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Abstract—In this paper, we first envision an agentic-AI frame-
work for open-RAN architecture that enables autonomous and
context-aware network control by integrating predictive intelli-
gence into key resource-management loops. Building upon this
architectural vision, we develop a dynamic resource-allocation
mechanism that leverages dual traffic and channel predictions
to guide power-budget decisions across cells. By jointly fore-
casting cell-level traffic demand and channel conditions using
transformer-based AI models, the proposed mechanism acquires
predictive knowledge of spatial–temporal cell environments, al-
lowing power resources to be proactively aligned with expected
demand. Within this framework, we design an adaptive power
budget allocation algorithm that dynamically distributes the total
transmit-power budget across cells based on anticipated traffic
load and channel quality. Simulation results demonstrate that this
predictive strategy achieves a 27.1% improvement in Geometric
Average Throughput (GAT) compared to a baseline scheme
without predictive information, confirming the effectiveness of
embedding predictive and agentic intelligence into open RAN
resource control.

Index Terms—Open RAN, resource allocation, power budget,
transformer

I. INTRODUCTION

Cellular operators are already confronted with increasingly
dense network deployments as they strive to accommodate the
relentless growth in high data rate mobile services. While a
large number of base stations (BSs) have been deployed across
heterogeneous multi-cell networks, the infrastructure is rapidly
approaching saturation. Simply deploying additional BSs is no
longer a sustainable long-term solution due to physical site
constraints, infrastructure costs, backhaul bottlenecks, and the
escalating energy footprint associated with dense deployments.

As a software-centric alternative, inter-cell resource sharing
and traffic-aware load balancing have been extensively stud-
ied [1]–[3], with the goal of directing additional resources
toward congested cells to alleviate load imbalance. In par-
allel, advanced interference management techniques, such as
coordinated multipoint (CoMP) transmission and interference-
aware power control, have been developed to mitigate inter-
cell interference [7]. Building on these ideas, a number of
studies have explored dynamic resource-sharing mechanisms
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designed to maximize network utility or enhance spectral and
energy efficiency [5], [6].

Despite this progress, existing approaches generally over-
look the explicit characterization and exploitation of cell
environments, such as spatial–temporal traffic variations or
channel-quality trends. Without incorporating these struc-
tural properties, they fail to harness valuable predictive cues
that could significantly enhance network-wide performance.
Moreover, the fundamental trade-off between throughput and
fairness is often treated implicitly, leaving room for more
principled solutions that can balance competing objectives
based on environmental knowledge.

Motivated by these gaps, we take a fundamentally dif-
ferent perspective: we aim to characterize cell environments
and leverage them within an agentic-AI–driven open-RAN
architecture that enables predictive and autonomous resource
control. Within this framework, open-RAN components con-
tinuously observe, forecast, and reason about per-cell dy-
namics, creating a closed-loop system in which policies can
adapt proactively to future conditions rather than reactively to
immediate states.

As a concrete realization of this framework, we develop
a prediction-assisted power-budget allocation mechanism in
which the maximum transmit power of each cell serves as
the primary control variable. By jointly forecasting cell traffic
demand and channel conditions using transformer-based AI
models, the controller gains predictive knowledge of how loads
and channel qualities evolve across neighboring cells. This
predictive information enables the coordinated distribution of
per-cell power budgets under a fixed total power budget,
thereby improving both user fairness and overall throughput.

In summary, our work moves beyond conventional static
or myopic resource-allocation schemes by embedding predic-
tive intelligence into an agentic-AI open-RAN control loop.
Through this integration, the proposed framework captures
structural differences across cells, exploits cross-cell depen-
dencies, and systematically aligns resource supply with antic-
ipated demand, ultimately achieving significant network-wide
performance gains.

The main contributions of this paper are as follows.

• We introduce an agentic-AI system for open-RAN archi-
tecture that enables autonomous, predictive, and closed-



loop resource control by continuously observing and
forecasting per-cell environments.

• Building upon this framework, we design a power budget
allocation algorithm that jointly leverages transformer-
based traffic and channel predictions to proactively align
per-cell power budgets with anticipated network condi-
tions.

• Through extensive simulations, we show that the pro-
posed predictive strategy (i) adapts power budgets to
heterogeneous cell environments, (ii) consistently out-
performs baseline non-predictive approaches in terms of
throughput and fairness, and (iii) benefits significantly
from improved prediction accuracy.

