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Abstract— Although flow-volume loops from spirometry are
fundamental for diagnosing pulmonary diseases, distinguishing
subtle morphological patterns remains challenging—even for
experienced clinicians, especially when it comes to
differentiating between obstructive and restrictive types. In this
paper, a deep learning framework is proposed to automatically
classify lung diseases based on these loops. As its core
methodology, this work presents a dual-branch architecture
that decomposes the complex four-class classification task—
comprising normal, obstructive, restrictive, and mixed types—
into two independent binary classifiers: one for detecting
obstructive types and the other for restrictive types.
Additionally, to ensure robust performance despite severe class
imbalance in real-world medical data, a generative data
augmentation strategy operating within the learned latent space
of minority classes is employed. By modeling the underlying
data manifold with a Convolutional Variational Autoencoder
(VAE) and synthesizing high-fidelity samples, the training
distribution is effectively rebalanced. This synergistic
combination of a dual-branch structure and generative data
augmentation  significantly enhances the classifier's
generalization performance, demonstrated by an increase of
0.026 in accuracy and 0.126 in F1-score over baseline models,
marking a substantial advancement towards robust and
scalable automated screening for pulmonary diseases.
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1. INTRODUCTION

Chronic  obstructive pulmonary disease (COPD)
represents a significant global health burden, ranking as the
fourth leading cause of death worldwide. In 2021, it was
responsible for 3.5 million deaths, accounting for
approximately 5% of all global fatalities. Beyond mortality,
COPD is also the eighth leading cause of poor health as
measured by disability-adjusted life years (DALYs). The
impact of this disease is disproportionately concentrated in
low- and middle-income countries (LMICs), where nearly
90% of deaths among individuals under 70 years of age occur.
The primary risk factors also differ by economic setting; while
tobacco smoking accounts for over 70% of COPD cases in
high-income countries, it is responsible for 30—40% of cases
in LMICs, where household air pollution is also a major
contributing risk factor [1].

The standard diagnostic and classification tool for COPD
is spirometry, which measures forced expiratory volume in
one second (FEV:) and forced vital capacity (FVC) and
computes their ratio (FEVi//FVC). A ratio below 0.70 is
diagnostic of obstructive impairment [2], [3], and further
stratification into normal, obstructive, restrictive and mixed
types guides treatment planning. Predicted values for
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FEV1 pred and FVCpred are conventionally obtained from
multivariate linear regression models—such as the Global
Lung Function Initiative (GLI-Global) equations—that
incorporate gender, age, ethnicity, height and weight [3].
However, these global reference equations may not accurately
reflect the genetic and environmental characteristics of
specific populations, particularly within East Asia, and they
fail to account for individual factors such as smoking history,
occupational exposures or obesity [4], [5]. Consequently,
substantial discrepancies can arise between measured and
predicted values. To address this issue, the Choi regression
equations, developed on Korean patient data, are employed to
generate more accurate FEV:_pred and FVCpred values for
this cohort and thereby improve the reliability of COPD type
labeling [6].

Spirometric results are often visualized as flow—volume
loops, in which the x-axis represents lung volume (L) and the
y-axis represents airflow rate (L/s). Normal loops exhibit a
smooth rise to peak flow followed by a gradual decline,
whereas obstructive loops display a markedly reduced peak
flow and concave descending limb, and restrictive loops show
narrowed loop width with a lower peak. Prior studies have
leveraged these morphological features for automated
classification: attempts have been made to classify these
features using machine learning techniques. Nevertheless,
these approaches still rely on expert interpretation at the final
decision stage, require patients to undergo in-person testing,
and are subject to inter-observer variability in loop
interpretation [7], [8]. Particularly, the differentiation between
restrictive and obstructive lung diseases remains challenging
due to overlapping morphological features and subtle
variations in loop patterns that may not be easily
distinguishable even by experienced clinicians [9].

To address the challenges of subjective interpretation and
inaccurate reference equations, a deep learning framework is
proposed that takes flow—volume loop images as input and
automatically classifies them into normal, obstructive,
restrictive, and mixed types. To handle the class imbalance
common in medical datasets, SMOTE (Synthetic Minority
Over-sampling Technique)-based minority oversampling is
utilized. The core approach employs a VGG16-based Dual-
Branch convolutional neural network [10]. The major
contributions are summarized below:

e A novel deep learning framework is proposed that
provides an end-to-end solution for objective,
automated classification of spirometric types directly
from flow—volume loop images, thereby reducing the
need for subjective expert judgment.



e The Choi regression equations, developed specifically
on Korean patient data, are utilized to generate more
reliable ground-truth labels. This addresses the
limitations of global reference equations and improves
the accuracy of type classification for this cohort.

