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Abstract—In this paper, we introduce CardioHARNet, a
lightweight hybrid deep neural architecture that integrates Con-
volutional Neural Networks (CNNs) for local feature extraction,
Convolutional Block Attention Modules (CBAM) for adaptive
channel-temporal weighting, and bidirectional LSTM (BiLSTM)
for long-term dependency modeling. The model operates directly
on raw IMU time-domain signals from accelerometer and gy-
roscope sensors without any handcrafted feature engineering.
Experiments on the KU-HAR dataset, which contains 18 daily
activities with 1,945 original samples and 20,750 windowed
segments, demonstrate that CardioHARNet achieves 95.57 % test
accuracy. It outperforms the re-implemented 1D CNN baseline by
7.7 percentage points while using significantly fewer parameters
(174K vs. 566K). The results show that CBAM enhances dis-
criminative feature learning from raw signals without additional
preprocessing. The proposed model is promising for real-time
wearable IoT and early movement-risk management.

Index Terms—Human Action Recognition, Convolutional Neu-
ral Networks, Attention Mechanism, IMU sensors, KU-HAR
dataset, Deep Learning

I. INTRODUCTION

Human Activity Recognition (HAR) has become essen-
tial for healthcare monitoring, rehabilitation, sports analyt-
ics, and intelligent IoT systems [1]-[3] based on wearable
and smartphone inertial sensors. Initial HAR systems were
highly dependent on hand-crafted features or time-frequency
features [4], [5], which did not generalize well across subjects
or activities and required domain knowledge. Several works
transform IMU signals into images or spectrograms for use
with 2D CNNs [6]. However, preprocessing increases compu-
tational complexity, making these approaches unsuitable for
wearable IoT devices in real-time.

In recent years, deep neural networks have significantly
improved HAR performance. Convolutional Neural Networks
capture local temporal patterns from raw sensor signals [7],
while recurrent networks such as LSTM are useful for cap-
turing long-term dependencies in human motion [8]. Never-
theless, CNN-based models lack temporal memory, whereas
LSTM-based models struggle with fine-grained local feature
extraction. Moreover, standard CNN-LSTM hybrids do not
explicitly focus on the most informative sensor channels or
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time segments. Recent attention-based frameworks [9], [10]
highlight the importance of guiding the network to address
salient movement cues, but most require frequency-domain
transformations or multimodal inputs. Although several public
datasets, such as Opportunity, WISDM, and UCI-HAR, have
accelerated benchmarking of deep learning approaches, they
do not explicitly emphasize informative sensor channels or
time segments. These characteristics make them unsuitable
for real-time deployment on resource-constrained wearable
and IoT devices, where memory footprint, inference latency,
and power consumption are critical. In this research, we
focus on the KU-HAR dataset, released in 2021 by Nahid et
al. [11]. The dataset contains 18 daily activities and fitness
activities collected from 90 participants using smartphone
accelerometer and gyroscope. The original DeepConvLSTM
baseline achieved only 90.87% accuracy [11], which leaves
considerable room for future improvement. While some stud-
ies have reported up to 99% using heavier ensembles [12],
but at the cost of increased complexity. To address these
limitations, we propose CardioHARNet, a lightweight hybrid
architecture combining CNNs, Convolutional Block Attention
modules, and BiLSTM to learn both local patterns, long-
term temporal structure, and channel-temporal importance.
Our model processes raw IMU time-domain signals without
any hand-crafted features or spectrogram generation, which
is suitable for low-power wearable devices. After combining
the last hidden state with mean-pooled temporal features, the
model effectively captures both local dynamics and global
patterns. Extensive experiments on KU-HAR demonstrate that
CardioHARNet achieves a competitive accuracy of 95.57%
with fewer parameters, making it more suitable for wearable
devices.

II. RELATED WORK

Human Activity Recognition (HAR) has rapidly changed
from early hand-crafted feature engineering to modern deep
neural architectures. This section summarizes the field in three
main directions: (1) feature-based approaches in traditional
methods, (2) deep learning techniques of IMU-based HAR,



and (3) attention-based and hybrid frameworks for understand-
ing the evaluation.

A. Feature-based approaches in traditional methods

Traditional Human Activity Recognition relied heavily on
hand-crafted statistical, temporal, and frequency-domain fea-
tures extracted from accelerometer and gyroscope signals. In
early works, accelerometer or gyroscope data were divided
into fixed segments and a set of predefined descriptors, in-
cluding mean, variance, energy, correlation, and frequency
domain coefficients. Classical machine learning models such
as decision trees, SVMs, HMMs, and k-NN used these features
as input. Several works, including Bao and Intille’s, showed
that the acceleration-based annotation dataset and the feature
extraction pipeline [5] could achieve reasonable performance
for daily activities, and biometric gait-based wearable authen-
tication was used for feature engineering in Casale et al. [4].