In the rest of this paper, we begin with introducing the
agentic-AI system for open-RAN architecture in Section II.
Then, we define system model and problem statement in
Section III. Next, we provide the power budget allocation
algorithm in Section IV. Then, in Section V, we provide
simulation results of the proposed algorithm. Finally, we
conclude this paper in Section VI.

II. AGENTIC-AI SYSTEM FOR OPEN-RAN ARCHITECTURE

In this section, we propose an agentic-AI framework for
open-RAN architecture as follows.

Fig. 1: A proposed hierarchical system in open-RAN architec-
ture.

A. Agentic-AI System for Open RAN architecture

First, we define an agentic-AI system as an AI-native
controller that exhibits a higher degree of autonomy, situa-
tional awareness, and adaptability than conventional rule-based
network management. Each agent is capable of setting its own
goals and making context-aware decisions while coordinating
with other agents through common goal.

We consider a hierarchical control framework, as shown in
Fig. 1, aligned with the non-RT RIC, near-RT RIC, and O-DU
components. High-level policies and long-term learning are
performed by rApps running on the non-RT RIC. Meanwhile,
xApps, running on the near-RT RIC, operate as agents who
own their cell-specific objectives and common goal at the same
time. The O-DU executes slot-level scheduling and power

allocation under the decisions received from the near-RT RIC,
and provides feedback for both RICs.

B. Transformer-Based Prediction at the Non-RT RIC

At the non-RT RIC, we exploit abundant computational
resources to train transformer-based prediction models for
both channel and traffic states. Past time-series samples of
user channels and traffic loads which are collected from the
network are used to learn models that predict future cell-level
environments over a given horizon.

For channel prediction, we distinguish between small-scale
channel fading and large-scale channel fading components.

• Small-scale channel fading prediction is used to capture
rapid channel fluctuations in interference-limited regions,
especially for users far from their serving BS where the
instantaneous gain is small and highly variable. Accu-
rate prediction in such regimes enables more effective
resource allocation when inter-cell interference is severe
and channel variation is large.

• Large-scale channel fading prediction corresponds to
forecasting the spatial region where users will remain
over a given time horizon. The large-scale channel gain
is a key factor that mainly characterizes the cell environ-
ment.

For traffic prediction, transformer predicts the future traffic
level for each cell, enabling the controller to make decisions
by comparing the relative traffic load across cells. Traffic
prediction data helps mitigate capacity imbalance and improve
per-user throughput, satisfying user demand better.

Dual traffic and channel prediction results are periodically
delivered to the near-RT RIC. During operation, the xApps on
near-RT RIC utilize these predictions to determine multi-step-
ahead per-cell power budgets.

C. Near-RT RIC and O-DU Operation

Given the predicted cell environments, each xApp selects an
appropriate power budget for each objective under a common
goal and installs it at the O-DUs via the E2 interface. Each
O-DU then performs slot-level user scheduling and power
allocation within the maximum power constraints.

The O-DU continuously monitors QoS metrics (e.g., per-
user throughput, delay, outage probability) and reports aggre-
gated KPIs back to the RIC. These measurements are used to
(i) evaluate the accuracy of the channel and traffic predictions,
and (ii) assess the effectiveness of the current power-budget
allocation method. Based on this feedback, the controllers at
the non-RT RIC and near-RT RIC update model parameters.

Through this closed-loop prediction–control-feedback cycle,
the proposed agentic-AI in open RAN framework dynamically
reconfigures per-cell power budgets and intra-cell resource
allocation, thereby improving long-term utility in cellular
networks beyond what static resource-sharing schemes can
achieve.



III. SYSTEM MODEL AND PROBLEM STATEMENT

A. Network and Resource Allocation Model

We consider a wireless cellular network in the downlink.
Denote by C ≜ {1, . . . , C}, and K ≜ {1, . . . ,K} the set
of BSs and users, respectively. Each BS c serves Kc number
of associated users. Each user is connected to a single BS.
We consider that BSs share a common pool of available
power resources, and the total transmit power averaged over
time is limited by a network-wide budget, assuming that an
instantaneous network-wide total power constraint to be:∑

c∈C

∑
s∈S

pcs(t) ≤ Ptot(t), ∀t, (1)

where Ptot(t) is the total available power per time-slot over
the network.

