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Abstract—In the era of 6G communications, massive data
traffic and ultra-low-latency service requirements expose the
limitations of conventional Shannon-based communication ap-
proaches that prioritize bit-level accuracy. Semantic communi-
cation has emerged as a key enabling technology to address
these limitations, and the semantic encoder plays a central role
by extracting task-relevant semantic information from source
data and generating a compact semantic representation. This
paper analyzes technology trends of semantic encoders, focusing
on their architectures, learning paradigms, and extensibility,
based on nine representative recent studies. Our analysis shows
that semantic encoders are evolving along multiple directions,
including knowledge-driven encoders, multimodal semantic relay
structures, self-supervised (low-label) semantic encoders, LLM-
enabled knowledge-augmented encoders, generative-model-based
semantic encoding, metasurface-based physical-layer semantic
encoding, and multi-user semantic separation approaches.

Index Terms—Semantic encoder, semantic communication,
task-oriented communication, self-supervised learning, LLM, 6G.

I. INTRODUCTION

6G mobile communications aim to simultaneously achieve
ultra-low latency, ultra-reliability, and ultra-broadband perfor-
mance. These requirements expose fundamental limitations of
conventional Shannon-based communication, which focuses
on bit-level accurate reconstruction. In many emerging appli-
cations, such as autonomous driving or robotic teleoperation,
reconstructing raw data is unnecessary; instead, only task-
relevant semantic information needs to be delivered. Figure 1
illustrates the conceptual difference between conventional bit-
level communication and semantic communication, highlight-
ing the shift from signal reconstruction to task-oriented mean-
ing delivery.

To address this paradigm shift, semantic communication
has emerged as a promising alternative, where the semantic
encoder plays a central role. A semantic encoder extracts task-
essential representations Z from input data X , which can be
formulated using the Information Bottleneck (IB) principle:

min
p(z|x)

I(X;Z)− βI(Z;Y ), (1)

where Y denotes the target task and β is a hyperparameter that
balances semantic preservation and compression. This formu-
lation theoretically supports the idea that a semantic encoder

should “discard task-irrelevant information and preserve only
semantically important information.”

The notion of semantic encoding is also aligned with several
research streams in machine learning and computer vision.
The Neural Semantic Encoder proposed by Farsad et al. [1]
designed the transmitter and receiver as an end-to-end neural
architecture, demonstrating that semantic representations can
be delivered robustly under noisy channels.

From a representation learning perspective, the marginalized
latent semantic encoder (MLSE) by Ding et al. [2] provides an
important foundation. MLSE optimizes the following objective
to learn generalized latent semantic representations even under
noise or limited samples:

min
W,Z,S

∥WX̃ − Z∥2F + α∥Z −AS∥2F + β∥S −H∥1, (2)

which matches the requirements of semantic communication
where meanings must be preserved under distortion and in-
complete observations.

Meanwhile, classical encoder–decoder architectures such as
SegNet [3] effectively extract hierarchical semantics (feature
hierarchies) while removing unnecessary pixel-level details.
This structural advantage naturally connects to the philosophy
that a semantic encoder should extract “meaning-centered
representations rather than fine-grained reconstruction.”

In addition, the Context Encoding Network (EncNet) pro-
posed by Zhang et al. [4] leverages global contextual seman-
tics to modulate class-dependent features. Its key process can
be expressed via context residual computation as:

eik =
exp(−sk∥xi − dk∥2)∑
j exp(−sj∥xi − dj∥2)

(xi − dk), (3)

followed by semantic modulation:

γ = σ(We), (4)

which is conceptually equivalent to emphasizing task-relevant
semantic factors and suppressing irrelevant information.

Overall, these prior studies highlight core elements neces-
sary for semantic encoder design: (1) semantic-centric opti-
mization rather than bit-level accuracy, (2) selective extraction
of task-related features, (3) utilization of global semantic struc-
tures, and (4) robustness to noise and domain shifts. Building
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Fig. 1. Comparison between conventional bit-level communication and semantic communication.

on these foundations [1]–[4], this paper systematically ana-
lyzes nine recent semantic communication studies [5]–[13]
to examine structural evolutions, learning methods, system-
level scalability, and future research directions for semantic
encoders.

II. DEFINITIONS AND EVALUATION METRICS

This section clarifies key definitions and evaluation metrics
that recur across recent semantic communication studies. In
particular, we highlight the need for consistent measurement
protocols to enable fair comparison across heterogeneous
tasks, modalities, and system settings.

