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Abstract—Modern Automated Storage and Retrieval Systems
(ASRS) generate massive sensor data streams but lack integrated
mechanisms for real-time anomaly detection, visualization, and
secure audit trails. This paper proposed AIDT-Chain, a edge-
based LSTM anomaly detection, real-time digital twin (DT) visu-
alization and blockchain audit trails for secure ASRS monitoring.
The LSTM autoencoder deployed on edge devices that detects
anomalies within 50 to 100 ms and classifies deviations into ten
equipment failure modes. Detected anomalies synchronize with a
DT dashboard in 10 to 50 ms that provides continuous operator
awareness. Anomaly events are simultaneously recorded as im-
mutable blockchain transactions. End-to-end latency achieves 40
to 70 ms, representing a 5 to 10 times improvement over cloud-
based approaches (800 to 1500 ms). On a 48,046 samples of ASRS
dataset, AIDT-Chain achieves 99.55% accuracy with 0.45% false
positive rate, improving accuracy by 14.15% over rule-based
methods. Pure Chain [1], a private blockchain that uses Proof-
of-Authority-and Association (PoA?) concensus mechanism [2]
evaluation, demonstrates 8.5 times lower latency than Sepolia
testnet. AIDT-Chain successfully integrates accurate edge-based
detection, real-time visualization, and immutable compliance
documentation in industrial Internet of Things (IoT).

Index Terms—LSTM Autoencoder, Edge Computing, Anomaly
Detection, DT, Blockchain, Industrial IoT security

I. INTRODUCTION

Modern manufacturing facilities rely on interconnected
Internet-of-Things (IoT) devices to monitor equipment and
process performance in real-time [3]. ASRS exemplify this
trend by using distributed sensor networks to collect con-
tinuous operational data from equipment throughout smart
warehouses and manufacturing facilities [4] [5]. These sensors
monitor temperature, vibration, current draw, and equipment
status. Sensor data can be corrupted by electromagnetic in-
terference, equipment malfunction, or communication errors.
Operators struggle to distinguish genuine equipment failures
from normal operational variations particularly when multiple
fault modes produce similar sensor patterns. Centralized moni-
toring systems further complicate this challenge by introducing
network latency, cloud processing delays and dependence on
external infrastructure [6]. DT technology offers a solution by
creating virtual representations of physical systems that enable
real-time monitoring and visualization [7]. DT synchronizes
with actual equipment state and displays current system status
to operators without affecting production operations. This real-
time visibility allows operators to observe anomalies as they
occur and respond immediately to equipment failures [8].

However, existing approaches have significant limitations.
Current IoT monitoring systems rely on rule-based alerts or
simple statistical methods that struggle to distinguish normal
operational variations from actual equipment failures [9].
This is critical in ASRS environments where multiple failure
modes produce similar sensor patterns for example bearing
wear and misalignment both cause elevated vibration which
makes diagnosis difficult. Centralized cloud-based anomaly
detection introduces substantial latency, often exceeding 500
ms, reducing operational responsiveness [10]. DT systems are
typically isolated visualization tools disconnected from real-
time anomaly detection data. Furthermore, existing systems
lack mechanisms to verify detected anomalies. There is no se-
cure record of what was detected, when it occurred, or whether
it represents genuine failures or false alarms. Without account-
ability records, operators cannot perform record analysis or
comply with regulatory requirements. Current approaches fail
to integrate anomaly detection, real-time monitoring visual-
ization, and secure audit trails into a unified framework. This
fragmentation results in delayed operator awareness, confusion
about system status, and inability to verify anomaly reliability.
A comprehensive solution must address detection accuracy,
real-time visualization of anomalies, and secure auditable
record storage.

