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Abstract— Although flow-volume loops from spirometry are 

fundamental for diagnosing pulmonary diseases, distinguishing 

subtle morphological patterns remains challenging—even for 

experienced clinicians, especially when it comes to 

differentiating between obstructive and restrictive types. In this 

paper, a deep learning framework is proposed to automatically 

classify lung diseases based on these loops. As its core 

methodology, this work presents a dual-branch architecture 

that decomposes the complex four-class classification task—

comprising normal, obstructive, restrictive, and mixed types—

into two independent binary classifiers: one for detecting 

obstructive types and the other for restrictive types. 

Additionally, to ensure robust performance despite severe class 

imbalance in real-world medical data, a generative data 

augmentation strategy operating within the learned latent space 

of minority classes is employed. By modeling the underlying 

data manifold with a Convolutional Variational Autoencoder 

(VAE) and synthesizing high-fidelity samples, the training 

distribution is effectively rebalanced. This synergistic 

combination of a dual-branch structure and generative data 

augmentation significantly enhances the classifier's 

generalization performance, demonstrated by an increase of 

0.026 in accuracy and 0.126 in F1-score over baseline models, 

marking a substantial advancement towards robust and 

scalable automated screening for pulmonary diseases. 

Keywords—pulmonary disease classification, flow-volume 
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I. INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) 
represents a significant global health burden, ranking as the 
fourth leading cause of death worldwide. In 2021, it was 
responsible for 3.5 million deaths, accounting for 
approximately 5% of all global fatalities. Beyond mortality, 
COPD is also the eighth leading cause of poor health as 
measured by disability-adjusted life years (DALYs). The 
impact of this disease is disproportionately concentrated in 
low- and middle-income countries (LMICs), where nearly 
90% of deaths among individuals under 70 years of age occur. 
The primary risk factors also differ by economic setting; while 
tobacco smoking accounts for over 70% of COPD cases in 
high-income countries, it is responsible for 30–40% of cases 
in LMICs, where household air pollution is also a major 
contributing risk factor [1]. 

The standard diagnostic and classification tool for COPD 
is spirometry, which measures forced expiratory volume in 
one second (FEV₁) and forced vital capacity (FVC) and 
computes their ratio (FEV₁/FVC). A ratio below 0.70 is 
diagnostic of obstructive impairment [2], [3], and further 
stratification into normal, obstructive, restrictive and mixed 
types guides treatment planning. Predicted values for 

FEV1_pred and FVCpred are conventionally obtained from 
multivariate linear regression models—such as the Global 
Lung Function Initiative (GLI-Global) equations—that 
incorporate gender, age, ethnicity, height and weight [3]. 
However, these global reference equations may not accurately 
reflect the genetic and environmental characteristics of 
specific populations, particularly within East Asia, and they 
fail to account for individual factors such as smoking history, 
occupational exposures or obesity [4], [5]. Consequently, 
substantial discrepancies can arise between measured and 
predicted values. To address this issue, the Choi regression 
equations, developed on Korean patient data, are employed to 
generate more accurate FEV₁_pred and FVCpred values for 
this cohort and thereby improve the reliability of COPD type 
labeling [6]. 

Spirometric results are often visualized as flow–volume 
loops, in which the x-axis represents lung volume (L) and the 
y-axis represents airflow rate (L/s). Normal loops exhibit a 
smooth rise to peak flow followed by a gradual decline, 
whereas obstructive loops display a markedly reduced peak 
flow and concave descending limb, and restrictive loops show 
narrowed loop width with a lower peak. Prior studies have 
leveraged these morphological features for automated 
classification: attempts have been made to classify these 
features using machine learning techniques. Nevertheless, 
these approaches still rely on expert interpretation at the final 
decision stage, require patients to undergo in-person testing, 
and are subject to inter-observer variability in loop 
interpretation [7], [8]. Particularly, the differentiation between 
restrictive and obstructive lung diseases remains challenging 
due to overlapping morphological features and subtle 
variations in loop patterns that may not be easily 
distinguishable even by experienced clinicians [9]. 

To address the challenges of subjective interpretation and 
inaccurate reference equations, a deep learning framework is 
proposed that takes flow–volume loop images as input and 
automatically classifies them into normal, obstructive, 
restrictive, and mixed types. To handle the class imbalance 
common in medical datasets, SMOTE (Synthetic Minority 
Over-sampling Technique)-based minority oversampling is 
utilized. The core approach employs a VGG16-based Dual-
Branch convolutional neural network [10]. The major 
contributions are summarized below: 

• A novel deep learning framework is proposed that 
provides an end-to-end solution for objective, 
automated classification of spirometric types directly 
from flow–volume loop images, thereby reducing the 
need for subjective expert judgment. 



