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Abstract—Machine unlearning (MU) seeks to eliminate the
influence of specific training examples from deployed models. As
large language models (LLMs) become widely used, managing
risks arising from insufficient forgetting or utility loss is increas-
ingly crucial. Current MU techniques lack effective mechanisms
for evaluating and controlling these risks, hindering the selection
of strategies that appropriately balance safety and utility, and
raising trust concerns surrounding the ”right to be forgotten.” To
address these issues, we propose FROC, a unified framework with
Risk-Optimized Control for machine unlearning in LLMs. FROC
is built around a conformal-style risk-control formulation that
expresses a user-specified risk budget on unlearning behavior.
This probability-based constraint enables FROC to compare
MU strategies, identify feasible operating regions, and guide
hyperparameter selection according to desired trade-offs between
forgetting sufficiency and utility preservation. To operationalize
this constraint, FROC introduces a smoothly varying continuous
risk model that aggregates forgetting deficiency and utility
degradation into a single configuration-level score. Building on
conformal risk analysis, FROC computes (1) the Conformal
Unlearning Risk (CUR), a data-driven estimated value on the
probability that forgotten samples continue to influence model
predictions, and (2) risk-controlled configuration sets, which
identify unlearning hyperparameters that are valid under the
specified risk budget. Experiments across multiple LLM MU
methods demonstrate that FROC produces stable, interpretable
risk landscapes and reveals consistent relationships between
unlearning configurations, semantic shift, and utility impact.
FROC reframes MU as a controllable, risk-aware process and
offers a practical foundation for managing unlearning behavior
in large-scale LLM deployments.

Index Terms—machine unlearning, model risk management,
conformal risk analysis, trustworthy AI, LLM risk control

I. INTRODUCTION

The rapid adoption of large-scale machine learning systems,
particularly foundation models, graph-based models [1], and
large language models (LLMs) has intensified longstanding
concerns around data privacy, individual rights, and model
accountability. These models are known to memorize rare or
unique samples, inadvertently storing personal information,
copyrighted text, or other sensitive artifacts. In real-world
applications, data owners may demand that their data be
removed from a trained language model due to privacy or
copyright concerns, as mandated, for example, by the General
Data Protection Regulation [2]. As a result, deployed AI
systems now face growing legal and societal expectations to
provide mechanisms that allow users to retract their data and

ensure that models no longer retain or exploit the forgotten
information. This challenge has given rise to the field of
machine unlearning (MU), refers to the process of selectively
removing specific training data points and their influence on
an trained model, making the updated model behave the same
as a model that was never trained on that data [3].

Existing MU approaches ranging from gradient-ascent re-
moval [4] and targeted model editing [5] to SISA [6] and
distillation typically produce highly diverse outcomes. They
typically demonstrate their success of removal through behav-
ioral metrics [7], such as degraded performance on forgotten
samples or reduced membership inference risk. However, the
problem is not merely whether unlearning is performed, but
whether it is performed in a way that appropriately manages
the associated risks.

A key gap is the absence of a principled mechanism for
controlling these risks across different unlearning configura-
tions [4], [8]. Practitioners require tools to express condi-
tions such as ensuring that most forgotten samples undergo
a sufficient predictive shift, or utility losses remain within
acceptable limits. To address this, we adopt a conformal-style,
probability-based formulation of risk control which specifies
a user-defined risk budget on unlearning behavior. Instead
of serving as a guarantee, this expression encodes a desired
operating condition: an MU configuration is preferable when
the proportion of samples exceeding a target risk level α is
small, controlled by a tolerance parameter δ.

We introduce FROC, a unified Framework with Risk-
Optimized Control in machine unlearning for LLMs. FROC
operationalizes the above risk-control perspective by (i) defin-
ing a continuous, softplus-smoothed unlearning risk func-
tion that jointly quantifies insufficient forgetting and excessive
utility degradation, and (ii) aggregating these signals into
configuration-level risk assessments. This enables FROC
to map risk landscapes, compare diverse MU strategies,
and select configurations that satisfy either application or
regulation-driven risk budgets. By reframing MU as a risk-
management task, FROC provides a method-agnostic approach
for understanding and steering unlearning behavior in large-
scale LLMs.



II. RELATED WORK

Early work framed MU as a data-deletion problem, relying
on exact retraining methods [7], but were limited to small-
scale models. Later research introduced SISA for efficient
unlearning through sharded pipelines [6]. Other methods uti-
lize structured retraining, influence function approximations,
and noise injection and ensemble models [9], [10]. MU is
also being incorporated with federated unlearning (FU) in
various applications to ensure privacy [11]. Some of these
works enables client-level data removal [12], [13] without
complete retraining. While these techniques are useful, they
exhibit variable behaviors and lack a unified framework to
manage risks associated with unlearning configurations.

