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Abstract—This paper proposes a multi-layer perceptron
(MLP)-based localization framework for improving user equip-
ment (UE) localization in mmWave simultaneous localization
and mapping (SLAM) environments. The proposed framework
learns the nonlinear relationship between multipath components
and the UE position while incorporating previous predictions
in a recursive manner, enabling accurate and temporally con-
sistent positioning. By doing so, it overcomes the limitations of
traditional closed-form algorithms, which produce unstable or
inaccurate estimates in realistic indoor environments under noise
and multipath propagation. The simulation results demonstrate
that the MLP achieves an 83.76% reduction in the average RMSE
computed over all time steps, compared with the traditional
closed-form algorithm, and yields an estimated location of UE
that closely matches the ground truth.

Index Terms—Radio SLAM, reflection point, MLP

I. INTRODUCTION

The radio simultaneous localization and mapping (SLAM)
has been recognized as a fundamental enabling technique for
6G mmWave communication systems. This technology allows
user equipment (UE) to perceive the surrounding environ-
ment, construct a map, and simultaneously estimate its own
position [1], [2]. Radio-SLAM is particularly important in
mmWave applications that require reliable positioning without
relying on GPS signals, such as indoor navigation, autonomous
robotics, and unmanned aerial vehicle (UAV) operation. By
reconstructing the surrounding environment’s geometry, the
system can better interpret multi-path signals, thereby enabling
robust and accurate UE trajectory estimation even in challeng-
ing indoor environments, where severe reflections, blockages,
and NLOS conditions are common [3], [4].

Recent studies have advanced SLAM techniques in multi-
path mmWave environments through line-of-sight (LOS) and
single-bounce non-line-of-sight (NLOS) signal identification
strategies and outlier mitigation. However, these method ap-
proaches rely primarily on LOS measurements during lo-
calization and employ closed-form estimators that minimize
algebraic errors rather than geometric distance errors, mak-
ing it difficult to achieve precise and optimal positioning
performance [5]. In addition, techniques that exhaustively
evaluate all possible measurement-path combinations for valid
path selection suffer from prohibitively high computational
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Fig. 1. Simulation environment and reflection-point mapping algorithm.

complexity as the number of reflections increases [6]. These
limitations hinder conventional SLAM frameworks from pro-
viding robust and scalable localization performance in dense
mmWave propagation environments. Other prior studies have
likewise shown that closed-form localization methods, which
assume ideal signal conditions, yield unstable and inaccurate
position estimates under realistic multi-path and NLOS con-
ditions [7], [8].

To address these challenges, this paper proposes a multi-
layer perceptron (MLP)-based localization framework that im-
proves localization accuracy in the mmWave SLAM scenario.
The proposed approach exploits reflection points (RPs) derived
from mapped NLOS paths to construct informative sensing
features, enabling the MLP model to learn the nonlinear
relationship between the multipath signal characteristics and
the UE position. Furthermore, to support sequential localiza-
tion, the framework adopts a recursive estimation process that
leverages past position predictions as inputs for subsequent
time steps, allowing the model to estimate the UE trajectory
in a temporally consistent manner.

II. SYSTEM MODEL

This paper considers a localization and mapping scenario
consisting of a single base station (BS) and a single UE, as
illustrated in Fig. 1. The BS is located at a fixed position
denoted by pBS = [xBS, yBS]

⊤ and the 2D UE position at time
t is defined as pUE,t = [xUE,t, yUE,t]

⊤.