• The Choi regression equations, developed specifically 
on Korean patient data, are utilized to generate more 
reliable ground-truth labels. This addresses the 
limitations of global reference equations and improves 
the accuracy of type classification for this cohort. 

• A VGG16-based Dual-Branch CNN is designed as the 
primary model, leading to more robust and accurate 
classification. 

• SMOTE-based oversampling is implemented to 
effectively address the class imbalance problem, 
significantly improving predictive performance for 
underrepresented spirometric types [11]. 

 

II. DATASET 

The pulmonary function test data used in this study were 
measured using a spirometry kit manufactured by TR Co., and 
the raw measurements were provided by Hanaro Leaders 
Healthcare Co., Ltd. for analysis. The dataset comprises a total 
of 4,023 records. 

TABLE I.  SPIROMETRY DATASET VARIABLES 

Column Unit Description 

Date YYYY-MM-DD Date of examination 

id - Patient identifier 

Birth YYYY-MM-DD Patient’s date of birth 

Sex Male/Female Patient’s biological sex 

Height cm Patient’s height 

Weight kg Patient’s weight 

FVC L Forced vital capacity 

FEV₁ L 
Forced expiratory volume in 
1 second 

FEV₁/FVC % Ratio of FEV₁ to FVC 

FEF25-75% L/s 
Forced expiratory flow at  
25-75% of FVC 

PEF L/s Peak expiratory flow 

 

A. Data Structure 

Each patient's test result is represented by a flow–volume 
loop image file matched one-to-one with a corresponding row 
in an Excel spreadsheet. The spreadsheet contains the 
following columns, and the total number of entries is 4,023. 
The detailed layout of the Excel file is shown in Table 1. 

Each patient's test result image is saved as a flow–volume 
loop, where the x-axis corresponds to lung volume (L) and the 
y-axis to instantaneous flow rate (L/s). For example, the loop 
shown in Figure 1 rises sharply as volume increases and then 
declines smoothly beyond the peak. In this case, the relatively 
high peak flow and gradual descending limb closely resemble 
a normal type [12]. 

Classification of each subject's flow–volume loop into one 
of four types (normal, obstructive, restrictive, mixed) was 
performed based on the computation of two primary metrics: 
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where FVCmeasured is the forced vital capacity measured in liters, 
and FVCpred is the predicted normal value in liters obtained via 
Choi's regression equations. 

 

Fig. 1. Example Flow-Volume Loop Image. (Upscaled) 

Clinically, an FEV₁/FVC ratio below 0.70 indicates 
airflow obstruction, while an FVC %Pred below 80 % 
suggests a restrictive ventilatory defect, according to 
ATS/ERS and GOLD guidelines. The classification rules are 
summarized in Table 2. 

TABLE II.  SPIROMETRIC TYPE CLASSIFICATION CRITERIA 

Types FEV1/FVC(ratio) FVC%Pred 

Normal ≥ 0.70 ≥ 80% 

Obstructive < 0.70 ≥ 80% 

Restrictive ≥ 0.70 < 80% 

Mixed < 0.70 < 80% 

 

Choi et al. derived population‑specific regression 
equations for spirometric indices by analyzing data from 
healthy Korean adults. Unlike the Global Lung Function 
Initiative (GLI) equations, which pool multi‑ethnic cohorts, 
the Choi regressions reflect Korea's unique demographic and 
environmental characteristics, providing more accurate 
predicted values for forced vital capacity (FVC) in this 
population. In their original study, Choi and colleagues also 
observed that the lower limit of normal (LLN)—defined as the 
5th percentile of the predicted distribution—could be closely 
approximated by multiplying the mean predicted value by 
0.95. 

TABLE III.  FVC PREDICTION COEFFICIENTS BY GENDER 

Variable Male Female 

Constant (β0) -4.8434 -3.0006 

Age2(year2) -0.00008633 -0.0001273 

Height(cm) 0.05292 0.03951 

Weight(kg) 0.01095 0.006892 

 

Accordingly, each subject's LLN-corrected predicted 
values were computed using Choi's gender-specific formulas 
(coefficients shown in Table 3). Based on the diagnostic 



criteria summarized in Table 2, each flow–volume loop 
was classified into one of four types. Table 4 summarizes the 
sample counts for each type, and Figure 4 presents 
representative flow–volume loop images illustrating the 
Normal, Obstructive, Restrictive, and Mixed types. 