To address these challenges, this paper proposes AIDT-
Chain, a framework that integrates edge-based artificial intelli-
gence (Al), real-time DT visualization, and blockchain-based
audit trails for secure anomaly monitoring in industrial IoT
systems. AIDT-Chain operates through three integrated com-
ponents. First, IoT sensors deployed throughout the facility
collect real-time operational data from distributed equipment.
Second, edge-deployed LSTM autoencoder models perform
real-time anomaly detection within 50-100 ms, identifying
equipment faults directly at the source without cloud trans-
mission delays. The anomaly detection models are trained
to distinguish between distinct equipment failure modes and
generate classification labels when sensor patterns deviate
from normal operation baselines. Third, detected anomalies are
simultaneously displayed on a DT dashboard that synchronizes
with the physical system in real-time, providing operators with
immediate visual awareness of equipment status and anomaly
events. All detected anomalies are recorded in a blockchain-
based immutable audit trail, with transactions containing
timestamp, equipment identifier, anomaly type, and confidence
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Fig. 1: Overview of the proposed AIDT-Chain Framework

score information stored and validated within 100-200 ms.
The complete end-to-end latency from anomaly detection
through blockchain storage is 40 to 70 ms, meeting real-time
operational requirements while ensuring data integrity and
accountability. This paper presents the complete AIDT-Chain
architecture and demonstrates its application to an ASRS case
study, validating the framework through anomaly detection
implementation and real-time monitoring scenarios.

The key contributions of this paper are as follows:

o Edge-deployed LSTM autoencoder for real-time anomaly
detection within 50-100 ms, eliminating cloud delays and
generating classification labels.

Real-time DT visualization framework that synchronizes
with the physical system and displays anomalies for
immediate operator awareness.

Blockchain-based immutable audit trail recording all de-
tected anomalies within 100-200 ms for record analysis
and regulatory compliance.

II. RELATED WORKS

Zeng et al. [11] introduce EvoAAE, an automated ad-
versarial variational autoencoder that uses GAN based time
series generation and particle swarm optimization to jointly
search hyperparameters and network architecture, delivering
high accuracy unsupervised anomaly detection for diverse [IoT
datasets without manual tuning.

Riaz et al. [12] propose EO-WGAN, a two stage oversam-
pling framework that first uses SMOTE and then an optimized
Wasserstein GAN to generate realistic minority class samples,
substantially improving anomaly detection performance on
highly imbalanced IIoT datasets such as UNSW-NB15.

Abudurexiti et al. [13] design CCTAK, an unsupervised I[IoT
anomaly detection framework that combines CNN-CBAM
local feature extraction with an improved TCN-KAN-based
variational autoencoder plus dynamic Gaussian scoring, then
uses SHAP-based explanations to highlight which sensor fea-
tures drive each detected anomaly.

Rodriguez et al. [14] build an IIoT anomaly classification
framework that couples a Conv1D autoencoder-based unsuper-
vised detector with a Transformer classifier, enriched by con-
textual CPS features and sliding-window logic, to distinguish

failures from cyberattacks in a conveyor-belt testbed with high
F1 performance.

Kantaros et al. [15] provide a perspective framework that
links rigorous mathematical and computational modeling with
real-time data, Al, edge/HPC, and IoT to conceptualize self-
adaptive DTs that evolve from static simulations into con-
tinuously updated, autonomous decision-support systems for
Industry 4.0 applications.

Chen et al. [16] review how DT architectures combining
IoT sensors, data analytics, virtual models, and automated
control can turn aquaculture systems into intelligent, real-
time optimized farms for water quality, fish health, resource
efficiency, and sustainability, while detailing current technical
gaps and future research opportunities.

Li et al. [17] survey how generative Al models (GAN,
VAE, diffusion, autoregressive) can be integrated across a
“two-domain, four-step, dual-loop” network DT architecture to
generate realistic network data, accelerate simulation, enhance
RL-based optimization, and bridge the sim-to-real gap for next
generation mobile networks.

