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Abstract—We address nine-class fruit-ripeness recognition
from commodity RGB images using a calibrated transfer-learning
pipeline. EfficientNet-B0 is fine-tuned in two stages (with Mo-
bileNetV2 as a lightweight fallback) using class-weighted cross-
entropy with label smoothing and Adam with decoupled weight
decay (AdamW); early stopping and stochastic weight averaging
(SWA) promote generalization. At inference, mild test-time aug-
mentation (TTA; horizontal flip and central crops) is combined
with post-hoc temperature scaling (TS) to improve probabilistic
reliability. On the Kaggle Fruit Ripeness dataset (apples, bananas,
and oranges across {unripe, fresh/ripe, rotten}), the model
achieved a Top-1 accuracy of 0.9735 with TTA (Top-3: 0.9995),
micro-averaged receiver operating characteristic–area under the
curve (ROC–AUC) of 1.000 (macro: 0.999), and reduced expected
calibration error (ECE) from 0.044 to 0.004. Errors concentrated
in visually adjacent maturity states within the same fruit (e.g.,
unripe vs. fresh/ripe), and Gradient-weighted Class Activation
Mapping (Grad-CAM) visualizations indicated that decisions
relied on semantically meaningful regions. Implemented solely
with standard TensorFlow/Keras components and commodity
augmentations, the recipe provides a reproducible, deployment-
oriented baseline that balances accuracy, efficiency, and cali-
brated confidence for food-quality applications in low-resource
settings.

Index Terms—Fruit ripeness classification; transfer learning;
EfficientNet-B0; temperature scaling; probabilistic calibration;
test-time augmentation; Grad-CAM; computer vision.

I. INTRODUCTION

Automated assessment of fruit ripeness from images is a
longstanding challenge in computer vision (CV), with direct
implications for post-harvest logistics, shelf-life prediction,
and food-waste reduction across the supply chain. Manual
inspection remains the dominant practice in retail and distribu-
tion, yet it is subjective, labor-intensive, and difficult to scale.
This paper addresses the problem of multi-class visual classifi-
cation of fruit ripeness—distinguishing unripe, ripe, and rotten
fruit—from commodity RGB imagery. We focus on a publicly
available benchmark, the Kaggle Fruit Ripeness dataset [1],
and study a practical transfer-learning pipeline implemented
with modern convolutional neural networks (CNNs).

The task presents several technical difficulties. First, intra-
class variability is substantial: the appearance of “ripe” can
differ markedly across fruit types and lighting conditions.
Second, inter-class boundaries are subtle: early rot, bruising,
and specular highlights can mimic texture cues of unripe
or ripe states. Third, real-world datasets often exhibit class
imbalance and spurious correlations (e.g., background and
container cues), which can bias a model’s decision process and
degrade calibration. These challenges motivate architectures
with strong image priors (to generalize under limited or
imbalanced data) and training protocols that explicitly account
for imbalance and probability calibration.

To this end, we adopt pre-trained CNN
backbones—EfficientNet-B0 [2] and, as a fallback under
identical code paths, MobileNetV2 [3]—fine-tuned in two
stages on the target dataset. EfficientNet-style scaling remains
a competitive baseline for accuracy under constrained
compute, while MobileNetV2 provides a lightweight
alternative for edge scenarios. We position these choices
within a broader landscape that includes more recent families
(e.g., EfficientNetV2 [4] and ConvNeXt [5]) to situate our
study with respect to contemporary CNN design, although our
implementation focuses on the former two for reproducibility
and deployment simplicity.

From an optimization standpoint, we combine AdamW
(Adam with decoupled weight decay) [6] with label smoothing
[7] to stabilize training under limited supervision. We address
class imbalance via class-weighted loss and mild class-specific
boosting. To enhance reliability at inference time, we em-
ploy test-time augmentation (TTA)—ensembling predictions
over simple geometric and crop transforms [8]—and post-
hoc temperature scaling for probability calibration [9]. The
latter is crucial because well-calibrated confidence estimates
enable trustworthy human–AI collaboration; recent large-scale
analyses have revisited calibration failure modes and eval-
uation practices in modern deep networks [10]. We further
apply stochastic weight averaging (SWA) to widen optima and



improve generalization [11]. Although our pipeline uses TTA
rather than adaptive test-time training (TTT) strategies, we
discuss TTT as a complementary, more recent line of work
that adapts models under distribution shift during inference
[12].

Beyond accuracy, we quantify performance with Receiver
Operating Characteristic (ROC) curves and Area Under the
Curve (AUC), as well as Precision–Recall (PR) analysis [13],
[14]. We also report Expected Calibration Error (ECE) and
reliability diagrams to assess probabilistic fidelity, which is
particularly relevant when predictions gate downstream actions
(e.g., automatic sorting or triage). To improve transparency, we
employ Gradient-weighted Class Activation Mapping (Grad-
CAM) [15] to visualize spatial evidence supporting each
decision, helping to diagnose spurious attributions (e.g., back-
ground dominance) and to communicate model behavior to
stakeholders.

This paper makes the following practical contributions:
1) A reproducible transfer-learning recipe for fruit-ripeness

recognition on the Kaggle dataset [1], comprising two-
stage fine-tuning of a pre-trained CNN (EfficientNet-B0
or MobileNetV2) with class-weighted, label-smoothed
optimization under AdamW.