 

Fig. 2. Flow-Volume Loop Images Classified by Type 

TABLE IV.  DATASET DISTRIBUTION BY TYPE 

Types Sample Count 

Normal 2,242 

Obstructive 60 

Restrictive 1,641 

Mixed 80 

 

As shown in Figure 2, the top-left loop exhibits a smooth, 
full expansion to a high peak flow followed by a gradual 
decline—hallmarks of the Normal type. The top-right loop is 
noticeably narrowed in overall volume while maintaining its 
descending limb shape, indicative of a Restrictive defect. In 
the bottom-left loop, the peak flow is markedly reduced and 
the descending limb is concave, characteristic of an 
Obstructive type. Finally, the bottom-right loop displays both 
a lowered peak flow and a narrowed loop width, consistent 
with a Mixed type. 

 As shown in Table 4, the Normal and Restrictive classes 
together comprise approximately 90 % of all samples, while 
the Obstructive and Mixed classes each represent only about 
5 %. This severe class imbalance risks underrepresentation of 
minority types during model training and can degrade 
predictive performance. Therefore, creating a more balanced 
training set through data augmentation is a crucial step to 
mitigate this issue. 

 

III. DATA AUGMENTATION 

To augment data, we present the latent-space 
augmentation strategies developed to address the severe 
underrepresentation of the Obstructive and Mixed classes. 
Standard image augmentation techniques, such as rotations, 
translations, or cropping, are avoided because they can distort 

crucial axis and scale information within flow-volume loop 
images, thereby undermining their clinical interpretability. 

The ConvVAE encoder processes each 3×224×224 RGB 
input through four sequential Conv2D+ReLU blocks. This 
process progressively expands the channel dimension from 
3→32→64→128→256 while simultaneously reducing the 
spatial resolution from 224→112→56→28→14. Following 
these convolutional layers, the output is flattened and then 
projected into a mean (μ) and log-variance (logσ²) via two 
distinct linear layers [13]. 

The D-dimensional latent vector zi is then sampled using 
the reparameterization trick, as described in Equation 3: 

�� � � � exp"0.5 log*+, ⊙ ., .~1"0, 2,              
(3) 

Here, ϵ is a random sample drawn from a standard normal 
distribution N(0, I), and denotes element-wise multiplication. 
This trick enables backpropagation through the stochastic 
sampling process, which is crucial for training VAEs 
effectively. 

The decoder then takes this latent vector zi and restores it 
to a 256×14×14 tensor through a linear layer. It then applies 
four rounds of bilinear upsampling (with a scale factor of 2) 
each followed by a Conv2D+BatchNorm+ReLU block. 
Ultimately, a 3×224×224 image is reconstructed via a 
Sigmoid activation function. This specific architecture is 
designed to ensure that the learned latent space faithfully 
preserves the manifold of valid volume-flow loops, 
maintaining the critical clinical information. A detailed 
schematic of the model architecture is provided in Figure 3. 

A. SMOTE Interpolation 

SMOTE (Synthetic Minority Over-sampling Technique) 
is a widely adopted method for augmenting minority class 
samples. In this study, SMOTE is adapted for the latent space 
of ConvVAE to effectively increase sample counts while 
preserving the semantic structure of the data. 

F  or the latent space mean (μi) and log-variance (logσi²) 
of each original sample, two random original samples 
(corresponding to latent distribution parameters zi and zj) are 
selected. The latent space mean (μ) and log-variance (logσ²) 
of these two samples are then linearly interpolated separately 
to generate a new synthetic mean (μsynth) and log-variance 
(logσsynth²). In this process, λ is a random value between 0 and 
1, which determines the interpolation point along the linear 
path between the two original samples. The new synthetic 
mean and log-variance are calculated according to Equations 
4 and 5, respectively: 

�34567 � 8 ∙ �: � "1 < 8, ∙ �=                           (4) 
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The final synthetic latent code Zsynth is then sampled 
through reparameterization using these interpolated mean and 
log-variance values, as shown in Equation 6: 

�@ABCD � �34567 � expE0.5 log*34567
+ F ⊙

                            ., .~1"0, 2,, 8~G"0,1,                                (6) 

 

B. Gaussion-Noise Augmentation 

To capture fine-grained local variations that interpolation 
alone may miss, we add isotropic Gaussian noise to each 



 

Fig. 3. Architecture of the Proposed ConvVAE Model 

original code. Generating N noise-perturbed codes 
simulates natural variability—such as slight measurement 
noise or subtle morphological differences—and enriches the 
neighborhood around each latent centroid [14]. 