LLM-specific MU methods include targeted removal [14],
distillation-based forgetting [15], and parameter-editing tech-
niques [14]. These methods often have unstable forget-
ting–utility trade-offs and are sensitive to configuration choices
despite having pratical utility. Research on memorization and
data influence, such as extraction attacks [16], indicates that
residual memorization can persist even with high performance.
This highlights the need for MU frameworks to quantify
insufficient forgetting and degradation in a structured manner.

Conformal prediction has emerged as an influential frame-
work for controlling the frequency of undesirable outcomes in
machine learning. Beyond its original role in uncertainty quan-
tification, conformal prediction has been extended to applica-
tions involving risk-sensitive or distribution-shift–aware deci-
sion making, such as Conformal Risk Control [17], predictive
inference with Jackknife+, conditional-coverage methods, and
calibration under covariate shift. These approaches share the
goal of constraining how often a model exhibits undesirable
behavior, whether in the form of miscalibrated predictions,
excessive risk, or violations of fairness or safety criteria.
Conceptually, this perspective is closely related to machine
unlearning: MU also seeks to regulate the frequency of adverse
behaviors. More specifically, instances where the model insuf-
ficiently forgets targeted data or excessively degrades utility
on retained samples. Conformal-style probabilistic control
therefore provides a natural foundation for thinking about
unlearning as a risk-management problem.

III. PRELIMINARIES

This section presents: (i) a surrogate measure of forgetting
strength, (ii) a utility-degradation metrics, and (iii) conformal-
style risk quantity. These are crucial for evaluating unlearning
configurations in the conformal prediction framework.

A. Unified Continuous Unlearning Risk Function

a) Forgetting deficiency: Let θ denote the original
model and θ′ the model obtained after applying an unlearning
configuration λ. Let Dforget be the forget set. We quantify the
extent to which configuration λ suppresses the forget set via
the surrogate forgetting-shift score

s(λ) = log
(
LossU (λ)

)
+
(
max
λ′

AccU (λ
′)−AccU (λ)

)
,

(1)

where LossU (λ) denotes the average forget-set loss (equiva-
lently, log PPL), and AccU (λ) denotes the forget-set accuracy.
Larger values of s(λ) correspond to stronger forgetting effects.

b) Utility Degradation: To quantify changes induced on
the retain distribution, we measure both shifts in loss and
accuracy. Let LossR(λ) and AccR(λ) denote the retain-set loss
and accuracy under configuration λ. We define

r(λ) = log
(
LossR(λ)

)
− log

(
min
c′

LossR(λ
′)
)

+
(
max
λ′

AccR(λ
′)−AccR(λ)

)
,

(2)

which measures distortion relative to the best-performing
configuration. Any increase in retain-set distortion contributes
directly to the unified risk, and the conformal adjustment
subsequently determines which levels of degradation are sta-
tistically acceptable under the user’s risk budget δ.

To support a smooth evaluation criterion, we define the
following soft margins:

∆f (λ) = softplus
(
α̂unlearn − s(λ)

)
, (3)

∆u(λ) = softplus
(
r(λ)), (4)

where softplus(z) = log(1 + ez).
These quantities are used in later sections to construct a

unified, risk-oriented evaluation of unlearning configurations.
c) Unified continuous per-configuration risk: To avoid

cancellation effects and to permit prioritization between for-
getting sufficiency and utility preservation, we combine the
two penalties using non-negative weights wf , wu:

R̃(λ) = wf ∆f (λ) + wu ∆u(λ).

This unified risk increases monotonically whenever forgetting
sufficiency worsens or utility degradation grows. For experi-
mental purposes, we set wf = wu = 1, but these weights can
be tuned to reflect a user’s preference for prioritizing stronger
forgetting or stricter utility preservation.

d) Aggregate unlearning risk for control: The overall
risk for an unlearning configuration is obtained by averaging
R̃(λ) over the evaluation dataset, yielding a scalar violation
score that supports principled control and selection.

B. Conformal-Style Risk Control

Let D̂ref be a reference set disjoint from the forget set,
and let R̂θ′(D̂ref) denote the unified unlearning risk of the
post-unlearning model θ′. Following the functional form of
conformal prediction, we compute a scalar risk statistic

P(x,y)∼D[R(pθ′(x), y) ≤ α̂unlearn] ≈ 1− δ, (5)

with

α̂unlearn = min
{
h−1

(
ln(1/δ)
Nref

; R̂θ′(D̂ref)
)
,

Φ−1
bin

(
δ
e ;Nref , R̂θ′(D̂ref)

)}
,

(6)

where h(a, b) = a log(a/b) + (1 − a) log 1−a
1−b and h−1(·; b)

is its partial inverse. This quantity serves as a model-behavior
statistic used throughout the paper.