A. Semantic Fidelity, Semantic Noise, and Task Performance

Unlike conventional communications that mainly focus on
bit-level fidelity (e.g., BER/BLER), semantic communication
emphasizes semantic fidelity, i.e., how accurately task-relevant
meaning is delivered for downstream task execution. We
categorize distortions as follows:

(1) Channel noise: Distortions introduced by the physical
channel (e.g., additive noise, fading), which can be captured
by SNR or BER/BLER under a given modulation and coding
setting.

(2) Semantic noise: Distortions in meaning that cause task-
level degradation even if symbol-level recovery is partially
successful. Semantic noise includes (i) misinterpretation of the
intended semantics, (ii) task mismatch between transmitter and
receiver, (iii) hallucination or irrelevant knowledge injection in
LLM-enabled pipelines, and (iv) misalignment of multimodal
semantics in distributed settings.

To quantify semantic noise, a practical approach is to
measure the gap between transmitted and recovered semantics
using task-level and representation-level metrics (e.g., task
accuracy drop, semantic similarity reduction). For example,
semantic noise can be operationally characterized as:

∆sem = 1− Sim(Ztx, Zrx), (5)

where Sim(·, ·) can be cosine similarity or other task-
relevant similarity measures, and Ztx, Zrx are semantic rep-
resentations at the transmitter and receiver, respectively. In
practice, Sim(·, ·) should be instantiated according to the
modality and task (e.g., embedding cosine similarity for
text, CLIP/BERTScore-style alignment for vision-language, or
class-wise similarity for recognition tasks).

B. Semantic Capacity and Semantic QoS

In addition to Shannon capacity, recent studies motivate
the notion of semantic capacity, which informally refers
to the maximum achievable task performance (or semantic
fidelity) under limited communication resources. Accordingly,
semantic capacity is often operationalized as an achievable
utility region (task performance versus resource cost), rather
than a single closed-form scalar as in classical Shannon theory.
Because semantic communication objectives vary across tasks,
semantic capacity is typically expressed in terms of task-level
utility under resource constraints:

Csem(R) = max
π∈Π

U
(
Task(Zrx)

)
s.t. Cost(π) ≤ R, (6)

where R denotes a resource budget (e.g., power, bandwidth,
latency), π is a semantic encoding/communication policy, and
U(·) denotes task utility (e.g., detection accuracy, success rate,
or a weighted QoS score).

In practice, semantic QoS can be reported as a composite
measure that jointly reflects semantic QoS, latency, and re-
source usage:

Qsem = α · Utask + β · Simsem − γ · Latency, (7)

where α, β, γ are application-dependent weights.

C. Need for Consistent Measurement Protocols

A key challenge in surveying semantic encoders is the
lack of unified evaluation protocols. Existing works report
diverse metrics (e.g., mAP, task success rate, semantic sim-
ilarity, BER/BLER), making cross-paper comparison difficult.
To promote consistent evaluation, we recommend reporting
results along three complementary axes:

(A) Task-level metrics: application-specific performance
(e.g., mAP for object detection, classification accuracy, tra-
jectory success rate).

(B) Representation-level metrics: semantic similarity be-
tween recovered and reference semantics (e.g., cosine simi-
larity between embeddings, CLIP score for vision-language
alignment, BERTScore for text).

(C) Resource-level metrics: communication cost such as
latency, bandwidth usage, energy/power, and compute over-
head.

Moreover, we recommend that papers explicitly state (i)
dataset/task definition, (ii) channel model and SNR range,
(iii) ablation settings (w/ or w/o knowledge/LLM modules, w/
or w/o relay/edge), and (iv) a common semantic QoS score



(e.g., (7)) to enable fair comparisons across different semantic
encoder designs.

III. TECHNOLOGY TRENDS OF SEMANTIC ENCODERS

Semantic encoders are evolving along the following five
perspectives: (1) knowledge-driven and task-oriented semantic
encoding, (2) distributed and multimodal semantic processing,
(3) LLM/modular/physical-layer extensions, (4) multi-user and
resource management, and (5) self-supervised semantic repre-
sentation learning. We analyze the nine papers based on this
taxonomy.

A. Knowledge-Driven and Task-Oriented Semantic Encoding

In Guo et al. [5], object-level semantic units are extracted
from UAV imagery using YOLO-World and SAM. The se-
mantic encoder adjusts the transmitted semantic representation
according to the importance weight wi of each object:

Z =
N∑
i=1

wifi(X). (8)

This provides high efficiency for object-centric tasks such as
military reconnaissance and emergency rescue.

Tian et al. [6] further leverage a conditional GAN-based
generative model to synchronize semantic models between
transmitter and receiver without sharing a common dataset.
This enables semantic encoding without data sharing under
privacy-preserving scenarios.

