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Abstract—Predicting oceanic pCO2 is crucial for quantify-
ing air sea carbon fluxes and enhancing projections of ocean
acidification, which is essential for understanding the ocean
response to ongoing climate change. This paper examines mul-
tistep forecasting of seawater pCO2 using 3-hourly marine
carbon observations obtained from the National Oceanic and
Atmospheric Administration (NOAA) National Centers for En-
vironmental Information (NCEI) Accession 0100074 dataset. A
unified evaluation framework is developed to compare four repre-
sentative time-series forecasting architectures: LSTM, PatchTST,
iTransformer, and DLinear. All models are trained using the
same multivariate inputs and preprocessing pipeline, and their
performance is assessed across multiple prediction horizons. The
results summarize the relative prediction behavior of recurrent,
transformer based, and linear approaches, providing a consistent
reference for applying modern deep learning methods to marine
prediction pCO2.

Index Terms—Air–sea carbon fluxes, Marine carbon cycle,
Nonlinear multiscale dynamics

I. INTRODUCTION

The global ocean plays a critical role in regulating atmo-
spheric carbon dioxide CO2 concentrations by absorbing about
a quarter of all anthropogenic CO2 emissions released since
the industrial era. Variability in the partial pressure of CO2
(pCO2) at the sea surface directly influences the direction
and magnitude of air-sea CO2 fluxes, making high resolution
monitoring and accurate predictions of oceanic pCO2 essential
for understanding marine carbon uptake, forecasting ocean
acidification, and improving global carbon budget assessments
[1], [2]. However, forecasting pCO2 remains a significant
challenge due to its nonlinear dependence on physical forc-
ing, chemical equilibria, biological activity, and atmospheric
variability, all of which interact across multiple temporal and
spatial scales [3].

Station Papa (145°W, 50°N), located in the North Pacific
Ocean as shown in figure1, is one of the longest running open
ocean observational sites, providing continuous environmental
measurements critical for advancing carbon cycle research. At
this site, the National Oceanic and Atmospheric Administra-
tion (NOAA) Moored Autonomous pCO2 (MAPCO2) system
provides high frequency measurements of seawater and at-
mospheric pCO2, along with sea surface temperature, salinity,
humidity, and other wind parameters [4]. These measurements
are archived in the NOAA National Centers for Environmental

Fig. 1. Location of station Papa

Information (NCEI) Accession 0100074 dataset, creating a
multiyear, quality controlled time series with approximately
3 hours of temporal resolution [5]. Such high resolution
observations provide a valuable opportunity to examine short
term fluctuations in oceanic pCO2 while capturing broader
seasonal and interannual variability.

Machine learning (ML) and deep learning techniques have
become widely used tools for environmental prediction tasks.
In particular, recent advances in time series forecasting mod-
els, such as transformer based architectures, linear decom-
position based models, and recurrent neural networks, have
expanded the range of approaches available for analyzing
complex environmental datasets. Among these are PatchTST
and iTransformer, transformer based models designed to cap-
ture long term representations. DLinear is a linear forecasting
model that identifies trends and seasonal components, while
recurrent models like Long Short-Term Memory (LSTM) are
widely used for nonlinear sequence modeling. In this study,
we apply these time series forecasting models to the station
Papa dataset and compare their predictive performance under
a unified experimental setup. Instead of introducing a new
modeling framework, our goal is to examine how different
categories of existing time series models perform with oceanic
data and provide a performance comparison across multiple
prediction horizons.



II. RELATED WORK

AI and ML approaches have been applied to estimate or
reconstruct ocean time series. One study compared MLR,
CNN, XGBoost, SVM, and RF for global ocean surface
pCO2 and found that the optimized RF model achieved the
best performance. The test results showed an MAE of 6.27
microatmospheres, an RMSE of 15.34 microatmospheres, and
an R2 of 0.92. The study produced global pCO2 fields at 0.25
degree resolution [6].

Another study modeled the deviation between observed
pCO2 and model output in the Indian Ocean from 1980 to
2019 using XGBoost. The method improved RMSE by about
40 percent. The Bay of Bengal Ocean Acidification mooring
was used as an independent dataset. It is the only point source
surface pCO2 record available in the region for the years 2014
to 2018 [7].

Deep learning methods have also been used for ocean time
series prediction. One study evaluated ConvLSTM and ST
ConvLSTM for sea surface temperature prediction in the South
China Sea. The work used Copernicus reanalysis data from
2015 to 2019 and tested different input lengths, prediction
lengths, and hidden sizes [8].

