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Abstract—In real-time multilingual systems, maintaining
speaker identity is still a major technical difficulty. The majority
of pipelines now in use handle voice synthesis and translation
as separate operations, producing output that eliminates the
vocal qualities of the original speaker. In order to preserve
vocal identity during cross-language transmission, this research
suggests a parallelized architecture. Through the use of a dual-
lane framework with synchronized speaker embedding, we are
able to maintain a voice similarity score greater than 0.85 in
English, Spanish, and French while achieving end-to-end latency
below 3.2 seconds. The suggested system incorporates ECAPA-
TDNN embeddings feeding into NLLB translation, a hybrid
ASR technique with fallback logic, and adaptive speech activity
detection. YourTTS, which has been adjusted for cross-lingual
adaptability, is used for synthesis. The architecture effectively
maintains speaker identification without sacrificing the real-time
limitations necessary for conversational usability, according to
the results.

Index Terms—Speech Translation, Voice Preservation, Dual-
Lane Processing, Real-time Systems, Speaker Embeddings, Mul-
tilingual Communication, Cross-lingual Voice Adaptation

I. INTRODUCTION

Real-time multilingual communication has become increas-
ingly necessary as global digital communication has expanded.
Standard pipelines for Automatic Speech Recognition (ASR),
Machine Translation (MT), and Text-to-Speech (TTS) fre-
quently encounter ”vocal identity dissociation.” In this phe-
nomenon, a generic synthesized voice replaces the original
speaker’s pitch, timbre, and prosody in the translated audio. In
high-stakes situations, such as diplomacy or remote healthcare,
where vocal nuance is often just as significant as semantic
content, this degradation affects the effectiveness of such
systems.

Current approaches generally focus on improving translation
accuracy, often overlooking the preservation of voice [2]. Con-
versely, systems aimed at voice conversion usually implement
it as a post-processing step [5], leading to unacceptable delays
in real-time dialogue. To address these challenges, we created
a unified framework that transmits speaker identity information
in parallel with the text stream.

The system depends on three particular design decisions: a
dual-lane processing structure to manage simultaneous speak-
ers, ongoing propagation of speaker embeddings with cross-
lingual modifications, and a confidence-driven gating mecha-
nism to eliminate low-quality segments

A. Contributions
This study offers the following contributions:
• We introduce a parallelized dual-lane architecture tai-

lored for real-time, identity-retaining translation.
• We demonstrate a consistency mechanism utilizing

ECAPA-TDNN embeddings adapted for cross-lingual
synthesis.

• We propose a hybrid ASR strategy that dynamically
switches between Whisper, VOSK, and Groq API based
on resource availability.

• We provide an empirical analysis showing <3.2s latency
alongside a >0.85 voice similarity score.

II. RELATED WORK

A. Speech Translation Evolution
Cascaded models have traditionally been the norm for

speech translation [1], yet they emphasize semantic precision
more than paralinguistic elements. Although direct speech-
to-speech models [2] have decreased latency, they frequently
encounter challenges with consistent quality in multilingual
settings. Dual-input systems [13] have tackled the multi-
speaker challenge, but they typically fall short in maintaining
strong voice fidelity. We aim to combine these methods,
incorporating identity preservation into the dual-input structure

B. Voice Conversion and Verification
Progress in speaker verification, particularly x-vectors [3]

and ECAPA-TDNN [4], has facilitated accurate speaker iden-
tification. Nonetheless, utilizing these for voice conversion
[5], [6] often necessitates considerable training data for each
speaker. By utilizing zero-shot features present in models
such as YourTTS [10] and modifying them for cross-lingual
prosody, we seek to eliminate the requirement for extensive
pre-training.



C. Time-sensitive Requirements

The practicality of real-time application depends on stream-
ing ASR [7] and effective neural TTS [8]. The difficulty
is in synchronization; merging these elements without drift
demands precise timestamp coordination, which we tackle
with our dual-lane buffering approach.

D. Multilingual Setting

Although Multilingual ASR [19] and translation models
such as NLLB [9] have overcome numerous semantic chal-
lenges, they consider the speaker’s voice as an insignificant
factor. This study seeks to re-link the speaker embedding with
the linguistic vector throughout the translation process.

III. PROPOSED FRAMEWORK

A. System Design

The system operates on a dual-lane logic, processing con-
current audio streams to prevent speaker collision while re-
taining individual voice profiles. Figure 1 details the signal
flow.
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Fig. 1: Dual-lane architecture utilizing cross-lane isolation. Separate
lanes process distinct speakers, with embedding propagation ensuring
voice characteristic retention.