We further define longer time scale parameter, T , to be
fixed as per-cell power budget during T slots. The parameter
T should be determined according to specific metric, such as
GAT. We denote per-cell time-slot constraint as∑

s∈S
pcs(uT + τ) ≤ P c,max(uT ), (2)

∀u, ∀τ ∈ {uT, (u+ 1)T − 1}.

We illustrate the algorithms that find the appropriate upper
bound, P c,max(uT ), in Section IV.

In each slot t, each BS c schedules its associated users
on the available subchannels and allocates the corresponding
transmit power. We denote by xc,k

s (t) ∈ {0, 1} the scheduling
indicator, which satisfies∑

k∈Kc

xc,k
s (t) ≤ 1, ∀c, ∀s, (3)

where xc,k
s (t) equals 1 when user k in cell c is scheduled on

subchannel s at slot t, and 0 otherwise. In other words, each
subchannel can be assigned to at most one user per slot.

B. Problem Statement

We define our long-term objective as a network utility
function that jointly captures throughput and fairness among
UEs as

max
p,x,P

∑
k∈K

Uk( lim
B→∞

1

B

B−1∑
t=0

rk(p(t),x(t),P
c,max(t))),

(4a)

subject to (1),(2),(3), (4b)

where Uk(·), rk(·), B, p = {p(t)}∞t=0, x = {x(t)}∞t=0,
and Pc,max(t) = {Pc,max(t)}∞t=0 denote that utility func-
tion, instantaneous user rate, number of time slots, p(t) =
{pcs(t), s ∈ S, c ∈ C}, x(t) = {xc,k

s (t), s ∈ S, c ∈ C}, and
Pc,max(t) = {P c,max(t), c ∈ C}.

To this end, we seek to maximize the network utility by
determining the per-cell power budgets, {P c,max(t)}, while
relying on the existing interference-management algorithm
in [4] to find the instantaneous transmit power {pcs(t)} and
scheduling decisions {xc,k

s (t)}.

Algorithm 1 Score-Based Power-Budget Allocation

Step 1: Normalize predicted values
Compute Λ̃c(uT ) and Γ̃c(uT ) according to (7) and (8).

Step 2: Score relative cell value
Compute αc(uT ) according to (10).

Step 3: Determine cell power budget
Compute P c,max(uT ) according to (10).

In this work, we develop algorithms that determine per-
cell maximum power budgets which will be described in
Section IV.

IV. POWER BUDGET ALLOCATION ALGORITHM

In this section, we propose two heuristic algorithms for
determining the per-cell maximum power budgets. Both al-
gorithms utilize cell-level traffic and channel predictions,
either an offline-simulation–based algorithm or a score-based
algorithm.

First, we define dual predicted results of cell as the average
value of cell which are evaluated every T time slots. For each
cell c ∈ C, we assume that prediction modules provide

• the predicted traffic level (e.g., the number of active UEs
or the aggregate arrival rate) over T as

Λ̄c(uT ) ≜
1

T

uT+(u+1)T−1∑
t=uT

λc(t), ∀u, (5)

• the predicted effective channel quality (e.g., an average
or percentile of the predicted channel gains) over T as

Γ̄c(uT ) ≜
1

T

uT+(u+1)T−1∑
t=uT

γc(t), ∀u, (6)

where λc(t) and γc(t) are predicted values of traffic and
channel respectively. Dual traffic and channel predicted values
can be obtained from various transformer-based models that
provide highly accurate estimates of cell-level traffic and
channel conditions [8], [9].

A. Offline Simulation-Based Power-Budget Allocation

We propose running offline simulations to identify GAT-
maximizing per-cell power budget. We conduct a lot of offline
simulations for various cell environment cases in advance.
Then, we build a mapping book in which we record pairs of
cell environment and corresponding GAT-maximizing power
budget. When a similar cell environment case is predicted
online, we can easily choose the power budgets by mapping
between cell environment and GAT-maximizing power bud-
gets.