These knowledge-driven, task-oriented studies [5], [6] rep-
resent practical applications of IB-style objectives in real net-
works and significantly improve semantic resource utilization
efficiency.

B. Distributed, Multimodal, and Edge-Based Semantic Encod-
ing

The DTCN architecture by Guo et al. [8] proposes a
multimodal semantic relay structure in which the device, relay,
and edge jointly transmit and align different semantic features.
Semantic alignment can be conceptually modeled as:

Zedge = Falign(Zdev, Zrelay), (9)

which reduces noise and modality mismatch by performing
semantic complement across modalities. This suggests impor-
tant design directions for distributed semantic encoding in au-
tonomous driving, smart cities, and multi-robot collaboration.

C. LLM-Based, Modular, and Metasurface Semantic Encoding

Rachwan et al. [9] propose a modular semantic encod-
ing framework that dynamically selects processing pathways
according to input context and task requirements, enabling
adaptive LLM-based semantic processing.

Hu et al. [7] introduce a semantic-similarity-based hallu-
cination suppression mechanism when fusing LLM-generated
knowledge with original representations:

S(x, g) = cos
(
f(x), f(g)

)
, (10)

and semantic fusion is performed only when similarity exceeds
a threshold:

z = λzx + (1− λ)zLLM. (11)

Huang et al. [10] further propose a metasurface-based
semantic encoding paradigm that directly maps semantic tags
to radiation patterns,

E(θ, ϕ) = G(Φtag; Θ), (12)

enabling semantic transmission at the physical layer without
intermediate digital encoding.

D. Multi-User Semantic Separation and Power Allocation

Ma et al. [11] formulate semantic interference in multi-user
scenarios using an information-theoretic framework, where
the received representation jointly reflects user semantics,
transmitted symbols, and interference:

min
p(y|x,s,u)

−I(U ;Y )− λI(X;Y )− I(S;Y ), (13)

with λ controlling the trade-off between semantic preservation
and signal fidelity.

The received signal is modeled as

yi = gi,ixi +
∑
j ̸=i

gi,jxj + ni, (14)

indicating that co-channel transmission naturally induces se-
mantic interference. From this perspective, SFDMA can be
interpreted as a semantic-domain multiple access mechanism.

Xu et al. [12] further study semantic-aware power allocation
for generative semantic communication. The received signal
for the i-th semantic stream is

yi =
√
qi hizi + ni, (15)

where qi denotes the allocated power. The semantic value is
defined as

Li = 1− P i, (16)

with P i representing perceptual accuracy.
The power allocation problem is formulated as

min
{qi}

∑
i

Kiqi (17)

s.t. L̂i(ψi) ≥ L̄i, ∀i, (18)

which enforces semantic QoS constraints rather than conven-
tional SNR-based criteria. This formulation highlights a shift
from Shannon-capacity-centric design toward semantic-aware
resource management.

E. Self-Supervised Semantic Encoding

The SLSCom study by Gu et al. [13] considers label-scarce
real-world settings and proposes a contrastive-learning-based
self-supervised framework to learn semantic representations,
followed by fine-tuning with a small amount of labels. A
representative InfoNCE loss is defined as:

Lcontrast = − log
exp

(
sim(z, z+)/τ

)∑
z′∈N exp

(
sim(z, z′)/τ

) , (19)
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Fig. 2. End-to-end semantic communication pipeline integrating knowl-
edge/LLM and context for task-oriented meaning transfer.

where z and z+ form a positive pair (same semantics), N
is the set of negative samples, and τ is the temperature pa-
rameter. This strengthens the representation power of semantic
encoders by bringing embeddings of the same semantics closer
while pushing different semantics apart.

F. Discussion: Toward Unified Evaluation for Semantic En-
coders

Although the reviewed works demonstrate rapid progress,
cross-paper comparison remains challenging due to hetero-
geneous tasks, modalities, and evaluation criteria. To reduce
ambiguity, we encourage future studies to (i) report both task-
level and representation-level metrics, (ii) explicitly define
semantic noise sources beyond channel noise (e.g., halluci-
nation, task mismatch, multimodal misalignment), and (iii)
adopt a unified semantic QoS score that jointly considers
semantic QoS, latency, and resource costs. Such standardized
reporting will facilitate reproducibility and enable more mean-
ingful comparisons across semantic encoder architectures and
learning paradigms.

IV. CONCLUSION

Figure 2 summarizes an end-to-end semantic communi-
cation pipeline integrating perception, knowledge, and task
execution. This paper reviewed recent advances in semantic
encoder design for 6G task-oriented communications. We
showed that semantic encoders are evolving from bit-level
compression modules into intelligent components that inte-
grate communication, perception, and reasoning.