B. Formalization

The pipeline can be expressed as a function composition:

P(Ain) = Tout ◦ Svoice ◦ Fmt ◦ Espeaker ◦ Rasr ◦ Dvad(Ain) (1)

Here, Ain denotes the audio input, Dvad the segmentation via
Voice Activity Detection, Rasr the recognition module, Espeaker
the embedding extraction, Fmt the translation layer, Svoice the
synthesis, and Tout the final audio generation.

C. Parallel Processing Implementation
Concurrent speakers are managed via a split-stream ap-

proach: {
L1 : P1(A

(1)
in ) = T (1)

out ◦ · · · ◦ D
(1)
vad(A

(1)
in )

L2 : P2(A
(2)
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We enforce isolation through the constraint:

I(L1, L2) = min
∀i,j

corr(ϕ(1)
i , ϕ

(2)
j ) < ϵ (3)

where ϕ represents the feature set and ϵ = 0.1 acts as the
threshold for isolation.

D. Component Breakdown
1) Voice Activity Detection (VAD): We utilize a hybrid

VAD mechanism, prioritizing WebRTC VAD [14] for speed
and falling back to Silero VAD [15] when precision is re-
quired:

VADoutput =

{
WebRTC(A, τaggressive) if SNR > γ

Silero(A) otherwise
(4)

Here, τaggressive = 3 and the SNR threshold γ is set to 20
dB.

2) Adaptive ASR Selection: To optimize memory usage
without sacrificing accuracy, the system employs a three-tier
logic:

1: Input: Audio segment A, Memory Mavail
2: Output: Text T , Confidence C

3: if Mavail > 4 GB then
4: T,C ←Whisper(A,model = “base”) [7]
5: else if Network Connection Active then
6: T,C ← Groq-API(A)
7: else
8: T,C ← VOSK(A) [16]
9: end if

10: return T,C

ASR confidence is derived from token probability averag-
ing:

CASR =
1

N

N∑
i=1

P (ti|t1:i−1, A) (5)

where N is the token count.
3) Embedding Extraction: ECAPA-TDNN [4] serves as the

primary extractor:

E = ECAPA-TDNN(MFCC(A)) ∈ R192 (6)

Similarity between the source (Es) and target (Et) embed-
dings is calculated via:

Svoice =
Es · Et

∥Es∥∥Et∥
(7)



4) Translation and Confidence Scoring: We deploy NLLB-
200 [9] for the translation layer. The final confidence score
fuses MT and ASR metrics:

Cfinal = αCMT + (1− α)CASR (8)

with α empirically set to 0.7. Translation fidelity is monitored
using the BLEU metric [17].

5) Voice-Preserving Synthesis: YourTTS [10] is used for
synthesis, modified to accept injection of the adapted speaker
embedding:

Aout = YourTTS(Ttranslated, Eadapted) (9)

The adapted embedding Eadapted accounts for linguistic drift:

Eadapted = Es + λ ·∆lang (10)

where λ = 0.3 regulates the strength of the language adapta-
tion vector.

Fig. 2: Mel spectrogram analysis. The comparison between original
(top) and synthesized (bottom) speech indicates retention of formant
structures and pitch contours post-translation.

IV. SYSTEM IMPLEMENTATION

A. Synchronization Logic

Maintaining sync between two processing lanes is critical.
We utilize a timestamp alignment check:

∆tsync = |t(1)start − t
(2)
start| < τsync (11)

The maximum allowable offset τsync is 100ms.

B. Isolation Protocols

Cross-lane interference is mitigated by monitoring chunk
correlation:

ρ12 =
cov(C1, C2)

σC1
σC2

< 0.1 (12)

Here, C1 and C2 represent the feature vectors of the
respective lanes.

C. Latency Optimization

To meet real-time requirements, we implement:
1) Overlap processing: Parallel execution of ASR and

VAD for sequential chunks.
2) Model persistence: Critical models are locked in mem-

ory to prevent reload overhead.
3) Confidence gating: Segments falling below confidence

thresholds exit the pipeline early.
Total latency is defined as:

Ltotal = max(LVAD, LASR) + LMT + LTTS (13)

V. RESULTS AND DISCUSSION

A. Setup

1) Data Sources: Testing utilized three primary datasets:
• AISHELL-3 [11]: 85 hours of Mandarin (218 speakers).
• LibriSpeech [12]: 1000+ hours of English.
• Custom Corpus: A 50-hour proprietary dataset covering

8 languages (EN, ES, FR, DE, IT, ZH, JA, KO).
2) Metrics: Evaluation focused on Voice Similarity Score

(VSS), Word Error Rate (WER) [18], BLEU Score [17], end-
to-end latency, and subjective Mean Opinion Score (MOS).