Although these methods performed well in some contexts,
they suffered from poor generalization and struggled with
complex or transitional movements. Additionally, the feature-
engineering process itself is time-consuming and limits the
scalability of these approaches. To learn discriminative rep-
resentations directly from raw signals, these challenges moti-
vated the shift toward deep-learning-based HAR models.

B. Deep learning techniques of IMU-based HAR

Deep neural networks have become the dominant approach
for IMU-based activity recognition due to the growing avail-
ability of wearable sensors and larger annotated datasets.
Convolutional Neural Networks (CNNs) were the first archi-
tectures to demonstrate strong performance on raw inertial sig-
nals, mainly because of their ability to capture local temporal
patterns and short-term motion characteristics. Chen et al. [6]
proposed a CNN-based model that defined a strong capability
for capturing local temporal-spatial patterns from IMU time-
series. Recurrent networks such as Long Short-Term Memory
(LSTM) models [8] have also been widely adopted in HAR
because human activities naturally exhibit sequential structure.
Long-range temporal dependencies can be captured by LSTM-
based models and are effective for activities that span multiple
time windows or involve smooth transitions.

Hybrid architectures that integrate CNNs and LSTMs fur-
ther improved performance by combining CNNs’ local feature
extraction from raw sensor channels, while LSTMs learn the
progression of movements over time. Ordéfiez and Roggen’s
DeepConvLSTM [7] is one of the most widely used baselines
in many HAR benchmarks. However, these models often
lack limited attention to informative channels. As a result,
they do not emphasize the most informative segments of the
signal, especially when activities are visually or kinematically
similar(e.g., walking vs walking-backward). Researchers are
encouraged to explore attention mechanisms to enhance deep
neural models for HAR because of these limitations. Several
non-deep learning approaches have also been explored for
KU-HAR, such as metaheuristic-driven feature selection with
XGBoost classifiers [13], achieving optimized high accuracy

through efficient feature engineering. However, these methods
offer low computational complexity that causes underperform-
ing deep learning hybrids in capturing complex temporal
patterns, motivating our focus on lightweight deep learning
architectures.

C. Attention-based and hybrid frameworks

Recent studies have shown that HAR models can be im-
proved by adding attention mechanisms to interpret sensor sig-
nals. In traditional pipelines, CNN-LSTM often treats all sen-
sor channels and all time steps uniformly. Attention modules
suppress irrelevant noise by focusing on informative regions to
help the network. The Convolutional Block Attention Module
(CBAM) proposed by Woo et al. [9] introduced channel
attention followed by spatial (or temporal) attention, allowing
the model to reinforce important feature maps and temporal
patterns cautiously. Beyond CBAM, AttnSense [10] is a multi-
level attention framework that highlights essential motion
segments across different sensor modalities. By capturing
fine-grained temporal relevance, these architectures achieve
strong performance at multiple stages of the network pipeline.
Several works have pushed accuracies higher on KU-HAR
using attention-enhanced hybrids, such as ResLSTM variants
reaching 97.05% with 386K parameters [14]. However, these
often require more computational resources, making them
unsuitable for real-time wearable applications.

Our work aims to integrate attention mechanisms into a
lightweight, raw-signal deep model to solve these limitations.
CardioHARNet integrates CNNs, CBAM modules, and a bidi-
rectional LSTM to learn both local features and long-term
temporal structure, as well as channel-temporal importance
directly from raw IMU data. The model does not rely on
handcrafted features or expensive transformations and bal-
ances high accuracy (95.57%) with low overhead for wearable
devices.

III. METHODOLOGY
A. Dataset Description

In our research, we used a publicly available dataset
published in 2021. The KU-HAR dataset contains raw ac-
celerometer and gyroscope recordings from 90 participants
who performed 18 daily activities. A total of 1,945 raw
activity samples and 20,750 subsamples were collected from
the participants. Each trial is captured using a smartphone IMU
and stored as time-domain CSV files.

B. Dataset Processing and Window Generation

1) Feature Organization: Each sample in the KU-HAR
dataset contains six raw IMU channels. They are obtained from
the smartphone’s accelerometer and gyroscope as:

o Accelerometer: a,,a,,a.

o Gyroscope: g, gy, g
No handcrafted features, statistical descriptors, or frequency-
domain transformations were applied in our study. To preserve
the natural temporal structure of human movement, our models
operate directly on the raw time-domain signals.



2) Sliding Window Segmentation: We implemented a fixed-
length sliding window for sensor-based HAR with the follow-
ing parameters.

W =128, stride = 64.

