Data-Driven Path Loss Modeling Using Multilayer
Perceptron Networks
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Abstract—This study compares ML/DL-based path loss predic-
tion models using empirically measured data while accounting
for regional nonlinear propagation characteristics. Multivariable
Linear Regression (MLR), Support Vector Regression (SVR),
and a Multi-Layer Perceptron (MLP) were trained using log-
transformed representations of distance and frequency, and their
generalization performance was evaluated in two regions (Area
A and Area B). The experimental results revealed that in Area
A, characterized by strong linearity, the predictive performance
of the three models was generally comparable; however, in
Area B, where nonlinearity was pronounced, both SVR and
MLP exhibited higher R? values and lower RMSE compared to
MLR. In particular, the MLP model was able to capture small
nonlinear variations even in the mostly linear characteristics of
Area A. In Area B, where propagation fluctuates more severely
due to environmental factors, it achieved the highest prediction
accuracy among the evaluated models. These findings highlight
the potential of ML/DL-based nonlinear approaches to improve
path loss prediction accuracy in diverse wireless channels.

Index Terms—Path loss prediction, radio propagation, nonlin-
ear regression, SVR, MLP, machine learning.

I. INTRODUCTION

As confirmed by recent developments in International
Telecommunication Union - Radiocommunication Sector
(ITU-R) Study Group 3 (SG3) and ITU-R Question 236/3[1],
international interest in radio wave propagation prediction
using machine learning is rapidly increasing. The ITU-R has
emphasized that data collection and processing methodologies,
along with modeling techniques, need to be incorporated into
future ITU-R reports, recommendations, and handbooks, while
discussing the standardization of machine learning-based prop-
agation prediction methods from various perspectives includ-
ing physics-based modeling and explainability, domain adap-
tation, data augmentation, uncertainty quantification, model
optimization, and validation based on real-world environments.
This means that the importance of data-driven approaches in
the field of radio propagation prediction is emerging at the
international standard level.

Radio wave propagation prediction is an essential com-
ponent in various fields, including cellular communications,
satellite-terrestrial interference analysis, and wireless network
design, with accurate path loss modeling serving as the corner-
stone of wireless network performance prediction. Although
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conventional propagation models are based on physical factors
such as frequency, distance, and terrain data, they are inher-
ently limited in that a single model cannot adequately explain
all situations due to the countless variables and irregularities
that exist in real-world environments. In a previous study
[2], a new path loss model based on the modified Hata
model [3] was proposed for actual measured path loss data
from two regions. Although the proposed model demonstrated
high accuracy in Region A, where the measurement data
exhibited strong linear characteristics, it showed limitations
in accurately capturing subtle nonlinear variations particularly
in distance ranges where the path loss increased rapidly
and subsequently plateaued. In contrast, Region B presented
pronounced nonlinearity and severe variability in the data due
to complex environmental factors such as building distribution
and scattering effects, making it difficult to apply linear
modeling approaches. Consequently, when the nonlinearity of
the propagation environment is strong in different regions,
simple linear regression alone cannot adequately learn the
complex variation patterns in the data, necessitating nonlinear
regression techniques or flexible modeling approaches based
on machine learning and deep learning.

In this study, predictive modeling of radio wave path loss
was conducted by applying multiple linear regression (MLR),
radial basis function (RBF) kernel-based support vector regres-
sion (SVR), and multilayer perceptron (MLP) based on the
empirical data from [2]. The prediction accuracy of the three
techniques was quantitatively compared using Coefficient of
Determination (R?) and Root Mean Squared Error (RMSE),
and the limitations identified during the analysis process were
summarized. Based on these findings, future directions for
improving radio propagation prediction models are proposed,
including data diversification and nonlinear model expansion.

II. REGRESSION METHOD
A. Multivariable Linear Regression

Linear regression is a fundamental machine learning al-
gorithm employed for the prediction of continuous values.
This algorithm models the relationship between explanatory
variables and the target variable through a straight line that
best describes their association. Multivariable linear regression



(MLR) simultaneously considers two or more explanatory
variables for a single target variable, thereby enabling the
incorporation of a greater number of factors compared to
simple linear regression. Through this approach, path loss
modeling can be provided that considers the relative influence
of each propagation environment variable.