¢ A VGGI16-based Dual-Branch CNN is designed as the
primary model, leading to more robust and accurate
classification.

e SMOTE-based oversampling is implemented to
effectively address the class imbalance problem,
significantly improving predictive performance for
underrepresented spirometric types [11].

II. DATASET

The pulmonary function test data used in this study were
measured using a spirometry kit manufactured by TR Co., and
the raw measurements were provided by Hanaro Leaders
Healthcare Co., Ltd. for analysis. The dataset comprises a total
of 4,023 records.

FVC%Pred = =Y measured 2)
FVCpred
where FVCneasured 1S the forced vital capacity measured in liters,
and FVCyq is the predicted normal value in liters obtained via
Choi's regression equations.

Fig. 1. Example Flow-Volume Loop Image. (Upscaled)

Clinically, an FEV./FVC ratio below 0.70 indicates
airflow obstruction, while an FVC %Pred below 80 %
suggests a restrictive ventilatory defect, according to
ATS/ERS and GOLD guidelines. The classification rules are
summarized in Table 2.

TABLE L SPIROMETRY DATASET VARIABLES

Column Unit Description
Date YYYY-MM-DD | Date of examination
id - Patient identifier
Birth YYYY-MM-DD | Patient’s date of birth
Sex Male/Female Patient’s biological sex
Height cm Patient’s height
Weight kg Patient’s weight
FvC L Forced vital capacity
FEV, L Forced expiratory volume in

1 second

FEV/FVC % Ratio of FEV: to FVC
FEF25-75% | Lis Porced expiratory flow at
PEF L/s Peak expiratory flow

A. Data Structure

Each patient's test result is represented by a flow—volume
loop image file matched one-to-one with a corresponding row
in an Excel spreadsheet. The spreadsheet contains the
following columns, and the total number of entries is 4,023.
The detailed layout of the Excel file is shown in Table 1.

Each patient's test result image is saved as a flow—volume
loop, where the x-axis corresponds to lung volume (L) and the
y-axis to instantaneous flow rate (L/s). For example, the loop
shown in Figure 1 rises sharply as volume increases and then
declines smoothly beyond the peak. In this case, the relatively
high peak flow and gradual descending limb closely resemble
anormal type [12].

Classification of each subject's flow—volume loop into one
of four types (normal, obstructive, restrictive, mixed) was
performed based on the computation of two primary metrics:

FEV,
FVC

ratio =

()

TABLE II. SPIROMETRIC TYPE CLASSIFICATION CRITERIA
Types FEV/FVC(ratio) FVC%Pred
Normal >0.70 > 80%
Obstructive <0.70 > 80%
Restrictive >0.70 < 80%
Mixed <0.70 < 80%
Choi et al. derived population-specific regression

equations for spirometric indices by analyzing data from
healthy Korean adults. Unlike the Global Lung Function
Initiative (GLI) equations, which pool multi-ethnic cohorts,
the Choi regressions reflect Korea's unique demographic and
environmental characteristics, providing more accurate
predicted values for forced vital capacity (FVC) in this
population. In their original study, Choi and colleagues also
observed that the lower limit of normal (LLN)—defined as the
5th percentile of the predicted distribution—could be closely
approximated by multiplying the mean predicted value by
0.95.

TABLE IIL FVC PREDICTION COEFFICIENTS BY GENDER
Variable Male Female

Constant (B0) | -4.8434 -3.0006

Age2(year2) -0.00008633 -0.0001273

Height(cm) 0.05292 0.03951

Weight(kg) 0.01095 0.006892

Accordingly, each subject's LLN-corrected predicted
values were computed using Choi's gender-specific formulas
(coefficients shown in Table 3). Based on the diagnostic



criteria summarized in Table 2, each flow—volume loop
was classified into one of four types. Table 4 summarizes the
sample counts for each type, and Figure 4 presents
representative flow—volume loop images illustrating the
Normal, Obstructive, Restrictive, and Mixed types.

