
Field measurement configurations

Frequency 220 [MHz] (DR-IoT)
TX power 250 [mW] (24 [dBm]) [m]
TX antenna height 1.0 [m
RX antenna height 1.5 [m
TX/RX antenna gain | 2.15 [dBi]
TX/RX cable loss 1.2 [dBi]

with 1m x 1m squre meshes and defined a box in meshes
as an abstracted obstracle. The height of the abstracted
obstracle is the same as the highest height values of point
cloud data in the mesh. The base height of the abstracted
obstracle was referred to the altitude data of public maps
published by Geospatial Information Authority of Japan.
We used Scenargie RF Planner [10] to calculate ITM and
ray-tracing simulation results.

Table IT shows the field measurement configurations. We
measured actual received signal strength values in a part
of the orange orchard by walking with a DR-IoT radio the
same as one installed on the UAV and an antenna because
bad weather made the UAV hard to fly. We performed a
field experiment to collect the data in October, 2025. In
this field experiment, we did not measure actual received
signal strength values of U2.4 system because the UAV
we used for measurement were operated by U2.4 system
and could interfere signals for measurement. Although
the maximum transmission power of DR-IoT is 1 W,
the transmission power was configured to 250 mW to
avoid errors of measurement values due to saturation
by strong received signal level. Depending on RF' circuit
implementation, strong received signals generally saturate
a power ampilifier on RF circuits and makes it difficult to
identify the accurate received signal strength. Therefore,
we restricted the transmission power of the fixed station
to 250 mW and collected actual received signal strength
values in points far from the fixed station.

B. Results

Fig. 9 and Fig. 10 show the results of ITM and ray-
tracing simulation in DR-IoT. The maps shown in the
figures are oriented with north at the top. The areas or
points filled in red indicate received signal strength is
between -40 dBm to -50 dBm. The orange areas or points
indicate the signal strength is 10 dB lower than the red
ones. The signal strength decrease by 10 dB as the colors
change from yellow to green, light blue, blue, and purple.

The I'TM simulation results show signal attenuation fol-
lowing altitudes at any points of the simulation field. The
ray tracing simulation results show signal attenuation level
significantly different from the I'TM simulation and many
blind zones. Comparing the two results, the ray tracing
simulation results could contain the effect of that the work
shed blocks line-of-sight to the UAV. This is likely due to
signal attenuation from structures and orange trees, which
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Fig. 5. UAV for measurement 3D special information and RSSI

Fig. 6. Mesh data after voxelization (Each square is 1 x 1m).

are not included in the ITM results. It is noted that the
ray tracing simulation results consider only reflection and
do not consider the effect of diffraction. Since radio wave
with lower frequency has better diffraction, ray tracing
simulation considering both of reflection and diffraction
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5~175
25~5
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Fig. 4. Altitude of the target orchard

can show results with fewer blind zones than the current
ones.

Fig. 7 and Fig. 8 show the results of ITM and ray-tracing
simulation in U2.4 system. As shown in the simulation
results of DR-IoT system, the figures show the ray tracing
simulation results show blind zones in the simulation
field. Since radio wave with higher frequency has poor
diffraction, the simulation results of U2.4 system show
lower signal level than DR-IoT system. Comparing the
results for U2.4 and DR-IoT, DR-IoT, which has a lower
frequency and better propagation characteristics, could be
better for UAV operators. Comparing the two ray tracing
results between DR-IoT and U2.4, the locations of blind
zones are slightly different.

Fig. 11 shows measured received signal values. Compar-
ing the measured values with the ray tracing simulation
results of DR-IoT system, The ray tracing simulation
results follow the measured values. On the other hand,
the ITM simulation results are significantly different from
the measured values. There are up to 20 dB difference
between them.

Consequently, the ray tracing simulation results closely
follow the measured received signal strength values be-
tween a UAV and its operator, while the ITM model
results show significant differences from the measured
ones. The simulation and measured data show that vegeta-
tion and artificial obstacles like buildings have significant
impact on signal attenuation for UAVs at low altitude.

V. Conclution

This paper presented a hybrid approach with machine
learning and light-weight radio propagation model for
wireless communication range estimation for UAVs at low
altitude and their operators for crop-spraying in orchards
and clarified vegetation and obstacles on the ground has
significant impact on the accuracy of the esimation results.
Since vegetation changes due to the changing of seasons,
we will collect measurements and 3D geographical data in



Fig. 11. Measured values of DR-IoT with 24 dBm of TX power

different seasons and estimates a machine learning model
built with the simulation and measured data.
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