IV. RISK OPTIMIZED CONTROL MACHINE UNLEARNING
VIA CONFORMAL ANALYSIS

Section III introduced the forgetting-shift statistic, utility-
degradation measure, and the risk metric α̂unlearn. We now
use these to develop a methodology for selecting unlearning
configurations that balance forgetting with retain set preserva-
tion under a risk budget.

A. Conformal Analysis Principle and FROC Framework

Conformal analysis is crucial in FROC, providing a prob-
abilistic mechanism to limit undesirable behaviors from un-
learning configurations. An adverse event occurs when the
risk function R(pθ′(x), y) exceeds a user-defined threshold α,
indicating the maximum acceptable level of semantic reten-
tion or utility degradation post-unlearning. Using a reference
dataset, we compute the controlled risk as the fraction of
samples where the risk exceeds α, estimating how often model
shows unsatisfactory behavior. Conformal reasoning allows us
to view this quantity as a control signal: rather than treating
the inequality P[R ≤ α] ≥ 1 − δ as a formal guarantee,
we interpret it as a risk-budget constraint defining the tol-
erable rate δ of unlearning violations. Consequently, FROC
repurposes conformal ideas, where we do not directly certify
predictions, but to shape the risk landscape of unlearning so
that conformal assessment, probabilistic adjustment, and user-
defined risk jointly guide the selection of MU configurations.
Given Nref risk evaluations:

R̂ =
1

Nref

Nref∑
i=1

R(pθ′(xi), d), (7)

FROC defines:

α̂unl = min
(
h−1

(
ln(1/δ)
Nref

, R̂
)
,Φ−1

bin

(
δ
e ;Nref , R̂

))
. (8)

This yields:

Px∼Dref
[R(pθ′(x), d) ≤ α̂unl] ≥ 1− δ. (9)

Figure 1 illustrates the overall FROC framework, which
organizes machine unlearning into a risk-optimized control
pipeline. Given a designated forget set and retain set, an
unlearning configuration λ ∈ Λref is applied to a pre-trained
model to obtain a perturbed model θ′. The resulting model is
evaluated through the conformal-style unlearning risk, which
quantifies how frequently θ′ exceeds a specified risk threshold
on a held-out reference distribution. This statistic is then inter-
preted under a user-defined risk budget δ, yielding an adjusted
violation estimate that reflects the balance of the configurations
λ between effective forgetting and retain-set preservation. By
comparing this adjusted risk against the allowable budget,
the framework determines whether the configuration satisfies
the desired operating criterion. Repeating this process across
a grid of candidate configurations produces a lookup table
mapping risk tolerances to admissible unlearning strengths,
thereby enabling reliable, computationally efficient selection
of unlearning parameters in downstream systems. The FROC

framework thus unifies empirical risk assessment, conformal-
style adjustment, and configuration selection into a control
mechanism for stable unlearning behavior.

After this pre-computing stage, the proposed FROC also
include two-way controller. Figure 2 illustrates how the FROC
controller is used in practice for both configuration selection
and risk estimation. In the first mode, the user specifies a de-
sired unlearning risk budget, and the controller queries the pre-
computed lookup table, which is pre-constructed to retrieve
the set of configurations whose adjusted risk estimates satisfy
the specified threshold. This enables the system to select
an unlearning configuration that meets the user’s tolerance
while ensuring that the resulting model adheres to the desired
threshold. In the second mode, the controller evaluates an
input configuration by locating its corresponding entry in the
lookup table and returning its controlled risk that was being
computed by using the reference set. This provides users with
an assessment of the expected risk associated with the chosen
configuration.

Fig. 2: How FROC works in the Inference Stage.

B. Unlearning Effectiveness Control

We manage the unlearning risks associated with language
models following different unlearning methods through con-
formal risk analysis. This methodology ensures that the confor-
mal risks of the unlearned models are rigorously controlled,
relying on test statistics derived from an in-distribution ref-
erence set. In this study, we consider a reference set that
is representative of the target data distribution, allowing us
to effectively evaluate the performance and reliability of the
unlearned models. In this work, we consider a reference set:

D̂ref = {(Xi, Yi)}Nref
i=1 (10)

with size Nref, and compute the unified risk of the unlearned
model pθ′ as:

R̂θ′(D̂ref) =
1

Nref

∑
(x,y)∈D̂ref

R(pθ′(x), y). (11)

Condition 1: Probabilistic Risk-Control Condition for
FROC



Fig. 1: Overview of the FROC framework

Let Dforget be the forget set, and θ′ the unlearned model
obtained via unlearning under configuration λ.