The UE receives a LOS signal and NLOS signals reflected
from K walls. The corresponding measurements are modeled
as

[d̂k,t, θ̂k,t]
⊤ = [dk,t, θk,t]

⊤ + rk,t (1)

where r0,t ∼ N (0,RLOS) for k = 0 and rk,t ∼
N (0,RNLOS) for k = 1, . . . ,K denotes the measurement
noise associated with the LOS and NLOS paths, respectively.
dk,t and θk,t are the true propagation distance and unnoisy
angle-of-arrival (AOA), respectively, and the LOS covariance
matrix is given by RLOS = diag(σ2

d, σ
2
θ). The parameters of

the LOS and the k-th NLOS paths are given by

dk,t (2)

=

{
∥pBS − pUE,t∥, k = 0

∥pBS − pRP,k,t∥+ ∥pRP,k,t − pUE,t∥, otherwise

θk,t =

{
arctan

pBS−pUE,t
∥pBS−pUE,t∥ , k = 0

arctan
pRP,k,t−pUE,t

∥pRP,k,t−pUE,t∥ , otherwise
(3)

where pRP,k,t = [xRP,k,t, yRP,k,t]
⊤ is the position of RP.

Mapping is performed in all paths except the one corre-
sponding to the smallest d̂ value. Each path is assumed to
involve a single bounce, where the signal propagates from the
BS to the RP and then to the UE. The estimated RP’s position
is obtained by solving

{
∥p̂RP,k,t − pBS∥+ ∥p̂RP,k,t − pLOS

UE,t∥ = d̂,

(p̂RP,k,t − pLOS
UE,t)

⊤uk,t = ∥p̂RP,k,t − pLOS
UE,t∥,

(4)

where uk,t = [cos(θ̂k,t), sin(θ̂k,t)]
⊤ denotes the unit direction

vector, and pLOS
UE,t is the approximate UE position derived from

LOS measurements via Jacobian linearization. The RP lies
on an ellipse having the BS and the UE as its foci, and
simultaneously on a straight line originating from the UE in
the direction of the uk,t. The RP’s position is determined as
the intersection between the line and the ellipse, as illustrated
in Fig. 1.

III. MLP - BASED SEQUENTIAL LOCALIZATION MODEL

The proposed framework employs an MLP architecture
composed of an input layer, multiple hidden layers, and an
output layer. This structure is selected to effectively capture the
non-linear relationships induced by multipath propagation [9].
For each hidden layer l, the activation vector is computed as

hl = g(Wlhl−1 + bl), (5)

where g(·) denotes the non-linear activation function, Wl ∈
RNl×Nl−1 is the weight matrix connecting layer l − 1 to l,
and bl ∈ RNl is the bias vector. This paper employs two
MLP models sharing this architecture: Model A for single-step
localization and Model B for recursive sequential positioning.
The input to Model A is constructed by aggregating p̂RP,k,t,
d̂k,t, and θ̂k,t obtained from all K NLOS paths at time t:

xt = [p̂⊤
RP,1,t, d̂1,t, θ̂1,t, · · · , p̂⊤

RP,K,t, d̂K,t, θ̂K,t]. (6)

Model A
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p̂UE,1

Fig. 2. Recursive MLP-based localization: Model A initializes the position
at t = 1, and Model B recursively updates it using prior estimates.

For sequential localization, Model B augments xt with the
previously estimated UE position:

x′
t = [xt, p̂

⊤
UE,t−1]. (7)

For both models, these input vectors serve as the initial
activation to the hidden layer, that is,

h0 =

{
xt, Model A
x′
t, Model B

(8)

Since no historical estimate is available at t = 1, the initial
UE position is obtained using Model A: p̂UE,1 = fA(xt),
while for t > 1, Model B performs recursive localization
according to p̂UE,t = fB(x

′
t) where fA(·) and fB(·) are the

trained MLP model. This recursive structure of the estimation
process is illustrated in Fig.2, enables consistent trajectory
tracking by incorporating past position estimates into each
subsequent prediction.

IV. SIMULATION RESULTS

An 60m × 60m indoor environment is considered with a
fixed BS that is located at [0m, 0m]⊤, and a UE moving along
a circular trajectory around it.