B. Score-Based Power-Budget Allocation

In order to derive a general power-allocation rule, we assign
a numerical score to each cell based on its predicted traffic and
channel quality. We denote wλ, wγ ∈ [0, 1] as non-negative
weights that leverage trade-off between traffic and channel,
respectively. For example, we can assign more weight to wλ



when per-user throughput is prioritized or more weight to wγ

when edge-user experience is of primary concern.
We first normalize the predicted traffic and channel values

of cell c as

Λ̃c(uT ) =
Λ̄c(uT )∑

c∈C
Λ̄c(uT )

, ∀u, (7)

Γ̃c(uT ) =
Γ̄c(uT )∑

c∈C
Γ̄c(uT )

, ∀u. (8)

Then, the score of cell c is defined as

scorec(uT ) = wλ Λ̃c(uT ) + wγ Γ̃c(uT ), ∀u. (9)

The score reflects both the relative traffic load and the relative
channel quality of the cell. Next, we convert the scores into
power-splitting coefficients αc(uT ) by

αc(uT ) =
scorec(uT )∑

c∈C
scorec(uT )

, ∀u, (10)

which satisfies ∑
c∈C

αc(uT ) = 1, ∀u. (11)

Finally, the per-cell maximum power budgets are determined
as

P c,max(uT ) = αc(uT )Ptot(t), ∀u, (12)

where Ptot(t) denotes the total power budget defined in (1).
The entire process of scored-based power-budget allocation is
described in Algorithm 1.

Therefore, key design tasks are to choose the weight param-
eters in a way that reflects the desired performance objective.
Once the maximum power budgets {P c,max(t)} are deter-
mined, each BS performs user scheduling and instantaneous
power allocation within its own budget following the existing
algorithm such as [4].

Under the framework described in Section II, our proposed
dual prediction-based per-cell power-budget allocation algo-
rithm can be easily incorporated into agentic-AI system for
open-RAN architecture. It is because proposed algorithm is a
two-level decision process: the upper level dynamically allo-
cates per-cell power budgets using prediction-based methods,
while the lower level optimizes user scheduling and power
allocation.

V. PERFORMANCE EVALUATION

In our simulations, we focus on three key observations as
follows. (i) We observe that adopting different power budgets
is beneficial as cell environments vary, illustrating the need
for environment-aware power-budget adaptation. (ii) We find
that the power budgets selected by the proposed algorithm
consistently yield superior throughput compared to a baseline
strategy, demonstrating the benefit of incorporating predictive
information into power-allocation decisions. (iii) Our results

reveal that improvements in prediction accuracy translate
directly into higher network performance, highlighting the
central role of reliable traffic and channel forecasting in
enabling effective resource control.

We utilize transformer-based prediction schemes to obtain
dual prediction results in prior studies and implement the
open source codes provided by [8], [9]. Then, we apply
offline simulation-based power-budget allocation algorithm for
given prediction results. We conduct two sets of simulations
corresponding to two scenarios. In the first scenario (i.e.,
Sections V-B and V-C), we assume perfect predictions for
both traffic and channel conditions. In the second scenario
(i.e., Section V-C), we evaluate performance under varying
levels of prediction accuracy.

A. Simulation Setup

We consider two small cells with a radius of 50 m where
BSs are located on a line in a distance of 100 m. We adopt
a SISO system as a simplified model.1 The number of users
per cell is set to 10 users in Cell 1 and 2 users in Cell 2 in
order to capture unbalanced cell environments. Each user is
assumed to move around the network with a constant speed of
40 km/h to capture dynamic network variations. The system
bandwidth is set to be 80 MHz. The total simulation duration
is 1000 slots. At every time slot, the sum of the maximum
available transmit powers of the two cells is constrained by

P 1,max + P 2,max = 2.0 W. (13)

Users in both cells are placed and move in regions where
they experience inter-cell interference from the neighboring
BS. This setting will demonstrate that our algorithm works
well under interference-limited region.

As an evaluation metric, Geometric Average Throughput
(GAT) which results in geometric average of user throughput
is used. We evaluated our algorithm compared to an equal-
power resource allocation (EQ-RA) as a baseline, where two
cells always transmit within the fixed power budget under the
above constraint (13).

In modeling the propagation environment, we consider a
carrier frequency of fc = 3.5 GHz, and 3D distance between
BS n and UE k at slot t is given by

d3Dc,k(t) =
√
d2c,k(t) + (hBS − hUE)2, (14)

where the BS and UE heights are set to hBS = 10 m and
hUE = 2 m, respectively. The large-scale path loss (in dB)
follows the 3GPP TR 38.901 model and is given by

PLc,k(t) = 32.4 + 20 log10(fc) + 31.9 log10
(
d3Dc,k(t)

)
, (15)

where d3Dc,k(t) is measured in meters. The corresponding large-
scale channel power gain is

GLS
c,k(t) = 10−PLc,k(t)/10. (16)

On top of this, time-varying small-scale fading is applied by
associating each UE with a generated complex channel fading

1It can be easily extended to the MIMO system framework.