III. PROPOSED FRAMEWORK

Fig. 1 illustrates the proposed framework that combines
edge-based Al, real-time DT visualization, and blockchain-
based audit trails for secure anomaly monitoring in industrial
IoT systems. IoT sensors on ASRS equipment stream opera-
tional data to edge devices, where LSTM autoencoders detect
anomalies and assign anomaly labels based on deviations from
learned normal behavior. Detected anomalies are immediately
forwarded to the DT, which updates the virtual ASRS model
and highlights affected equipment so operators can observe
system status and anomaly evolution in real-time. The same
anomaly events are encapsulated as transactions and stored in
a permissioned blockchain, creating an immutable audit trail
that supports analysis, maintenance reporting, and regulatory
compliance.

A. Edge-Based LSTM Anomaly Detection

The anomaly detection module deploys LSTM autoencoder
models on edge devices to enable real-time fault detection



without cloud dependency. The autoencoder learns normal op-
erating patterns from historical ASRS sensor data, with thresh-
olds calibrated on validation sets. During inference, a sliding
window captures incoming sensor streams, and reconstruction
error determines anomalies. When the threshold is exceeded,
a secondary classifier categorizes the event into one of ten
predefined fault types. Detected anomalies with timestamps
and confidence scores are packaged and transmitted to the DT
and blockchain components for immediate response illustrates
in algorithm 1.

Algorithm 1 AIDT-Chain Framework Workflow

Require: Edge device with LSTM autoencoder model M, DT
synchronization module S, permissioned blockchain B,
smart contract C

Ensure: Secure, tamper-proof immutable anomaly detection
records with real-time visualization

1: Initialize LSTM autoencoder M on edge device

2: Initialize DT state Spr at edge

3: while system active do

4:  Acquire sensor measurements X; from ASRS equip-
ment

5. Compute reconstruction error e(X) < M(X,)

6: if e(X) > 7 then

7: Obtain latent representation z < Mencoder(X¢)

8 Classify anomaly: y < arg maxy P(c|z)

9 Extract event metadata D =
(y,e(X),equipment ID, H;) where H, = sensor
data hash

10: Record detection timestamp ¢4 <— getTime()

11: Update DT: Spr + S(Spr,y, ts) within 10-50 ms

12: Display anomaly on DT dashboard with label y,
timestamp ¢4, and equipment location

13: Submit transaction 7" < C.recordAnomaly(D) to
blockchain B

14: Wait for transaction 7' to be validated and appended
to block b

15: Obtain block timestamp ¢, < b.timestamp

16: Event E « (y,e(X), Hs,tq,tp,b) is recorded im-
mutably on-chain via smart contract C

17: Contract emits AnomalyRecorded event with
complete record E/

18: Calculate total latency: At = t, — tg4 (target: 40 to
70 ms)

19:  end if

20: end while

21: Authorized operators query stored anomaly events {F;}
from blockchain B for record analysis

22: Use blockchain immutability and cryptographic verifica-
tion to guarantee anomaly record integrity and trustwor-
thiness =0

1) LSTM Autoencoder Formulation: The LSTM autoen-
coder captures temporal dependencies in sensor sequences,
encoding normal operating patterns into latent representations.
During inference, reconstruction error signals deviations from

normal behavior, and a calibrated threshold distinguishes
anomalies. Exceeding this threshold triggers detection, after
which a secondary classifier identifies one of ten fault modes
using the latent vector. Operating entirely on edge devices, the
pipeline achieves low-latency real-time monitoring, ensuring
immediate anomaly awareness without cloud dependency.