A. Training MLP model

To generate the training dataset, the parameters of the sim-
ulation are configured as follows. The noise covariance matrix
of measurements RLOS, and RNLOS are set to diag(0.25m2,
10−4 rad2), diag(9m2, 10−2 rad2), respectively. The overall
time duration for completing one circular trajectory is set
to T = 40 time steps, and 100 unique scenarios are used
as the training data. Both Model A and B adopt an MLP
architecture composed of L = 2 connected hidden layers with
64 neurons each, and apply the rectified linear unit (ReLU) as
the activation function g(·) in each hidden layer. The models
are trained using the Adam optimizer with a learning rate of
0.001, while the MSE is used as the loss function. Training is
performed for up to 500 epochs with a batch size of 32.

To validate the effectiveness of the proposed framework,
the performance is compared against a traditional closed-form
algorithm, Levenberg-Marquardt (LM), using the same test
dataset. The test dataset is constructed to be entirely disjoint
from the training data and is generated by simulating 10
circular trajectories of the UE.



Fig. 3. Illustration of mapping and localization, showing the UE trajectories
estimated by the LM and the proposed MLP framework.
B. Results and Discussion

As shown in Fig. 3, we compare with the traditional LM
method and our proposed MLP-based localization framework.
Although the LM algorithm generally traces the overall cir-
cular path, it exhibits noticeable local distortions, including
radial deviations and shape irregularities, particularly in re-
gions where the induced multi-path RP estimates are highly
dispersed. In contrast, the trajectory produced by the MLP
closely aligns with the true circular motion, forming a smooth
and nearly distortion-free path despite the noisy and spa-
tially scattered RP estimates. This significant improvement
highlights the ability of the MLP to learn the nonlinear
relationships between the geometry of the RP and the position
of the UE, resulting in substantially robust localization. Over-
all, the visual comparison clearly demonstrates the enhanced
robustness of the proposed learning-based approach in dense
mmWave multi-path environments.

Table. I presents the localization RMSE for the proposed
MLP framework and the LM algorithm across varying total-
distance noise levels. At the lowest noise level, the RMSE
of the LM algorithm is 0.30m, and the MLP achieves an
RMSE of 0.08m. This performance gap widens as noise
increases: the LM’s RMSE reaches 1.00m, whereas the MLP
maintains a significantly smaller error of 0.13m. On average,
the framework reduces the localization error by approximately
83.76% relative to the LM. These results demonstrate that the
proposed learning-based approach is markedly more robust to
measurement noise than the closed-form LM estimator.

Table. II shows the localization performance of the LM al-
gorithm and the proposed MLP framework under varying AOA
noise levels. The LM algorithm is particularly vulnerable, with
RMSE rising sharply from 0.55m to 1.25m. By contrast,
the framework maintains substantially lower RMSE, achieving

TABLE I
RMSE COMPARISON OF MLP AND LM ACROSS DISTANCE NOISE LEVELS.

σd 0.1m 0.4m 0.7m 1.0m
LM 0.30m 0.50m 0.75m 1.00m

MLP 0.08m 0.10m 0.11m 0.13m

TABLE II
RMSE COMPARISON OF MLP AND LM ACROSS AOA NOISE LEVELS.

σθ 1◦ 2◦ 3◦ 4◦

LM 0.55m 0.74m 0.96m 1.25m
MLP 0.08m 0.19m 0.23m 0.31m

0.08m at 1◦ and 0.31m at 4◦. The MLP framework achieves
76.76% reduction in localization average error compared with
the LM algorithm, and the performance gap between the
two methods increases as the noise level becomes larger.
Moreover, the error growth rate under noise is significantly
more moderate in the MLP case, demonstrating its robustness
to angular measurement uncertainty.

V. CONCLUSION

This paper proposed an MLP-based localization framework
that improve UE position estimation accuracy in noisy and
multipath mmWave SLAM environments by learning the
nonlinear relationship between LOS, NLOS sensing features
and UE position. This framework also performs localization
recursively by feeding the previously estimated position into
the next prediction step, allowing it to preserve temporal
continuity and accurately track the UE trajectory over time.
Simulation results show substantial RMSE reduction and
trajectory estimates that closely follow the ground truth,
demonstrating that the MLP-based approach is more effective
than the traditional closed-form algorithms. Future work may
extend multi-agent operation and cooperative localization.
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