sequence {hc,k(t)}, normalized such that E[|hc,k(t)|2] = 1.
Hence, the instantaneous channel power gain of the link
between BS c and UE k is modeled as

gc,k(t) = GLS
c,k(t) |hc,k(t)|2. (17)

B. Power Budgets according to Cell Environments

Fig. 2 illustrates the power budget at cell 1 that maximizes
the performance metric under various cell environments. The
letters D, G, and B in front of the parentheses denote the
channel environment of the users belonging to each cell: D
stands for diverse (heterogeneous channel qualities), G for
good (users located within half of the cell radius), and B
for bad (users located farther from the serving BS and thus
experiencing weak channels). This classification is based on
the user mobility range relative to the cell radius R; users
moving mostly closer to the serving BS than a reference
distance, R/2, are labeled as G, those moving farther are
labeled as B, and the remaining mixed cases are labeled as
D. The number in parentheses indicates the cell identifier.

As shown in Fig. 2, power budget at Cell 1 that maximizes
the GAT differs significantly across cell channel environments.
It is observed that power budget at Cell 1 tends to be higher
than Cell 2, where Cell 1 is connected to a lot users than
Cell 2. It implies that the traffic load in some case, 10 users
in Cell 1 and 2 users in Cell 2, is more of importance rather
than cell channel channel conditions in terms of fairness and
throughput. In addition, the result highlights the importance of
dynamically adjusting power budgets among cells to maximize
overall network performance.
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Fig. 2: Power budget at cell 1 that maximizes GAT under
diverse cell environments.

C. Performance Comparison

Table I compares the GAT performance and target-
throughput satisfaction ratio of the proposed prediction-based
power allocation algorithm (P-RA) and the equal-power base-
line (EQ-RA) in the B(1), B(2) environment as shown in
Fig 2. Here, B(1), B(2) indicates that users in both cells
are located in regions where they experience strong inter-
cell interference from the neighboring BS. Power budgets of
both cells are set as (1.0 W, 1.0 W) for EQ-RA, whereas
(1.2 W, 0.8 W) for P-RA based on offline simulation.

As shown in Table I, the proposed P-RA algorithm achieves
up to 27.1% higher GAT compared to EQ-RA. It demonstrates
that the proposed algorithm can provide substantial gains in
overall GAT performance. The gain comes from situation
in highly interference-limited scenarios. It is often beneficial
for the two BSs to operate at highly asymmetric power
levels trying not to interrupt a scheduled user associated with
the other BS. Moreover, P-RA achieves 83.3% of target-
throughput (60Mbps) satisfaction ratio implying that most
of users are satisfied with fine throughput. On the other
hand, EQ-RA achieves 16.7% at both of target-throughput
(60Mbps, 70Mbps) satisfaction ratios, implying that only some
of users are satisfied with high throughput, resulting low GAT
performance.

TABLE I: Performance comparison between P-RA and EQ-
RA

Scheme P-RA EQ-RA
GAT [Mbps/user] 62.17 48.91
GAT Improvement Rate [%] 27.1 -
Target-throughput (60 Mbps) satisfaction ratio [%] 83.3 16.7
Target-throughput (70 Mbps) satisfaction ratio [%] 0.0 16.7

D. Impact of Prediction Accuracy

Fig. 3 illustrates performance comparison according to the
prediction accuracy in the B(1), B(2) environment in Fig 2.
Prediction error describes the case where Cell 1 actually has a
higher traffic load, but the controller mis-predicted that Cell 2
has higher traffic with a certain probability. It is observed
that GAT decreases as the prediction accuracy decreases from
100% down to 10%. In particular, GAT is reduced by 20.2%
with 10% prediction accuracy compared to GAT of 100%
prediction accuracy. This result clearly shows that prediction
accuracy has a significant impact on the overall network
performance.
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Fig. 3: GAT comparison across prediction accuracies.

VI. CONCLUSION

In this paper, we first envisioned an agentic-AI framework
for open-RAN architecture. On top of this framework, we pro-
posed a prediction-based power–budget allocation framework



in open-RAN architecture. The main idea is to utilize dual
traffic and channel predictions in order to get an insight of
cell environment, and then adjust the per-cell power budget.
Through simulations, we verified that our proposed algorithm
achieves significant performance improvement compared to
baseline algorithm. Finally, we showed the impact of predic-
tion accuracy implying that prediction accuracy directly leads
to higher network-wide utility.
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