(Xt = [xgl)ax§2)a'“7x1(§d)]T S Rd) (D)

Equation (1) represent sensor measurements at time ¢, where
d is the number of sensor features. A sliding window of length

T creates input sequences in (2)
T
X = [X¢—741,Xe-T42,- -, %) ER xd, 2

The LSTM encoder compresses the input sequence into
latent representation h; in (3)

h; = LSTMcy,c (Xta h;_; ) 3)

The LSTM cell operations in (4 to 9) include forget gate
f;, input gate i;, output gate o, and cell state C;:

f; = U(Wf . [ht,hxt] + bf) @
i = o(W; - [hy_1,x¢] + by) &)
C, = tanh(W¢ - [hy_1,x;] 4+ be) (6)
Ci=£f0C, +i;0C; @)
o, =0(W, - [hy_1,%x¢] +b,) (®)
h; = o; ® tanh(C,). )

The final latent representation in is z = hy € R™. The
decoder reconstructs the sequence as X = [X1,%2,...,XT].

2) Anomaly Detection and Classification: The reconstruc-
tion error is computed in (10)

T
e(X) = X = X7 =Y lIxe — %ll3.

t=1

(10)

The anomaly detection threshold 7 is calibrated on the
validation set shows in Equation (11)

(1)

where fnormat and oporma are the mean and standard de-
viation of reconstruction error on normal data, and « is the
threshold multiplier. An anomaly is detected when e(X) > 7.

For detected anomalies, classification assigns labels using a
softmax classifier in (12)

T = Hnormal + & Opormal-

T
Plerla) = —S@WazTb0)

Z;il exp(w]'z + b;)
where K = 10 represents the number of predefined anomaly
classes.

The training objective in (13) minimizes the combined loss.

12)

[flolal = £recon + )\L‘class~ (13)

where L;econ is the mean squared error reconstruction loss and
Lelass 18 the cross-entropy classification loss.



3) Anomaly Detection and Threshold Calibration: The
anomaly detection mechanism compares incoming sensor se-
quences against the learned reconstruction model. For each
input sequence, the autoencoder generates a reconstructed
output and computes reconstruction error as the Frobenius
norm of the difference matrix. The reconstruction error in (14)

e(X) = |IX = X% (14)
quantifies how much the input deviates from normal be-

havior patterns learned during training. A threshold 7 is

empirically calibrated on a validation dataset of known normal

operations to establish the boundary between normal and

anomalous behavior. The threshold is set shows in (15)

)

T = Mnormal + o - Opormal-

where finormal and Tpormar are the mean and standard deviation
of reconstruction errors on normal data, and « is a multiplier
(typically @ = 3) that controls detection sensitivity. When
reconstruction error exceeds the threshold, an anomaly is
flagged and the timestamp and error magnitude are recorded.
The threshold-based approach is computationally efficient and
does not require labeled anomaly data during calibration,
making it practical for deployment on resource-constrained
edge devices. Sensitivity and specificity can be tuned by
adjusting the multiplier o without retraining the autoencoder.
This mechanism completes within the 50-100 ms inference
window, enabling real-time anomaly detection at the edge.

4) Anomaly Classification and Event Packaging: Once an
anomaly is detected via reconstruction error exceeding the
threshold, its latent representation is forwarded to a secondary
softmax classifier for fault identification. Trained on ten pre-
defined failure modes, the classifier outputs class probabilities
and assigns the highest as the anomaly label. The system
packages each detected anomaly with its label, timestamp,
equipment ID, reconstruction error, and confidence score, then
transmits it to the DT visualization module for real-time
display without processing delay.

B. Real-Time DT Monitoring

The DT component maintains a synchronized virtual repre-
sentation of the physical ASRS and provides real-time visu-
alization of detected anomalies to operators. The DT operates
at the edge layer to minimize synchronization latency and
eliminate dependence on cloud connectivity. When an anomaly
event is generated by the detection component, the DT is
immediately updated with the anomaly information and the
corresponding equipment entity is highlighted on the operator
dashboard.