�BH�@I � J: � K, K~1"0, "0.05,+2,                     (7) 

Finally, the 2N synthetic latent vectors, generated by 
Equations 6 and 7, are decoded through the ConvVAE 
decoder to obtain high-resolution flow–volume loop 
images. For each of the Obstructive and Mixed classes, the 
N original samples are combined with the N SMOTE-
interpolated and N noise-augmented images, yielding 3N 
training examples per class. These are then merged with the 
actual Normal and Restrictive samples to construct a 
balanced training set. This approach effectively prevents 
underfitting on rare types and substantially boosts the 
classifier's overall performance. 

IV. DUAL-BRANCH CNN 

This paper introduces a Dual-Branch Convolutional 
Neural Network (Dual-Branch CNN) to classify the four 
types of pulmonary function (Normal, Obstructive, 
Restrictive, and Mixed) in a more systematic and 
interpretable manner. 

The core idea of this model is to move away from the 
conventional approach of directly classifying four 
independent categories and instead mimic the fundamental 
logic of clinical diagnosis. That is, the model is designed to 
independently infer two fundamental properties from a 
given flow-volume loop image: (1) the presence or absence 
of obstructive impairment and (2) the presence or absence 
of restrictive impairment. The probabilistic results of these 
two binary judgments are then combined to perform the 
final four-class classification. 

A. Key components of the model 

• Shared Feature Extractor: The pre-trained VGG16 is 
utilized from the timm library as a backbone to 
extract rich visual features from the input flow-
volume loop images. 

• Channel Attention Module: The extracted feature 
map is passed through a Squeeze-and-Excitation 
(SE) block [15]. The SE-Block acts as an attention 
mechanism, dynamically recalibrating the 
importance of each channel to focus on more 
informative features for classification. 

• Dual Branches & Probability Combination: The 
feature vector, enhanced by the attention module, is 

fed into two independent pathways: an 'Obstruction 
Branch' and a 'Restriction Branch'. While 
conventional dual-branch architectures often 
produce separate outputs for each task, the proposed 
model is distinct in that each branch performs a 
binary classification, and their probabilistic outputs 
are subsequently combined to produce a single, final 
four-class classification result [16], [17], [18]. 

 

B. Detailed Components and Training Process 

The model's process begins by passing a 224×224×3 
input image through the pre-trained VGG16 backbone to 
extract a high-dimensional visual feature vector. This 
feature vector is then refined by a SE block, which re-
weights channel-wise importance to emphasize useful 
information for classification. 

This enhanced feature vector is simultaneously fed into 
two independent fully connected layers: the 'Obstruction 
Branch' and the 'Restriction Branch.' The Obstruction 
Branch analyzes the feature vector to determine the 
presence of obstructive impairment, outputting a probability 
distribution P_obs = [P(¬O), P(O)] for 'non-obstructive' and 
'obstructive' via a softmax function. In the same manner, the 
Restriction Branch assesses for restrictive impairment, 
calculating a probability distribution P_res = [P(¬R), P(R)] 
for 'non-restrictive' and 'restrictive'. 

 

Fig. 4. Overall Architecture of the Proposed Dual-Branch CNN 



These two probability distributions are then combined to 
generate the final four-class classification output through an 
outer product operation. Specifically, the joint probabilities 
are computed as follows: P(Normal) = P(¬O) × P(¬R), 
P(Obstructive) = P(O) × P(¬R), P(Restrictive) = P(¬O) × 
P(R), and P(Mixed) = P(O) × P(R). These four probabilities 
form the final class distribution, which is then converted to 
log-probabilities and optimized using the NLLLoss 
(Negative Log Likelihood Loss) function to update the 
model weights during training. A schematic diagram of the 
Dual-Branch model architecture is presented in Figure 4. 

 

V. EXPERIMENTS 

All models were implemented using the PyTorch 
framework [19]. As detailed in Table 5, the dataset was 
partitioned into training and testing sets at a 7:3 ratio. The 
values in parentheses within the table denote the original 
sample counts for the minority classes before augmentation. 
To address this class imbalance, the Obstructive and Mixed 
classes were augmented with synthetic samples equivalent 
to twice their original count using a latent-space technique. 
For training, the Adam optimizer was used, and the batch 
size, epochs, and learning rate were set to 32, 100, and 1e-
4, respectively. 