This processing generates overlapping segments that capture
short-term motion dynamics while also increasing the number
of training samples. For each activity recording, windowed
sequences are formed as:

X; = [Sz‘, Sidly o0 Si+W71]7

where s; represents the i-th timestamped IMU sample. The
label assigned to each window corresponds to the activity of
its source sequence.

Through this segmentation, the dataset expands from 1,945
raw recordings to approximately 20,750 windowed samples,
enabling stable training of deep neural networks.

3) Normalization: Channel-wise normalization was applied
to every IMU signal using the formula:

/I r— [
o+ 1078

where 1, and o are calculated entirely from the training set
to avoid data leakage.

4) Train—Test Split: We divided the processed samples into
training and testing sets using an 80/20 stratified split to ensure
a balanced representation of all 18 activity classes. We used
the PyTorch Dataset and Datal.oader modules to manage data
loading and batching for efficient training.

C. CardioHARNet Architecture

We propose a CardioHARNet model that integrates three
complementary components to learn discriminative motion
patterns directly from raw IMU time-series data.

1) CNN Feature Extractor: We used three sequential 1D
convolutional blocks to increase the depth of the feature (32,
64, and 128). Batch Normalization, ReLU activation, and
MaxPooling are included with Conv1D in each block. With the
help of these layers, we extracted short-term temporal features
and reduced the sequence length from 128 — 64 — 32 — 16
hierarchically. After Block 2 and Block 3, we applied CBAM
attention modules to refine important sensor channels and
relevant temporal regions.

2) Bidirectional LSTM Layer: The output is reshaped to
(B, T, C) for the CNN feature extractor and passed through a
bidirectional LSTM with a hidden size of 64 per direction.

BiLSTMoutput : (B, T, 128)

To improve temporal summarization, we concatenated the final
hidden state with a mean-pooled feature.

3) Classification Head: A fully connected lightweight
classifier consisting of dropout, a ReLU layer, and a final
dense layer that computes probabilities over 18 activity classes
through a softmax function.

9 = Softmax(Wh + b)

TABLE I: CardioHARNet Architecture

Layer Filters/Units Kernel  Output Shape
Input 6 ch — (128, 6)
Conv Block 1 32 7 (64, 32)
BN + ReLU + MaxPool — - -
Conv Block 2 64 5 (32, 64)
BN + ReLU + MaxPool - - -
CBAM (Block 2) - - (32, 64)
Conv Block 3 128 3 (16, 128)
BN + ReLU + MaxPool - - -
CBAM (Block 3) - - (16, 128)
BiLSTM (Bi, 1 layer) 64x2 - (16, 128)
Feature Fusion - - (256)
FC Layer 128 - (128)
Output (Softmax) 18 - (18)

IV. EXPERIMENTS AND RESULTS
A. Performance Comparison

We compare CardioHARNet with a re-implemented 1D
CNN baseline model to evaluate the performance of the
proposed model. Both models were trained on the KU-HAR
dataset under the same experimental settings using the Adam
optimizer, batch size 64, and StepLR scheduler.

The proposed CardioHARNet, the baseline 1D CNN, and
recent state-of-the-art models on KU-HAR are summarized in
Table II. CardioHARNet achieves 95.57% test accuracy with
only 174K parameters, outperforming the re-implemented 1D
CNN baseline (87.87%, 566K parameters) by 7.70 percentage
points. Although some recent models achieve higher accu-
racies, they typically require significantly more parameters.
CardioHARNet offers a competitive balance between accuracy
and efficiency, highlighting the benefits of integrating CBAM
attention and BiLSTM-based temporal modeling with CNN
feature extraction for resource-constrained wearable and IoT
devices.

TABLE II: Performance Comparison of CardioHARNet with
Baseline 1D CNN and Recent SOTA on KU-HAR

Model Test Accuracy (%) Params Features

Baseline 1D CNN (re-implemented) 87.87 566K simple 1D CNN

DeepConvLSTM [11] 90.87 ~1M Original baseline

Deep-HAR Ensemble [12] ~99 > 500K Ensemble DL

Metaheuristic XGBoost [13] ~94-96 Low (non-DL) Feature sel. + meta

ResLSTM [14] 97.05 386K Residual LSTM

CardioHARNet (Ours) 95.57 174K CNN + CBAM + BiLSTM

B. Confusion Matrix Analysis

1) Baseline CNN: The confusion matrix of the baseline
CNN model is presented in Figure 1. Several activities with
similar movement patterns are difficult to classify, such as sit
vs. stand, walk vs. walk-circle, stair-up vs. stair-down, and
Talk-Sit vs. Talk-Stand. These misclassifications arise from the
lack of explicit temporal modeling and insufficient attention
to discriminative channels. The model achieves only 87.87%
in the test set due to these misclassifications.