1) DT Synchronization Mechanism: The DT maintains state
variables that represent the current condition of ASRS equip-
ment and systems. The state vector Spp at time ¢ includes
equipment operational status, current task assignments, sensor
readings, and detected anomalies in (16)

Sg)T = [statusy, statuss, . . ., status,,, anomalies, tasks]. (16)

where n is the number of equipment units being monitored.
The DT continuously receives updates from the physical
system through sensor data and anomaly detection outputs.
When an anomaly is detected with label y at time %4, the
corresponding equipment state is immediately updated in (17)

Sng) — updateEquipment( S ng —1)

'Y, td) . (17)
The synchronization operation completes within 10-50 ms,
ensuring that the virtual representation remains in phase with
the physical system state. This rapid update enables operators
to observe anomalies nearly instantaneously upon detection.

2) Anomaly Event Visualization: The DT dashboard
presents a real-time graphical interface showing the current
state of the ASRS. Equipment entities are rendered with visual
indicators showing their operational status, location, and any
detected anomalies. When an anomaly is detected and recorded
in the DT state, the corresponding equipment is immediately
highlighted with color coding to draw operator attention.

3) Operator Interface and Real-Time Monitoring: The op-
erator interface is designed to provide immediate awareness
of system status and anomalies without requiring manual data
queries. The dashboard presents all ASRS equipment, with
real-time status indicators and anomaly highlights. Operators
can interact with the interface to zoom into specific equip-
ment, view detailed anomaly information, and access historical
event logs. When an anomaly is detected, the dashboard
automatically highlights the affected equipment and displays
a notification containing the anomaly label, timestamp, and
severity. This responsive visualization enables operators to
quickly identify which equipment requires attention and assess
the nature and timing of detected faults. The real-time nature
of the DT ensures that operator decisions are based on current
system state rather than delayed or stale information.

C. Pure Chain-Based Audit Trail

Fig. 2 illustrates that the Pure Chain’s transaction log
component creates an immutable, tamper-proof record of
all detected anomalies for compliance verification, record
analysis, and regulatory documentation. Every anomaly event
generated by the detection component and visualized in the DT
is simultaneously submitted to Pure Chain network, where it
is permanently stored. The Pure Chain ensures that anomaly
records cannot be altered, deleted, or forged, providing verifi-
able accountability for equipment monitoring and maintenance
decisions.

[block:390083 tx Index:

Tue: 0 uei data: 0 gs: 0 hash: Dyaff

Fig. 2: Pure Chain’s Transaction Log



TABLE I: LSTM Autoencoder Anomaly Detection Test Performance per Class

Anomaly Class Accuracy (%) | Precision (%) | Recall (%) | F1-Score | Support
Normal_Stable 99.59 99.52 99.59 0.9955 4820
Normal_HighLoad 99.69 99.57 99.69 0.9963 4865
Bearing_Wear 99.48 99.41 99.48 0.9945 4775
Misalignment 99.37 99.47 99.37 0.9942 4730
Imbalance 99.59 99.40 99.59 0.9949 4820
Overheating 99.50 99.52 99.50 0.9951 4774
Lubrication_Loss 99.54 99.62 99.54 0.9958 4802
Sensor_Drift 99.63 99.55 99.63 0.9959 4838
Sensor_Spike 99.54 99.65 99.54 0.9959 4802
Intermittent_Failure 99.59 99.79 99.59 0.9969 4820
Macro Average 99.54 99.55 99.54 0.9955 48046
Weighted Average 99.55 99.55 99.55 0.9955 48046

TABLE II: AIDT-Chain Anomaly Detection Comparison with Baseline Methods

Method Accuracy (%) | Precision (%) | Recall (%) | F1-Score | Latency (ms)
Rule-based Thresholding 85.40 82.30 85.20 0.8375 10
Isolation Forest 91.20 89.80 91.10 0.9043 75
One-class SVM 88.90 87.50 88.70 0.8809 60
Cloud-based ML (AWS) 97.30 96.80 97.10 0.9695 1200
LSTM Autoencoder (This Paper) 99.55 99.55 99.55 0.9955 40 to 70

1) The PoA? Consensus Mechanism: PoA? uses authorized
validators in rotating signer slots. The designated validator for
the current slot produces and signs the block:

B3l = Sign, (B,). (18)
All validators verify the signature and accept the block.
This provides sub-second confirmation (< 1 second) with
immediate finality once signed and verified, blocks become
immutable without additional consensus rounds.