Normal Restrictive

(g

Obstructive Mixed

Fig. 2. Flow-Volume Loop Images Classified by Type

TABLE IV. DATASET DISTRIBUTION BY TYPE
Types Sample Count
Normal 2,242

Obstructive 60

Restrictive 1,641

Mixed 80

As shown in Figure 2, the top-left loop exhibits a smooth,
full expansion to a high peak flow followed by a gradual
decline—hallmarks of the Normal type. The top-right loop is
noticeably narrowed in overall volume while maintaining its
descending limb shape, indicative of a Restrictive defect. In
the bottom-left loop, the peak flow is markedly reduced and
the descending limb is concave, characteristic of an
Obstructive type. Finally, the bottom-right loop displays both
a lowered peak flow and a narrowed loop width, consistent
with a Mixed type.

As shown in Table 4, the Normal and Restrictive classes
together comprise approximately 90 % of all samples, while
the Obstructive and Mixed classes each represent only about
5 %. This severe class imbalance risks underrepresentation of
minority types during model training and can degrade
predictive performance. Therefore, creating a more balanced
training set through data augmentation is a crucial step to
mitigate this issue.

III. DATA AUGMENTATION

To augment data, we present the latent-space
augmentation strategies developed to address the severe
underrepresentation of the Obstructive and Mixed classes.
Standard image augmentation techniques, such as rotations,
translations, or cropping, are avoided because they can distort

crucial axis and scale information within flow-volume loop
images, thereby undermining their clinical interpretability.

The ConvVAE encoder processes each 3x224x224 RGB
input through four sequential Conv2D+ReLU blocks. This
process progressively expands the channel dimension from
3—32—-64—128—256 while simultaneously reducing the
spatial resolution from 224—112—56—28—14. Following
these convolutional layers, the output is flattened and then
projected into a mean (u) and log-variance (logo?) via two
distinct linear layers [13].

The D-dimensional latent vector zi is then sampled using
the reparameterization trick, as described in Equation 3:

Z; = u+ exp(0.5loga?) © €,e~N(0,1)
(3)

Here, € is a random sample drawn from a standard normal
distribution N(0, 1), and denotes element-wise multiplication.
This trick enables backpropagation through the stochastic
sampling process, which is crucial for training VAEs
effectively.

The decoder then takes this latent vector zi and restores it
to a 256x14%14 tensor through a linear layer. It then applies
four rounds of bilinear upsampling (with a scale factor of 2)
each followed by a Conv2D+BatchNorm+ReLU block.
Ultimately, a 3x224x224 image is reconstructed via a
Sigmoid activation function. This specific architecture is
designed to ensure that the learned latent space faithfully
preserves the manifold of wvalid volume-flow loops,
maintaining the critical clinical information. A detailed
schematic of the model architecture is provided in Figure 3.

A. SMOTE Interpolation

SMOTE (Synthetic Minority Over-sampling Technique)
is a widely adopted method for augmenting minority class
samples. In this study, SMOTE is adapted for the latent space
of ConvVAE to effectively increase sample counts while
preserving the semantic structure of the data.

F or the latent space mean (u;) and log-variance (logci?)
of each original sample, two random original samples
(corresponding to latent distribution parameters z; and z;) are
selected. The latent space mean () and log-variance (logo?)
of these two samples are then linearly interpolated separately
to generate a new synthetic mean (psynn) and log-variance
(logosynin?). In this process, A is a random value between 0 and
1, which determines the interpolation point along the linear
path between the two original samples. The new synthetic
mean and log-variance are calculated according to Equations
4 and 5, respectively:

ﬂsynthz)l'lli+(1—/1)-yj 4)
logaszynth =1 lOgaiz +(1-2)- logo'].2 (5)

The final synthetic latent code Zsynth is then sampled
through reparameterization using these interpolated mean and
log-variance values, as shown in Equation 6:

Zsynth = Usynen T EXp(O.S logo-_zynth) O]
€,e~N(0,1),A~U(0,1) (6)

B. Gaussion-Noise Augmentation

To capture fine-grained local variations that interpolation
alone may miss, we add isotropic Gaussian noise to each
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Fig. 3. Architecture of the Proposed ConvVAE Model

original code. Generating N noise-perturbed codes
simulates natural variability—such as slight measurement
noise or subtle morphological differences—and enriches the
neighborhood around each latent centroid [14].