B. Support Vector Regression

Support Vector Regression (SVR) solves regression prob-
lems by identifying a function that best fits the data while
keeping prediction errors within an acceptable tolerance mar-
gin. In addition, SVR employs kernel functions to reorganize
the input so that complex attenuation patterns arising from
variations in distance and frequency become more separable,
allowing the model to represent nonlinear changes in path
loss. This capability is particularly beneficial for modeling
real-world propagation data, where irregular behaviors caused
by multipath fading, diffraction, scattering, and shadowing
frequently appear. As a result, SVR provides a flexible and
practical approach for capturing propagation characteristics
that cannot be sufficiently described by simple linear models.

C. Multi-Layer Perceptron

Artificial Neural Networks (ANN) are computational mod-
els inspired by the way biological neurons process information,
enabling them to learn nonlinear relationships within data for
tasks such as prediction and classification. In this work, a
Multi-Layer Perceptron (MLP) was adopted as the ANN-based
model. The MLP is a typical feedforward architecture com-
posed of several hidden layers positioned between the input
and output layers. Each neuron passes information through
weighted connections and nonlinear activation functions, al-
lowing the network to represent and learn complex patterns
embedded in the dataset.

ITI. TRAINING PROCESS
A. Data Preprocessing

The dataset used in this study consists of three variables:
frequency (MHz) at 3400, 5300, and 6400 MHz, distance (m),
and path loss (dB). According to radio propagation theory as
confirmed in the free-space path loss (FSPL) model path loss
can be expressed linearly when frequency and distance are
represented on a log scale, as in [4]:

6]

dnd
FSPLq5 = 20logy ( mdf )

c

Therefore, in this study, log scale variables for frequency
and distance were generated and the primary explanatory vari-
ables are d, f, where d represents the 2D-distance in meters,
and f represents the carrier frequency in MHz. Furthermore,
as shown in Eq. (1), path loss (dB) is expressed as log scale
terms of frequency and distance, suggesting that log-distance
and log-frequency are more suitable expressions for describing
path loss. Therefore, this paper ultimately adopts log(d) and
log(f) as explanatory variables for modeling.

TABLE I
THE HYPERPARAMETERS VALUE USED FOR EACH MODEL
Model Hyper Parameter Area A Area B
MLR - - -
kernel rbf rbf
SVR ¢ ! 3
gamma 0.05 1.0
epsilon 0.1 0.5
hidden layer & node [25, 25, 25] [25, 25, 25]
learning rate 0.01 0.01
MLP Layerl: tanh
activation function Layer2: sigmoid
Layer3: sigmoid

B. Learning Process

In this study, path loss was predicted utilizing MLR,
SVR, and MLP models. To this end, the entire dataset was
partitioned into training (70%) and testing (30%) subsets
to evaluate the generalization performance of the models.
Furthermore, all variables were normalized to a 0-1 range to
reduce scale differences between variables and prevent any
specific variable from exerting excessive influence during the
learning process.

TABLE 1 represents the optimal hyperparameters selected
during the predictive modeling process. In the hyperparameter
search process, 20% of the total test data was used as vali-
dation data, and the combination with the highest average R>
performance through 5-fold cross-validation was determined
as the final parameters. MLR has no hyperparameters since
the regression coefficients are directly determined through
training. Meanwhile, for MLP, the number of nodes was varied
within the range of 3 to 65 to compare performance, and since
performance improvement was not significant beyond 20-25
nodes, it was fixed at 25. For activation functions, a total of 27
cases combining ReLU, tanh, and sigmoid for each layer were
evaluated, and the combination showing the best R? value was
finally adopted.