Let R̂θ′(D̂ref) be the empirical risk on a held-out reference
set D̂ref, disjoint from the forget set. Then, with probability
at least 1 − δ, the generalization risk of θ′ on a test sample,
(Xtest, Ytest) ∼ D, satisfies:

P(x,y)∼D [R(pθ′(x), y) ≤ α̂unlearn] ≥ 1− δ, (12)

where the high-probability unlearning risk upper bound
α̂unlearn, the so-called conformal unlearning risk, is given by:

α̂unlearn = min

{
h−1

(
ln(1/δ)

Nref
; R̂θ′(D̂ref)

)
,

Φ−1
bin

(
δ

e
;Nref, R̂θ′(D̂ref)

)} (13)

with h(a, b) = a log(a/b) + (1− a) log
(

1−a
1−b

)
, the partial

inverse h−1(h(a, b); a) = b, and Φ−1
bin denoting the inverse

binomial cumulative distribution function.
Condition 1 integrates the conformal-style statistic into the

FROC framework by linking each unlearning configuration
to its estimated controlled risk. As shown in Figures 1 and
2, the controlled risk R̂θ′(D̂ref) feeds into the conformal
adjustment defined in Section III, producing α̂unlearn. This
value serves as a calibrated indicator of how frequently a
configuration is expected to exceed the allowed risk threshold.
Condition 1 therefore acts as the criterion by which the FROC
controller determines whether a configuration is admissible
under a user-specified risk budget. Evaluating this condition
across all candidate configurations populates the lookup table
used by the controller, allowing the system to retrieve valid
configurations or assess the risk of a given configuration in
real time. In this way, Condition 1 provides the operational

bridge between the conformal-style metric and the practical
control mechanisms that govern FROC’s unlearning behavior.

Condition 2: Optimal Configuration of Unlearning Algo-
rithm

In the risk-optimized control framework (Proposition 1), we
establish a desired risk level α and compute a valid configu-
ration set Λ̂α for machine unlearning. This set is designed to
ensure that the unlearning procedures applied within it result
in post-unlearning risks that remain below the threshold α.
To maintain rigorous control over the family-wise error rate,
we employ the Bonferroni correction [18]. We then assess
empirical risks using randomly sampled test data, evaluating
models that have been retrained with the configurations in
Λ̂α. Our results demonstrate that the post-unlearning empir-
ical risks consistently fall below the conformal unlearning
risk bounds, validating the effectiveness of our approach in
managing unlearning risks.

V. EVALUATION

A. Experimental Setup

We evaluate our risk-optimized unlearning framework
on the RedPajamas [19] benchmark using a pretrained
LLAMA3.1-8B [20]. The dataset has over 1.2T tokens from
various sources, and we use the subsets of it which con-
tains over 73M tokens. A reference set D̂ref computes the
conformal-style unlearning risk. Unlearning methods include
gradient-ascent (GA), GA plus Descent, and GA with KL
divergence, tested across different configurations λ. We report
metrics on an evaluation set of 12,000 samples split evenly
between forget and retain set, measuring forgetting effective-
ness, utility preservation, and calibrated unlearning behavior.
All models are trained with the AdamW optimizer at a learning
rate of 0.00002 on NVIDIA A100-SXM4-40GB GPUs.



Fig. 3: Unified risk versus probing accuracy across LLMs.

Fig. 4: Valid configuration region under a target risk level α.
Points below the horizontal plane correspond to controlled-
safe (λ,Nref) configurations.

B. Evaluation Results

To understand how unified risk R(λ) governs the forgetting
utility trade-off across different architectures, we begin by
examining the probing accuracy of three LLMs under multiple
unlearning configurations. Figure 3 illustrates how the unified
risk R organizes the forgetting and utility trade-off across
three LLMs under different unlearning configurations. For
each model, the dark solid line tracks probing accuracy on
forgotten samples, while the light dashed line tracks ac-
curacy on retained samples. As unified risk increases, all
models exhibit a consistent monotonic decline in both met-
rics, with forgotten-sample accuracy dropping more sharply,
indicating stronger unlearning, while retained-sample accuracy
degrades more gradually. The relative ordering of methods
(GA, GA+Descent, GA+KL) aligns with their corresponding
risk levels, demonstrating that low-risk configurations yield
balanced forgetting and utility preservation, whereas high-
risk configurations induce aggressive but unstable updates.
Despite architectural and scale differences among LLaMA3.1-
8B, RedPajama-7B, and Amber Chat, the overall trends remain
structurally similar, showing that R functions as a model-
agnostic control variable that captures the stability and behav-
ioral impact of unlearning across diverse LLM checkpoints.