Zpoise = Z; + 6, §~N(0, (0.05)2) (7)

Finally, the 2N synthetic latent vectors, generated by
Equations 6 and 7, are decoded through the ConvVAE
decoder to obtain high-resolution flow—volume loop
images. For each of the Obstructive and Mixed classes, the
N original samples are combined with the N SMOTE-
interpolated and N noise-augmented images, yielding 3N
training examples per class. These are then merged with the
actual Normal and Restrictive samples to construct a
balanced training set. This approach effectively prevents
underfitting on rare types and substantially boosts the
classifier's overall performance.

IV. DUAL-BRANCH CNN

This paper introduces a Dual-Branch Convolutional
Neural Network (Dual-Branch CNN) to classify the four
types of pulmonary function (Normal, Obstructive,
Restrictive, and Mixed) in a more systematic and
interpretable manner.

The core idea of this model is to move away from the
conventional approach of directly classifying four
independent categories and instead mimic the fundamental
logic of clinical diagnosis. That is, the model is designed to
independently infer two fundamental properties from a
given flow-volume loop image: (1) the presence or absence
of obstructive impairment and (2) the presence or absence
of restrictive impairment. The probabilistic results of these
two binary judgments are then combined to perform the
final four-class classification.

A. Key components of the model

e Shared Feature Extractor: The pre-trained VGG16 is
utilized from the timm library as a backbone to
extract rich visual features from the input flow-
volume loop images.

e Channel Attention Module: The extracted feature
map is passed through a Squeeze-and-Excitation
(SE) block [15]. The SE-Block acts as an attention
mechanism,  dynamically  recalibrating the
importance of each channel to focus on more
informative features for classification.

e Dual Branches & Probability Combination: The
feature vector, enhanced by the attention module, is

Flatten UnFlatten
: ; A
8 )

Up + Conv + BN

ReLU 35
Sigmoid

fed into two independent pathways: an 'Obstruction
Branch' and a 'Restriction Branch'. While
conventional dual-branch architectures often
produce separate outputs for each task, the proposed
model is distinct in that each branch performs a
binary classification, and their probabilistic outputs
are subsequently combined to produce a single, final
four-class classification result [16], [17], [18].

B. Detailed Components and Training Process

The model's process begins by passing a 224x224x3
input image through the pre-trained VGG16 backbone to
extract a high-dimensional visual feature vector. This
feature vector is then refined by a SE block, which re-
weights channel-wise importance to emphasize useful
information for classification.

This enhanced feature vector is simultaneously fed into
two independent fully connected layers: the 'Obstruction
Branch' and the 'Restriction Branch.! The Obstruction
Branch analyzes the feature vector to determine the
presence of obstructive impairment, outputting a probability
distribution P_obs = [P(—0O), P(O)] for 'non-obstructive' and
'obstructive' via a softmax function. In the same manner, the
Restriction Branch assesses for restrictive impairment,
calculating a probability distribution P_res = [P(—R), P(R)]
for 'non-restrictive' and 'restrictive'.

SE-Block

VGGl6
(Backbone)

Image
(224x224)

Fig. 4. Overall Architecture of the Proposed Dual-Branch CNN



These two probability distributions are then combined to
generate the final four-class classification output through an
outer product operation. Specifically, the joint probabilities
are computed as follows: P(Normal) = P(—O) x P(—R),
P(Obstructive) = P(O) x P(—R), P(Restrictive) = P(—0) %
P(R), and P(Mixed) = P(O) x P(R). These four probabilities
form the final class distribution, which is then converted to
log-probabilities and optimized using the NLLLoss
(Negative Log Likelihood Loss) function to update the
model weights during training. A schematic diagram of the
Dual-Branch model architecture is presented in Figure 4.

V. EXPERIMENTS

All models were implemented using the PyTorch
framework [19]. As detailed in Table 5, the dataset was
partitioned into training and testing sets at a 7:3 ratio. The
values in parentheses within the table denote the original
sample counts for the minority classes before augmentation.
To address this class imbalance, the Obstructive and Mixed
classes were augmented with synthetic samples equivalent
to twice their original count using a latent-space technique.
For training, the Adam optimizer was used, and the batch
size, epochs, and learning rate were set to 32, 100, and 1le-
4, respectively.