IV. SIMULATION RESULT
A. Regression Result

Based on empirically measured path loss data, path loss
prediction as a function of distance and frequency was con-
ducted using MLR, SVR, and MLP models. The performance
of each model was evaluated using test data with RMSE and
R? employed as the primary evaluation metrics. TABLE II
presents a summary of the prediction performance for each
model.

TABLE 1I
PERFORMANCE METRICS FOR EACH MODEL
Area A Area B
Method R2 RMSE [dB] R? RMSE [dB]
MLR | 0.5205 7.290 0.7538 7.139
SVR 0.5169 7.405 0.8124 6.232
MLP | 0.5368 7.118 0.8221 6.041




A comparative analysis of the predictive performance of
MLR, SVR, and MLP on measured path loss data in Area A
and Area B revealed that MLP demonstrated the most superior
performance overall, exhibiting the highest R? values and the
lowest RMSE.

In Area A, the differences in R? and RMSE among MLR,
SVR, and MLP were not substantial, with all three models
showing comparable predictive performance at approximately
R? =~ 0.52 ~ 0.53 and RMSE levels of 7.1-7.4 dB. This can
be interpreted as indicating that the path loss characteristics in
Region A are relatively simple with strong linearity, thereby
limiting the pronounced advantages of nonlinear models. How-
ever, as demonstrated in Fig. 1 and Fig. 2, certain distance
intervals exhibit a ”two-stage increase pattern” where path loss
increases rapidly, then temporarily levels off before increasing
again, which cannot be adequately approximated by linear
models. In contrast, the MLP follows these complex variation
patterns with greater precision and demonstrates the most
superior results in performance metrics, clearly manifesting
its effectiveness.

Conversely, Area B exhibited distinct performance differ-
ences among the models. While MLR achieved R? ~ 0.75
with an RMSE of approximately 7.1 dB, SVR and MLP
attained R? ~ 0.81,0.82 and RMSE values of approximately
6.2 dB and 6.0 dB, respectively, thereby significantly reducing
errors compared to linear regression. This can be attributed to
the fact that path loss data in the region B exhibits strong
nonlinearity and high variability due to building distribution
and scattering effects, enabling nonlinear models to more
effectively learn these complex patterns. Furthermore, as can
be observed in Fig 1 and 2, the differences between the
predictive curves of the models are clearly evident in Area
B as well. While MLR follows the overall increasing trend,
it fails to adequately capture the fluctuations and variability
patterns present in the observed data. In contrast, SVR and
MLP track these variations more precisely, with MLP in
particular demonstrating a tendency to reproduce the flow of
data distribution most naturally, thereby exhibiting the most
superior fit visually.

In summary, while linear regression serves as a meaningful
baseline model, nonlinear models such as SVR and MLP
significantly enhance path loss prediction accuracy as envi-
ronmental complexity increases, and as evidenced in Fig. 1
and Fig. 2, nonlinear models demonstrate substantially more
precise reflection of the variation trends observed in measured
data compared to linear regression.

V. CONCLUSION

In this study, the predictive performance of MLR, SVR,
and MLP models was comparatively analyzed utilizing field
measurement-based propagation path loss data. The analysis
revealed that all three models exhibited similar performance
in regions Area A; however, in regions characterized by
strong nonlinear properties, SVR and MLP recorded higher
R? values and lower RMSE compared to MLR, demonstrat-
ing superior predictive performance. In particular, the MLP
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Fig. 1. 3D Path Loss Prediction Results at 3400, 5300, and 6400 MHz for
Area A and Area B
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Fig. 2. Path Loss Prediction Results at 3400 MHz for Area A and Area B

not only achieved the highest accuracy but also effectively
captured subtle nonlinear variations present in the data even in
regions of strong linearity, clearly demonstrating the necessity
of nonlinear models in complex propagation environments.
This study demonstrated that Al modeling approaches based
on empirical measurement data are effective for propagation
prediction, and future research may extend toward more so-
phisticated propagation prediction models through data diver-
sification, incorporation of spatial and environmental informa-
tion such as satellite imagery-based building distribution and
advancement of deep learning architectures.
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