TABLE V.  TRAIN/TEST SPLIT 

Class Train Test 

Normal 1569 673 

Obstructive 126(42) 18 

Restrictive 1148 493 

Mixed 168(56) 24 

 

A. Performance 

The detailed performance of the final proposed model—
the Dual-Branch CNN trained with latent-space data 
augmentation—on the test set is presented in Table 6. 

TABLE VI.  MODEL PERFORMANCE METRICS 

Class Precision Recall F1-score 

Normal 0.9443 0.9316 0.9379 

Obstructive 0.9444 0.9444 0.9444 

Restrictive 0.9062 0.9209 0.9135 

Mixed 0.9200 0.9583 0.9388 

 

The final model achieves a high overall accuracy of 
92.80% and a macro F1-score of 0.9337. Notably, the model 
demonstrates outstanding performance on the 
underrepresented minority classes, achieving F1-scores of 
0.9444 for Obstructive and an impressive 0.9388 for Mixed. 
This result strongly suggests that the combination of the 
proposed Dual-Branch architecture and the data 
augmentation strategy is highly effective in overcoming the 
challenges posed by severe class imbalance. Additionally, 
the model maintains robust performance on the majority 
classes, Normal (F1-score: 0.9379) and Restrictive (F1-
score: 0.9135), indicating a well-balanced and reliable 
classification capability across all types. 

B. Comparative Analysis 

To dissect the individual contributions of the proposed 
components, a comparative analysis of model performance 
was conducted by varying two factors: the application of 
data augmentation and the use of the Dual-Branch 
architecture. The results are summarized in Table 7. 

The analysis reveals two key insights. First, data 
augmentation provided the most significant performance 
improvement. Regardless of the model architecture, 
applying the latent-space augmentation technique 
substantially increased the macro F1-score (from 0.8069 to 
0.8850 for the standard CNN, and from 0.9144 to 0.9337 for 
the Dual-Branch CNN). This confirms that the proposed 
augmentation strategy is highly effective for enhancing the 
model's ability to recognize minority class types. 

Second, the Dual-Branch architecture consistently 
outperformed the standard CNN baseline under identical 
data conditions. This suggests that decomposing the multi-
class problem into two independent binary classifications 
(obstructive and restrictive) provides a more effective 
learning pathway than treating the four types as distinct, 
unrelated categories. 

Ultimately, the combination of both data augmentation 
and the Dual-Branch CNN yielded the best overall 
performance (Accuracy: 0.9280, F1-score: 0.9337). This 
indicates a synergistic effect, where the specialized 
architecture and the balanced dataset work together to 
maximize classification accuracy. 

TABLE VII.  ABLATION STUDY RESULTS 

Class 
Recall F1-score 

Dual-Branch Data Augment 

Not Applied Not Applied 0.9015 0.8069 

Applied Not Applied 0.9106 0.9144 

Not Applied Applied 0.8940 0.8850 

Applied Applied 0.9280 0.9337 

 

VI. CONCLUSION 

In this paper, the novel deep learning framework is 
proposed to address the key challenges in the automated 
classification of spirometric types from flow-volume loop 
images: the subtle morphological similarities between types 
and severe class imbalance. The approach is characterized 
by the synergistic combination of two core components: the 
Dual-Branch CNN architecture that mimics clinical 
diagnostic reasoning by independently assessing obstructive 
and restrictive features, and the generative data 
augmentation strategy that uses the Convolutional 
Variational Autoencoder (VAE) to effectively rebalance the 
training data by synthesizing high-fidelity samples in the 
latent space. 

The experimental results demonstrate the significant 
efficacy of this combined approach. The final model 
achieves a high overall accuracy of 92.80% and a macro F1-
score of 0.9337. The ablation studies confirm that both the 
Dual-Branch architecture and the latent-space augmentation 
individually contributed to performance gains, with their 
combination yielding the best results. The model's 



exceptional performance on the underrepresented 
Obstructive and Mixed classes, in particular, validates the 
hypothesis that rebalancing the data distribution with high-
quality synthetic samples is critical for robust classification. 

The primary contribution of this work is a robust, end-
to-end framework that can enhance the accuracy of 
automated spirometric analysis. By decomposing the 
classification task, the proposed model offers a pathway 
toward more transparent AI-driven diagnostics, and the 
success of this generative augmentation technique provides 
a viable solution for the pervasive problem of data 
imbalance in medical imaging. Ultimately, this study 
represents a significant step toward developing automated, 
scalable, and reliable screening tools to aid clinicians in 
diagnosing pulmonary diseases. Future work should focus 
on validating the model's performance on larger, multi-
ethnic datasets and exploring the integration of other 
generative models for data augmentation. 
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