1) Valid Configurations under Desired risk Level: Figure
4 visualizes how unified risk behaves jointly across con-
figuration choices and distribution shift, represented by the
Hellinger radius ρ in Equation 6. Each point corresponds to

Fig. 5: Effect of reference set size Nref on unified risk R, run
on LLAMA3.1-8B.

a specific unlearning configuration applied to one of the three
LLMs, with color indicating the resulting unified risk value.
On horizontal axis, configurations vary in aggressiveness,
while the ρ-axis reflects increasing deviation between the
reference distribution and a shifted test distribution. The blue
translucent plane denotes a chosen risk threshold α̂ρ, allowing
us to identify configurations that remain acceptable under a
given level of distribution shift. Points lying below the plane
correspond to configurations that satisfy the risk requirement,
while those above violate it. The figure highlights several
trends: unified risk grows as the Hellinger radius increases,
indicating reduced robustness under larger distribution drift,
and different model families occupy distinct regions of the
risk landscape, revealing model-dependent sensitivity to con-
figuration settings. This joint visualization demonstrates how
FROC enables principled assessment of configuration validity,
providing a unified view of unlearning behavior across models,
configurations, and robustness levels.

2) Impact of Reference Set Size on Conformal Unlearning
Risk: The results also demonstrate that a larger reference set
size Nref and more robust unlearning configurations λ, such
as an increased number of ascent steps, which significantly
contribute to reducing conformal unlearning risk. Figure 5 il-
lustrates how the unified risk R changes as two key unlearning
control factors, reference-set size Nref and learning rate are
independently varied for LLaMA3.1-8B. The blue curve shows
that increasing Nref leads to higher unified risk, reflecting the
fact that a larger reference set provides a stricter evaluation
of both forgetting and utility preservation. As Nref grows,
deviations in the forget and retain behaviors are more easily
detected, thereby increasing the overall risk score. The green
dashed curve depicts the effect of modifying the learning rate
used during unlearning updates. Higher learning rates intensify
the forgetting signal but also introduce larger perturbations
to the retain distribution, causing the unified risk to rise
more sharply. Taken together, the two curves demonstrate
that R responds consistently to both evaluation strictness and
update aggressiveness: unified risk increases when (i) a larger
reference set enforces a tighter assessment of model behavior,
or (ii) the unlearning step size becomes more disruptive. This
visualization shows how FROC enables systematic exploration
of unlearning configurations and offers an interpretable mea-
sure for choosing stable operating regimes.



Fig. 6: Heatmap of Risk-Controlled Unified Risk Across
Models and Methods.

3) Impact of Unlearning Configuration Set on Conformal
Unlearning Risk: The unified-risk heatmap in Figure 6 reveals
significant model-specific differences in the stability of un-
learning updates. Unified risk combines forgetting sufficiency
and utility preservation into a single penalty, with low values
indicating safe unlearning and high values signaling harmful
drift in the retain distribution. All models and methods share
the same configuration. Notably, no method is universally
optimal; LLaMA3.1-8B and AmberChat favor GA+Descent,
achieving near-zero risk, while RedPajama-7B shows GA+KL
as the only low-risk configuration. This inversion highlights
that unlearning safety is closely linked to a model’s pretraining
geometry and inductive biases, emphasizing the need for
model-adaptive unlearning and the utility of unified risk as
a metric for stable configurations across architectures.

VI. CONCLUSION

Our work introduces FROC, a unified framework for risk-
optimized control in machine unlearning. FROC provides a
continuous, model-agnostic measure of unlearning quality by
integrating forgetting sufficiency and utility preservation into
a single risk function. It uses a conformal-style formulation
with the Hellinger radius for configuration assessment. Results
across multiple LLM architectures show that unified risk
captures meaningful differences between unlearning config-
urations, reveals trade-offs driven by hyperparameters like
reference set size and learning rate, and offers risk control
for stable operating regions. These findings highlight FROC’s
value as an evaluation tool for unlearning pipelines. Future
work includes enhancing stability of FROC by tolerating
distribution shifts, and in a longer run, achieving provable
guarantee of the evaluation results.
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