Another study constructed eight ML models for surface
pCO2 in global, offshore, and coastal regions. The models in-
cluded MLR, GAM, CNN, GRU, LSTM, XGBoost, LSBoost,
and RF. RF produced the highest accuracy in the global region,
with an RMSE of 6.123 microatmospheres and an R2 of 0.986
for the period 2000 to 2019 [9].

III. METHODOLOGY

A. Architectures

1) PatchTST: PatchTST is a Transformer based Long term
Time Series Forecasting (LTSF) model that divides time series
into fixed-length patches and treats them as input tokens
while processing each channel of a multivariate sequence
independently [10]. The patching mechanism preserves local
semantic information and reduces the computational cost of
attention, enabling the use of longer look-back windows.
Channel independence further improves parameter efficiency
and enhances generalization. In addition, masked patch pre-
diction–based self-supervised pre-training provides stronger
representation learning than supervised-only training. With
this design, PatchTST consistently achieves lower forecast-
ing errors than existing Transformer-based models such as
FEDformer, Autoformer, and Informer while maintaining ro-
bustness to longer look-back windows and variations in patch
length. A remaining limitation is that PatchTST does not
explicitly model cross-channel dependencies.

2) iTransformer: iTransformer adopts a variate-centric de-
sign that inverts the conventional Transformer approach, which
treats each time step as a token [11]. Instead, the model
represents each variate (channel) by its entire time series as a
single token. This variate tokenization enables self-attention
to directly learn multivariate correlations, while the feed
forward network extracts temporal representations for each

variate. The architecture retains the Transformer’s attention,
feed-forward network (FFN), and layer normalization without
modification and employs an encoder-only structure, achieving
both simplicity and computational efficiency. With this de-
sign, iTransformer consistently attains lower forecasting errors
than various Transformer variants (Transformer, Reformer,
Informer, Flowformer, and FlashAttention-based models), and
its performance improves as the look-back window increases.
Variate-level generalization experiments further show that the
model maintains reasonable predictive accuracy even for vari-
ates unseen during training. A remaining limitation is that
the computational cost of self-attention increases with the
number of variates, as attention is performed along the variate
dimension.

3) DLinear: DLinear is a one-layer linear Direct Multi-
Step (DMS) model proposed as a critique of the architectural
complexity of Transformer-based LTSF methods [12]. For
each variate Xi, which represents an individual input feature
in the multivariate time series, the model applies a one-
layer linear projection of the form X̂i = WXi to directly
predict future values, where W is the weight matrix. The
decomposition-based variant, Decomposition-Linear, further
improves performance on data with clear trend components
by applying a moving-average trend–seasonality decompo-
sition. Experimental results show that DLinear consistently
achieves lower forecasting errors than sparse attention Trans-
former based models across all benchmarks. Its performance
continues to improve as the look back window increases,
whereas Transformer models tend to overfit temporal noise
when the input length becomes large. In terms of efficiency,
DLinear surpasses Transformer variants in parameter count,
multiply–accumulate operations (MACs), inference time, and
GPU memory usage. A noted limitation is that the one-
layer linear structure struggles to capture complex temporal
dynamics arising from change points.

4) LSTM: The LSTM architecture was designed to address
the vanishing and exploding gradient problems observed in
recurrent neural networks (RNNs) [13]. It employs a Constant
Error Carousel (CEC), a self-connected linear unit that pre-
serves gradients over long time spans to maintain a constant
error flow. The input and output gates, implemented as mul-
tiplicative units, protect the CEC from irrelevant inputs and
regulate when its internal state is exposed. Outside the CEC,
truncated gradients are used to ensure computational stability.
Experimental results show that LSTM reliably solves long
time lag problems spanning hundreds of steps, significantly
outperforming conventional RNNs, Backpropagation Through
Time (BPTT), and Real-Time Recurrent Learning (RTRL),
and exhibiting strong performance on noisy, distributed, and
real-valued inputs, as well as on synthetic tasks such as the
Reber grammar and temporal order tests. The paper also notes
that during early training, the memory cell may be abused
by behaving like a constant, which can temporarily distort its
intended functionality.



Fig. 2. Overall workflow diagram

B. Forecasting Framework

We approach the pCO2 forecasting task as a supervised
time-series prediction problem. All models share the same
dataset, feature set, and preprocessing pipeline to ensure a fair
comparison. Four representative architectures are evaluated:
LSTM, PatchTST, iTransformer, and DLinear. The overall
workflow is shown in Figure 2. Each model is trained using
uniform optimization settings and early stopping based on
validation loss. Model performance is assessed on the test set
using the Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and the coefficient of determination (R2). MAE
and RMSE quantify the magnitude of prediction errors, while
R2 measures the proportion of variance in the target that is
explained by the model.