B. Performance Data

1) Voice Retention: Table I outlines the embedding simi-
larity results.

TABLE I: Voice Preservation Performance Metrics

Metric Training Set Test Set Target

Intra-speaker Similarity 0.7515 0.7418 >0.70
Inter-speaker Similarity 0.2679 0.2682 <0.35
Equal Error Rate (EER) 0.83% 1.46% <2.0%
Voice Similarity Score (VSS) 0.872 0.856 >0.85

2) Translation Accuracy: Translation fidelity varied by
language pair, as shown in Table II.

TABLE II: Translation Performance by Language Pair

Pair BLEU Confidence WER

EN → ES 32.5 0.82 14.2%
ES → EN 30.8 0.78 15.8%
EN → FR 29.7 0.76 16.3%
FR → EN 31.2 0.79 15.1%
EN → DE 28.9 0.73 17.5%

3) Latency: Table III breaks down the processing time per
component.

TABLE III: End-to-End Latency Breakdown (Average)

Component Avg. Latency P95 Latency Target

VAD + Segmentation 0.3s 0.5s <0.5s
ASR (Whisper-base) 0.9s 1.4s <1.5s
Speaker Embedding 0.4s 0.6s <0.5s
MT (NLLB-distilled) 0.6s 1.0s <1.0s
TTS (YourTTS) 0.7s 1.2s <1.0s

Total (Single) 2.9s 4.7s <3.5s
Total (Dual) 3.2s 5.1s <4.0s



4) System Comparison: We compared our architecture
against standard industry baselines (Table IV).

TABLE IV: Comparative Analysis

Voice BLEU Latency Dual
System Sim. Score (s) Lane

Google Translate 0.15 31.8 2.1 No
Modular Pipeline 0.35 31.2 3.2 No
Direct S2S [2] 0.68 28.7 4.1 No

Ours (Single) 0.85 32.5 2.9 No
Ours (Dual) 0.83 31.8 3.2 Yes

C. User Study

A cohort of 50 participants rated the output. The results,
visualized in Figure 3, indicate a preference for our system in
speaker retention, though translation quality remained compa-
rable to baselines.
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Fig. 3: Subjective evaluation (n=50). While translation scores are
similar, our system scores significantly higher on voice identity
metrics.

D. Ablation Analysis

To isolate the impact of specific modules, we performed
ablation testing (Table V).

TABLE V: Component Contribution Analysis

Configuration VSS BLEU Latency

Full System 0.85 32.5 2.9s
No Emb. Propagation 0.41 32.3 2.6s
No Conf. Fusion 0.83 29.8 2.8s
No Dual-Lane 0.85 32.5 2.9s
Hybrid ASR Only 0.84 31.2 3.1s

VI. APPLICATIONS

A. Utility in Conversation

The main use occurs in situations that demand verification
of the speaker’s identity through voice, like important business
discussions or medical appointments where the doctor’s tone
affects patient confidence.

B. Positioning

In addition to dialogue, the framework aids in media lo-
calization. Podcasts and audiobooks can be translated while
preserving the host’s original audio branding, and video con-
tent can take advantage of this for a more immersive dubbing
experience.

C. Usability

To enhance accessibility, the system provides real-time
captioning and audio translation that sounds less mechanical,
creating a more organic experience for hearing-impaired indi-
viduals using assisted listening devices.

VII. CONSTRAINTS AND PROSPECTIVE STUDIES

A. Limitations

At present, the system needs GPU acceleration to uphold the
mentioned latency metrics. Language assistance is restricted to
the 8 languages in our collection, and although vocal identity
is maintained, intricate emotional conveyance (such as sarcasm
or profound sorrow) is still flawed. Furthermore, a 20-second
audio reference clip is required for ideal speaker registration.

B. Anticipated Perspective

Upcoming efforts will emphasize few-shot adaptation to
reduce the need for reference audio and broaden the language
range. We are exploring edge-optimized models for deploy-
ment on mobile devices without relying on cloud services

VIII. CONCLUSION

This research introduces a feasible framework for real-
time speech translation that maintains voice quality. Through
the use of a dual-lane approach and embedding propagation,
we effectively separate the translation task from the voice
loss usually connected to it. Our findings—particularly the
> 0.85 voice similarity score and < 3.2s latency—indicate
that preserving speaker identity in cross-lingual conversations
is computationally achievable. This method provides a base
for more genuine multilingual interaction systems moving
forward.
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