TABLE V. TRAIN/TEST SPLIT
Class Train Test
Normal 1569 673
Obstructive 126(42) 18
Restrictive 1148 493
Mixed 168(56) 24

A. Performance

The detailed performance of the final proposed model—
the Dual-Branch CNN trained with latent-space data
augmentation—on the test set is presented in Table 6.

TABLE VL MODEL PERFORMANCE METRICS

Class Precision Recall F1-score
Normal 0.9443 0.9316 0.9379
Obstructive | 0.9444 0.9444 0.9444
Restrictive 0.9062 0.9209 0.9135
Mixed 0.9200 0.9583 0.9388

The final model achieves a high overall accuracy of
92.80% and a macro F1-score 0f 0.9337. Notably, the model
demonstrates  outstanding  performance on the
underrepresented minority classes, achieving F1-scores of
0.9444 for Obstructive and an impressive 0.9388 for Mixed.
This result strongly suggests that the combination of the
proposed Dual-Branch architecture and the data
augmentation strategy is highly effective in overcoming the
challenges posed by severe class imbalance. Additionally,
the model maintains robust performance on the majority
classes, Normal (Fl-score: 0.9379) and Restrictive (F1-
score: 0.9135), indicating a well-balanced and reliable
classification capability across all types.

B. Comparative Analysis

To dissect the individual contributions of the proposed
components, a comparative analysis of model performance
was conducted by varying two factors: the application of
data augmentation and the use of the Dual-Branch
architecture. The results are summarized in Table 7.

The analysis reveals two key insights. First, data
augmentation provided the most significant performance
improvement. Regardless of the model architecture,
applying the latent-space augmentation technique
substantially increased the macro F1-score (from 0.8069 to
0.8850 for the standard CNN, and from 0.9144 to 0.9337 for
the Dual-Branch CNN). This confirms that the proposed
augmentation strategy is highly effective for enhancing the
model's ability to recognize minority class types.

Second, the Dual-Branch architecture consistently
outperformed the standard CNN baseline under identical
data conditions. This suggests that decomposing the multi-
class problem into two independent binary classifications
(obstructive and restrictive) provides a more effective
learning pathway than treating the four types as distinct,
unrelated categories.

Ultimately, the combination of both data augmentation
and the Dual-Branch CNN yielded the best overall
performance (Accuracy: 0.9280, Fl-score: 0.9337). This
indicates a synergistic effect, where the specialized
architecture and the balanced dataset work together to
maximize classification accuracy.

TABLE VII. ABLATION STUDY RESULTS

Class
Recall FI-score
Dual-Branch Data Augment
Not Applied Not Applied 0.9015 0.8069
Applied Not Applied 0.9106 0.9144
Not Applied Applied 0.8940 0.8850
Applied Applied 0.9280 0.9337

VI. CONCLUSION

In this paper, the novel deep learning framework is
proposed to address the key challenges in the automated
classification of spirometric types from flow-volume loop
images: the subtle morphological similarities between types
and severe class imbalance. The approach is characterized
by the synergistic combination of two core components: the
Dual-Branch CNN architecture that mimics clinical
diagnostic reasoning by independently assessing obstructive
and restrictive features, and the generative data
augmentation strategy that uses the Convolutional
Variational Autoencoder (VAE) to effectively rebalance the
training data by synthesizing high-fidelity samples in the
latent space.

The experimental results demonstrate the significant
efficacy of this combined approach. The final model
achieves a high overall accuracy of 92.80% and a macro F1-
score of 0.9337. The ablation studies confirm that both the
Dual-Branch architecture and the latent-space augmentation
individually contributed to performance gains, with their
combination yielding the best results. The model's



exceptional performance on the underrepresented
Obstructive and Mixed classes, in particular, validates the
hypothesis that rebalancing the data distribution with high-
quality synthetic samples is critical for robust classification.

The primary contribution of this work is a robust, end-
to-end framework that can enhance the accuracy of
automated spirometric analysis. By decomposing the
classification task, the proposed model offers a pathway
toward more transparent Al-driven diagnostics, and the
success of this generative augmentation technique provides
a viable solution for the pervasive problem of data
imbalance in medical imaging. Ultimately, this study
represents a significant step toward developing automated,
scalable, and reliable screening tools to aid clinicians in
diagnosing pulmonary diseases. Future work should focus
on validating the model's performance on larger, multi-
ethnic datasets and exploring the integration of other
generative models for data augmentation.
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