IV. DATASET

The measurement data span approximately three years,
from 16 May 2022, 06:17 UTC to 30 May 2025, 21:17
UTC, with a temporal resolution of three hours The raw
dataset includes 21 observational variables and a timestamp
column. The original dataset includes oceanic and atmospheric
CO2 variables, meteorological and oceanographic conditions,
and several biogeochemical parameters. Among these, we set
seawater saturated pCO2 as the prediction target, while raw
sensor measurements and environmental variables serve as
input features.

A. Feature Extraction

The input features consist of four categories. First, raw
sensor variables such as the mole fraction of CO2 (xCO2),
H2O, temperature within the LI-COR analyzer, atmospheric
pressure, and oxygen concentration are considered. Second,
physical environmental variables like sea surface tempera-
ture and salinity are included. Third, autoregressive terms
are included by using previous pCO2 values to capture the
autocorrelation structure of the time series. Finally, time
embeddings were added to explicitly represent seasonal and
diurnal periodicity. The day of year (DOY), ranging from 1
to 365 and indicating the position in the annual cycle, and
the hour of day (HOD), ranging from 0 to 23 and capturing

the diurnal cycle, are both circular variables. Because these
variables exhibit periodic boundaries, they were encoded using
sinusoidal transformations that map each value onto a unit
circle:

sindoy = sin

(
2π

DOY
365.25

)
, cosdoy = cos

(
2π

DOY
365.25

)
,

sinhod = sin

(
2π

HOD
24

)
, coshod = cos

(
2π

HOD
24

)
.

We use 365.25 days to incorporate the leap-year correction,
which prevents gradual phase drift and provides a more ac-
curate representation of the seasonal cycle without increasing
model complexity.

Several variables were excluded due to high missing rates,
deterministic dependence on other features, or direct functional
dependence on the target variable. For example, the fugacity
of CO2 (fCO2) is nearly a linear transformation of pCO2
because the fugacity coefficient slightly deviates from unity.
In seawater applications, fCO2 is commonly approximated
following [14]

fCO2 ≈ pCO2

[
1− 10−4(44.6− 0.227T )

]
.

where the adjustment factor is

c(T ) = 1− 10−4(44.6− 0.227T ).

It is a linear function of temperature. Therefore,

fCO2 ≈ pCO2 c(T ).

This shows that fCO2 differs from pCO2 only by a small,
temperature(T ) dependent scaling factor, making it effectively
redundant as a model input and preventing potential target
leakage that could arise from including variables that are
deterministic functions of the target itself. Furthermore, the
difference variables compare seawater (sw) and atmospheric
(air) measurements,

dpCO2 = pCOSW
2 − pCOAir

2 ,

dpCO2 = fCOSW
2 − fCOAir

2 .

are linear combinations of the target and atmospheric CO2,
directly encoding target information and therefore must be
excluded to avoid leakage. Dry mole-fraction variables also
exhibit deterministic dependence since

xCOdry
2 =

xCOwet
2

1−H2O
.

rendering xCO2 (dry) unnecessary due to the included wet
mole-fraction and humidity measurements. Lastly, atmospheric
pCO2 can be derived from existing sensor inputs through

pCOair
2 = xCOair(dry)

2 (P − eair).

Where P denotes the total atmospheric pressure measured
by the LI-COR analyzer, and eair is the water vapor partial
pressure computed from atmospheric humidity and tempera-
ture, providing no additional independent information while
increasing the risk of multicollinearity and target leakage. For
these reasons, all such deterministically derived variables were
omitted from the model inputs.



B. Preprocessing

Interpolation was performed independently for each variable
under the assumption that no abrupt physical changes occur
within a three-hour interval and that the underlying time grid
is uniformly sampled. After gap filling, all numerical features
were standardized using z-score normalization. The mean µtrain
and standard deviation σtrain were computed from the training
subset and used to standardize each feature according to

xnorm =
x− µtrain

σtrain
.