2) Smart Contract Validation and Execution: Smart con-
tracts enforce validation rules and record-keeping policies
automatically. When an anomaly transaction is submitted, the
associated smart contract executes logic to verify that the event
meets specified criteria before recording. The contract auto-
matically emits an AnomalyRecorded event upon success-
ful transaction inclusion, providing a cryptographic receipt that
the anomaly has been permanently stored. The smart contract
also maintains access control policies specifying which roles
can query stored anomaly records for different purposes.

3) Record Analysis and Compliance Capability: Autho-
rized users query the blockchain ledger to retrieve historical
anomaly records for record analysis and regulatory com-
pliance. The immutable record enables tracing equipment
anomaly timelines, identifying fault patterns, and reconstruct-
ing failure sequences. Blockchain records provide proof that
equipment was properly monitored and anomalies were de-
tected and recorded at specific times. Maintenance records can
be cross-referenced with anomaly logs to verify that detected
faults were addressed.

IV. PERFORMANCE EVALUATION

A. Anomaly Detection Performance Analysis

Table I and Fig. 3 illustrates the LSTM autoencoder achieves
an overall accuracy of 99.55% with a false positive rate of only
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Fig. 3: Confusion Matrix of 10 Class Anomaly Detection

0.45%, outperforming conventional baselines. Per-class re-
sults indicate strong generalization, with Intermittent_Failure
achieving the highest Fl-score of 99.69% and Misalignment
the lowest at 99.42%. The Table II shows proposed AIDT-
Chain improves detection accuracy by 14.15% over rule-
based thresholding (85.40%) and Isolation Forest (91.20%),
surpassing cloud-based ML (97.30%) while avoiding its 800 to
1500 ms latency. The framework attains an end-to-end latency
of 40 to 70 ms, enabling real-time anomaly detection and
visualization. Edge-based inference completes in 50 to 100 ms,
DT synchronization in 10-50 ms, and blockchain validation
in 100 to 200 ms, ensuring responsive ASRS monitoring with
reduced false alarms, lower maintenance costs, and enhanced



equipment reliability.
B. Pure Chain vs. Sepolia Latency Comparison

Fig. 4 illustrates that Pure Chain and Sepolia testnet
were evaluated to identify the optimal blockchain plat-
form for AIDT-Chain deployment. Pure Chain demon-
strated consistently lower latency across all operations.
The recordAnomaly operation completed in 0.06 s on
Pure Chain versus 0.32 s on Sepolia (5.3x faster). The
getAnomalyEvent retrieval achieved 0.07 s compared to
0.58 s (8.3 faster), while the getEquipmentAnomalies
query performed at 0.04 s versus 0.62 s (15.5x faster).
On average, Pure Chain achieved 0.06 s latency compared
to Sepolia’s 0.51 s, offering an overall 8.5x improvement.
This performance gain stems from Pure Chain’s optimized
consensus mechanism and private network architecture. These
results validate Pure Chain as a suitable blockchain platform
for real-time, immutable anomaly recording in AIDT-Chain.

Pure Chain vs Sepolia Latency Comparison
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V. CONCLUSION AND FUTURE WORK

This paper presented AIDT-Chain, an integrated framework
combining edge-based LSTM anomaly detection, real-time DT
visualization, and blockchain audit trails for secure ASRS
monitoring. AIDT-Chain achieved 99.55% detection accuracy
with 0.45% false positive rate and 40 to 70 ms end-to-
end latency, demonstrating superior performance over cloud-
based and rule-based baselines. The framework successfully
integrates three technologies for operational transparency, real-
time awareness, and immutable compliance documentation.
Future work will explore federated learning across multiple
facilities and advanced anomaly correlation analysis.
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