2) Proposed CardioHARNet: The confusion matrix of the
proposed CardioHARNet is shown in Figure 2. It is shown
that the matrix is strongly diagonal, indicating accurate per-
class prediction performance across all 18 activities. The
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Fig. 1: Confusion matrix of Baseline 1D CNN.
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Fig. 2: Confusion matrix of CardioHARNet.

CBAM modules help to highlight the most informative IMU
channels, while the BiLSTM captures long-term temporal
dependencies. Together, they reduce ambiguity between sim-
ilar motion classes. Some misclassifications remain between
walk vs. walk-circle, and Upstairs vs. Downstairs. Overall,
CardioHARNet achieves 95.57% accuracy, demonstrating the
benefits of combining CNN and CBAM with BiLSTM to
capture both fine-grained and global temporal dynamics.

C. Training and Testing Accuracy Curve

The training and testing accuracy curves are illustrated in
Figure 3 for CardioHARNet. Within the first 10 to 12 epochs,
most of the improvements are achieved, and the model reaches

high accuracy rapidly. The testing accuracy curve closely
follows the training accuracy curve throughout the training,
indicating that the model generalizes well and does not overfit.
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Fig. 3: Training and testing accuracy curves for CardioHAR-
Net on the KU-HAR dataset.

V. DISCUSSION

CardioHARNet provides a clear improvement over the
baseline 1D CNN model in experimental results, particu-
larly for activities that depend on subtle temporal signals
or fine-grained limb coordination. By integrating CBAM,
the model significantly improves in emphasizing informative
sensor channels and suppressing irrelevant movements. This
effect is visible in the reduction of confusion matrices, where
similar activity pairs such as walk vs. walk-backward or sit-
up vs. push-up are handled more reliably by CardioHARNet,
compared to the baseline network.

To enhance performance, an additional BiLSTM layer is
added to the model. Although convolutional filters are used
to capture short-range transitions, they cannot model long-
range temporal dependencies. The BiLSTM models activity
sequences over time to address the problem, enabling the
model to retain both short-term motion transitions and broader
activity context. Since user movements are often continuous
and non-uniform, this is essential for practical HAR environ-
ments.

Another important strength of the proposed model is that
CardioHARNet learns directly from raw IMU time series with-
out relying on spectrograms or engineered features. This archi-
tecture avoids the need for expensive preprocessing steps and
makes the model more suitable for low-power wearable de-
vices. The model remains compact by combining lightweight
convolutions, attention, and a single-layer BiLSTM to achieve
high accuracy.

However, some limitations remain. Activities with inher-
ently overlapping motion patterns are still difficult to separate
properly, and variation in how users execute the same activity
with different intensities and styles can affect performance.
Moreover, though the model is lighter than many spectrogram-
based architectures, additional optimization or compression



would be required for ultra-low-power microcontroller deploy-
ment.

In summary, our results demonstrate that integrating atten-
tion into a CNN-BiLSTM pipeline is an effective strategy for
raw-signal human activity recognition. The model strikes a
balance between accuracy, efficiency, and practical deploya-
bility, making it a promising solution for real-world wearable
and IoT applications.

VI. CONCLUSION

This paper presents CardioHARNet, a lightweight hybrid
model based on raw IMU signals for accurate and effi-
cient human activity recognition. CardioHARNet integrates
1D convolutional layers and CBAM attention module with
a bidirectional LSTM model. Bidirectional LSTM plays a
critical role in capturing long-term temporal dependencies
that cannot be fully modeled by convolutional layers alone.
Although CNN blocks learn motion patterns and CBAM
enhances channel-temporal to emphasize informative sensor
signals, the BiLSTM aggregates temporal context across ex-
tended time windows. This combination enables CardioHAR-
Net to simultaneously capture fine-grained local dynamics and
global temporal structures, leading to improved recognition
performance, particularly for activities with subtle or overlap-
ping motion patterns. Another key strength is that the model
operates directly on time-domain data, which eliminates the
preprocessing cost and improves its applicability to wearable
and IoT gadgets, where previous HAR systems only depend
on handcrafted features or spectrogram transformations.

After performing the experiments in the KU-HAR dataset,
our model achieved 95.57% test accuracy and performed better
than the baseline 1D CNN model. In addition, confusion
matrix analysis is added to highlight the strength of our model
to recognize activities that exhibit subtle or overlapping move-
ment characteristics. These results validate the effectiveness of
integrating channel-temporal attention with sequence modeling
for challenging HAR tasks.

In future work, we plan to explore microcontroller-level
optimization, cross-dataset generalization, and real-time de-
ployment on embedded wearable platforms. Overall, Cardio-
HARNet is a promising step towards reliable and practical
HAR systems that are both low-cost and deployable for health
care, fitness, and human-oriented IoT applications.
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