These statistics ensure that all features share a comparable
numerical scale during training, improving optimization sta-
bility. The target variable, pCO2, was normalized using the
same procedure

ynorm =
y − µtrain,target

σtrain,target
,

to maintain consistent scaling between inputs and outputs,
ensuring that the input and output share a comparable scale
during model optimization. Time-embedding features (sinu-
soidal DOY/HOD components) inherently lie within the range
[−1, 1] and therefore require no additional normalization. To
prevent data leakage, statistics from the training period were
consistently applied when transforming the validation and
test sets. Model predictions were subsequently mapped back
to physical units via inverse normalization to enable direct
interpretation in terms of pCO2. This preprocessing procedure
ensures a consistent pipeline across training and inference,
enabling stable model convergence and physically meaningful
evaluation.

V. SIMULATION

Time series training employed a sliding-window approach.
We defined one time step as 3 hours. The input sequence
lengths were set to 8, 16, 24, 32, and 40 steps (approximately
1–5 days), and the output sequence lengths were set to 1,
2, 4, 8, and 16 steps (approximately 3–48 hours), resulting
in 25 (input length, output length) combinations in total.
For each combination, contiguous segments of length (input
window length + output window length) were extracted from
the full time series, where the first part was used as the input
sequence and the immediately following part as the future
target sequence.

For all generated windows, we grouped the samples by
the year and month corresponding to the last time step of
the input sequence. Within each month, the windows were
sorted in chronological order, and a 9:1 split was applied,
assigning the first 90% to the training set and the last 10% to
the validation set. The loss function was the MSE computed
on the normalized targets, and the Adam optimizer was used
with a learning rate of 1 × 10−3. The batch size was set to
128, and training was conducted for up to 500 epochs, with
early stopping applied if the validation MSE did not improve
for 5 consecutive epochs. During validation, predictions and
ground truth were de-normalized, and the MSE, RMSE, MAE,

TABLE I
FORECASTING PERFORMANCE OF THE BEST (INPUT, OUTPUT)

CONFIGURATION FOR EACH MODEL ON THE APRIL 2025 TEST PERIOD.

Model (in, out) MSE RMSE MAE R2

PatchTST (16, 1) 1.1974 1.0942 0.7417 0.8727
DLinear (8, 1) 1.1985 1.0948 0.7048 0.8943
LSTM (8, 1) 1.4393 1.1997 0.8689 0.8730
iTransformer (8, 1) 1.2016 1.0962 0.6881 0.8941

and coefficient of determination (R2) were computed in the
original units. The model weights at the epoch with the
minimum validation MSE were saved as the final model for
each (input, output) configuration.

For LSTM, DLinear, PatchTST, and iTransformer, we em-
ployed the same data preprocessing and window configuration,
loading model checkpoints corresponding to the minimum
validation MSE obtained during training to evaluate multi-
step forecasting performance on an independent test period.
The test data were organized as a 3-hourly time series sorted
in ascending order by datetime, consistent with the training
stage. The testing input features were created to match those
used during training.

Table II reports the test-set R2 scores obtained by each
model for all 25 (input, output) configurations in the
April 2025 test period. From this table, we observe that, across
most (input, output) combinations, iTransformer attains the
highest R2 among the four models, indicating comparatively
robust performance with respect to the choice of window
lengths. For each model, we then selected a single repre-
sentative configuration for detailed comparison. The primary
selection criterion was the highest coefficient of determination
R2 in the test set, as R2 is one of the most widely used
goodness-of-fit measures to assess the agreement between ob-
served and predicted values in environmental and geophysical
applications [15]. When two configurations exhibited nearly
identical values R2, we further preferred the configuration
with the smaller MAE, following the recommendation that
MAE provides a natural and interpretable measure of average
model error and is less sensitive to outliers than RMSE [16].
This multi-metric selection strategy is consistent with previous
work suggesting that forecast models should be evaluated
using complementary accuracy measures rather than a single
criterion [17]. According to this rule, the best-performing
settings were PatchTST (16, 1), DLinear (8, 1), LSTM (8,
1) and iTransformer (8, 1).

Figure 3 illustrates sliding 1-step forecasts for the April
2025 test period using the best configuration of each model and
Table I summarizes the quantitative performance of these best
configurations on the test set. Table I summarizes the perfor-
mance of the best (input, output) configuration for each model
on the April 2025 test period. Overall, all four models achieve
relatively low prediction errors with MSE values around 1.2,
and among them DLinear (8, 1) and iTransformer (8, 1) obtain
the highest coefficients of determination, with R2 = 0.8943
and R2 = 0.8941, respectively. iTransformer attains the
smallest MAE (0.6881), providing the best pointwise absolute



TABLE II
TEST-SET R2 SCORES FOR ALL (INPUT, OUTPUT) CONFIGURATIONS ON THE APRIL 2025 TEST PERIOD.