Key trends include knowledge-driven encoding, multimodal
fusion, LLM-enabled semantic reasoning, and semantic-
aware resource management. These developments indicate a
paradigm shift from Shannon-centric metrics toward semantic
QoS–oriented system design.

Future research should focus on unified evaluation
frameworks, robust semantic noise modeling, and real-world
validation across diverse application domains. Such efforts
will be essential to realizing practical and scalable semantic
communication systems for next-generation networks.
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TABLE I
COMPARISON OF REPRESENTATIVE RECENT STUDIES ON SEMANTIC ENCODERS (TASK, MODALITY, METRICS, PROS/CONS).

Work Task Modality Learning / Key Idea Evaluation Metrics
(Reported / Typical)

Strengths / Limitations

Guo et al. [5] UAV image seman-
tic comm. (object-
centric)

Vision (UAV im-
agery)

Knowledge-
base driven
object extraction
(YOLO-World +
SAM), importance
weighting wi

Task utility (e.g., detection
performance such as
mAP/precision/recall),
bandwidth/latency reduction;
semantic QoS under resource
constraint

+ Efficient object-level
semantics for mission-critical
tasks.
- Performance depends on
detector/segmenter quality;
limited beyond object-centric
tasks.

Tian et al. [6] Knowledge synchro-
nization for semantic
comm.

Vision / generic
data

Conditional GAN-
based model
synchronization
without sharing
common datasets

Semantic similarity / task ac-
curacy under privacy con-
straints; convergence stability
indicators

+ Avoids raw data shar-
ing; privacy-preserving se-
mantic alignment.
- GAN training instability;
synchronization overhead not
always negligible.

Hu et al. [7] Task-oriented
semantic comm.
with LLM
knowledge

Text (and knowl-
edge base)

LLM-enabled
knowledge
augmentation
with hallucination
suppression
via similarity
thresholding

Semantic similarity (e.g.,
cosine over embeddings),
task success/accuracy,
hallucination rate/consistency
checks, latency/compute

+ Knowledge boosts robust-
ness under missing informa-
tion.
- Risk of hallucination and
extra compute; metric choices
vary across tasks.

Guo et al. [8] Distributed task-
oriented comm. w/
multimodal relay

Multimodal (vi-
sion+sensor)

Device/relay/edge
semantic relay and
alignment Falign(·)

Task success rate, seman-
tic alignment score, latency
(edge/relay), bandwidth sav-
ing

+ Robust to modality
mismatch via semantic
complement.
- Coordina-
tion/synchronization
complexity; requires
edge/relay availability.

Rachwan et
al. [9]

LLM processing
with dynamic
modular pathways

Text (LLM) Dynamic pathway
synthesis (modular
semantic encoder)
depending on
input/context/task

Downstream task metrics, in-
ference cost (FLOPs/latency),
routing accuracy/efficiency

+ Adaptive compute-
resource trade-off; modular
extensibility.
- Routing/controller
overhead; reproducibility
depends on module design.

HuangFu et
al. [10]

Physical-layer
semantic encoding
for traffic signage

RF / semantic
tags

Metasurface maps
semantic tags to
radiation/phase
patterns (direct
physical-layer
encoding)

Semantic error rate (SER),
detection/recognition rate, la-
tency/energy efficiency

+ Ultra-low latency semantic
transmission at physical layer.
- Scenario specificity; hard-
ware constraints limit general
applicability.

Ma et al. [11] Multi-user semantic
separation (multiple
access)

Signals / multi-
user

Semantic Feature
Division Multiple
Access using
mutual-information
objectives

Semantic rate / mutual infor-
mation terms, interference ro-
bustness, task-level utility

+ Formalizes semantic in-
terference; enables semantic-
aware multiple access.
- Implementation complex-
ity; mapping MI objectives
to practical systems remains
open.

Xu et al. [12] Semantic-aware
power allocation for
generative semantic
comm.

Multi-stream (se-
mantic symbols)

Power minimization
under semantic-
performance
constraints (semantic
QoS)

Power/energy, BER/BLER
(proxy), semantic QoS / task
accuracy constraints, latency

+ Resource management cen-
tered on semantic QoS, not
Shannon capacity.
- QoS definition varies; may
rely on BER as imperfect
proxy for semantics.

Gu et al. [13] Low-label semantic
comm. (label-scarce)

Multimodal /
generic

Self-supervised con-
trastive learning (In-
foNCE) + low-label
fine-tuning

Representation quality (con-
trastive), downstream task ac-
curacy, label efficiency

+ Strong under limited labels;
improved generalization.
- Needs careful
positive/negative pair design;
task transfer may vary.