Model (8,1) (8,2) (8,4) (8,8) (8,16) (16,1) (16,2) (16,4) (16,8) (16,16) (24,1) (24,2) (24,4) (24,8) (24,16) (32,1) (32,2) (32,4) (32,8) (32,16) (40,1) (40,2) (40,4) (40,8) (40,16)

iTransformer 0.8941 0.8904 0.8770 0.8844 0.8586 0.8640 0.8246 0.8485 0.8444 0.7472 0.8416 0.8278 0.8074 0.8229 0.5302 0.8377 0.8235 0.8070 0.7474 0.4036 0.8394 0.8072 0.7976 0.6506 0.3573

PatchTST 0.6110 0.8236 0.7849 0.7111 0.6393 0.8727 0.7326 0.6402 0.6621 0.5736 0.8614 0.7916 0.7265 0.5546 0.3849 0.8558 0.8232 0.7180 0.6650 0.5666 0.8446 0.7391 0.3914 0.6074 -0.0780

LSTM 0.8730 0.8375 0.8057 0.7325 0.4840 0.6471 0.8168 0.6947 0.3932 0.3207 0.7915 0.6980 0.4111 0.5516 0.6140 0.6486 0.7105 0.7071 0.5873 0.6349 0.8213 0.3449 0.5608 0.0995 0.6377

DLinear 0.8943 0.8501 0.7966 0.7167 0.6027 0.8589 0.8203 0.7455 0.6478 0.5473 0.8467 0.7877 0.7110 0.6153 0.5934 0.8489 0.7850 0.7159 0.6316 0.5995 0.8528 0.7897 0.7035 0.6015 0.6103

(a) iTransformer (in=8, out=1) (b) LSTM (in=8, out=1)

(c) PatchTST (in=16, out=1) (d) DLinear (in=8, out=1)

Fig. 3. Sliding 1-step (3 h) forecasts of pCO2,SW(sat) for the April 2025 test period using the best configuration of each model. Blue lines denote ground
truth and orange dashed lines denote model predictions.

accuracy, whereas DLinear achieves the second-smallest MAE
together with the highest R2 and is therefore selected as the
overall best configuration according to the selection rule used
for Table II (primary criterion R2, secondary criterion MAE).

PatchTST (16, 1) exhibits the smallest MSE and RMSE
among the four models, but at the same time yields the lowest
R2 and the second-largest MAE; under our criteria, it is
therefore regarded as the weakest configuration. LSTM (8, 1)
shows the largest MSE and MAE and an R2 only slightly
higher than that of PatchTST, indicating that it also performs
clearly worse than the transformer-based models.

VI. CONCLUSION

In this paper, we investigated deep learning–based forecast-
ing of seawater saturated partial pressure of CO2 at Station
Papa using high-frequency MAPCO2 observations. Building
on a unified preprocessing and sliding-window forecasting
framework, we compared four representative time-series mod-
els—LSTM, PatchTST, iTransformer, and DLinear—across 25

(input, output) configurations and multiple evaluation metrics
on a recent three-year time period. The results show that
all models achieve reasonably accurate short-term forecasts,
with test-set MSE values of approximately 1.2 µatm2 for the
best configuration of each model. Among them, iTransformer
yields the smallest MAE, while DLinear achieves the highest
R2 with the second-smallest MAE and is therefore identified
as the overall best configuration under our multi-metric selec-
tion rule. These findings highlight that, for one-dimensional
oceanic pCO2 forecasting at a single station, a carefully tuned
linear baseline can match or even surpass more complex deep
architectures in terms of deterministic accuracy.

Despite these encouraging results, several limitations re-
main. First, our analysis is restricted to a single open-ocean
site, so the robustness of the models across different bio-
geochemical regimes (e.g., coastal, upwelling, or high-latitude
regions) has yet to be assessed. Second, we focused on point
predictions and deterministic error metrics, without explicitly



quantifying predictive uncertainty or evaluating performance
under extreme or rapidly fluctuating events. In future work,
we plan to extend this framework to multi-site and possi-
bly spatially explicit settings, incorporate additional physical
drivers (such as mixed-layer depth and large-scale climate
indices), and explore probabilistic and physics-informed fore-
cast models. Such extensions would help bridge purely data-
driven approaches and process-based understanding, ultimately
improving our ability to monitor and predict changes in the
ocean carbon system.
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