2) A lightweight reliability stack at inference time—test-
time augmentation (TTA) and temperature scaling— that
maintains or slightly improves top-k accuracy while
substantially improving probability calibration.

3) A diagnostic and interpretability suite (ROC/PR, ECE,
confusion analysis, and Grad-CAM) that surfaces per-
class failure modes and supports responsible deploy-
ment.

4) An implementation aligned with deployment constraints,
using only commodity augmentations and standard Ten-
sorFlow/Keras components, to ease replication and port-
ing to edge devices.

While recent architectures (e.g., EfficientNetV2 [4] and
ConvNeXt [5]) may yield further gains, our results indi-
cate that carefully tuned baselines—augmented with princi-
pled calibration and ensembling—offer an attractive accu-
racy–efficiency trade-off for food-quality applications. The
proposed pipeline aims to be immediately useful in low-
resource settings (e.g., smartphone or single-GPU environ-
ments) where operational simplicity and confidence quality
are as important as raw accuracy.

The remainder of this paper is organized as follows. Sec-
tion II details the Methodology, including data preparation,
model architecture, optimization, inference-time ensembling,
and calibration. Section III presents the Results, with ablations
and interpretability analyses. Section IV concludes the paper.

II. METHODOLOGY

This section details the end-to-end pipeline employed to
classify fruit ripeness using a CNN. We first describe the
dataset and split policy, followed by data preparation and
augmentation, the transfer-learning architecture, optimization
and regularization strategies, inference with TTA, post-hoc

Fig. 1. Class distribution across Train/Validation/Test after stratified splits.

probability calibration via TS, and the evaluation protocol.
All experiments were implemented in TensorFlow/Keras with
deterministic seeds set to 42 for NumPy, Python, and Tensor-
Flow.

A. Dataset and Split Policy

We use the public “Fruit Ripeness: Unripe, Ripe, and
Rotten” dataset from Kaggle [1], which contains nine visual
categories spanning three fruit types (apple, banana, orange)
at three ripeness stages (unripe, fresh/ripe, rotten). Images
provided in the official train/test folders were parsed
programmatically; when a test split was not present, we
created a stratified pseudo-test split by sampling 15% of the
training pool, and a stratified validation split of 15% from
the remaining training pool (Fig. 1). Class names are inferred
from directory names to avoid manual label coupling. Optional
extra images under dataset/ are merged into the training
pool when available.

B. Data Preparation and Online Data Augmentation

Images are lazily streamed with the tf.data API, decoded
as RGB, resized to 224 × 224, and batched by 32. To
improve robustness and reduce overfitting, we apply light,
label-preserving stochastic augmentations within the graph:
horizontal flip, rotation up to ±10% of a full turn, zoom
±10%, and contrast jitter ±10%. Backbone-specific prepro-
cessing (mean/scale) is injected through the corresponding
preprocess_input function.

C. Network Architecture and Transfer Learning

We adopt transfer learning with EfficientNet-B0 [2] as pri-
mary backbone, falling back to MobileNetV2 [3] if ImageNet
weights are unavailable (identical head in both cases). The
backbone is initially frozen and followed by global average
pooling, a dropout layer (rate 0.35), and a dense softmax
classifier over K = 9 classes. Stage 1 trains only the
classification head; Stage 2 performs fine-tuning by unfreezing
the top 30% of backbone layers while keeping early layers
frozen to preserve general features.



Fig. 2. Learning-rate (LR) schedule recorded during both stages.

D. Loss, Class Rebalancing, and Label Smoothing
We minimize a weighted cross-entropy with label smooth-

ing. Given one-hot labels yi ∈ {0, 1}K and model probabili-
ties p̂i, we use the smoothed target

ỹi = (1− ε)yi +
ε

K − 1
(1− yi) , ε = 0.05,

and per-sample loss ℓi = −
∑K

k=1 ỹik log p̂ik [7]. To ad-
dress imbalance, we compute class weights wc using inverse-
frequency reweighting (scikit-learn), and apply a light domain-
informed boost for rare confusions (unripe apple, unripe
orange, factor 1.10). The final objective is

L =
1

N

N∑
i=1

wyi
ℓi.

E. Optimization, Scheduling, and Regularization
We train with AdamW [6] (Stage 1: learning rate 3×10−4,

weight decay 5 × 10−5; Stage 2: 1 × 10−5 and 1 × 10−5,
respectively) and gradient clipping at ℓ2 norm 1.0. A Reduce-
on-Plateau scheduler monitors validation loss with factor 0.3
and patience of two epochs (minimum LR 10−6). Early stop-
ping (patience 5, best-weight restore) and model checkpointing
on validation accuracy prevent overfitting. During Stage 2,
we enable SWA [11], accumulating an equal-weight mean
of consecutive snapshots from the second half of fine-tuning.
Figure 2 shows the learning-rate trace collected per epoch.

F. Inference with Test-Time Augmentation (TTA)
At inference, we apply TTA by averaging predictions over

four transforms: identity, horizontal flip, and two central crops
(retain 95% and 90% of the area) resized back to 224× 224.
The final probability vector for an image is the arithmetic mean
of the four forward passes [8].

G. Post-hoc Probability Calibration
To improve probabilistic interpretability, we calibrate vali-

dation predictions with TS [9]. Because logits are not exposed
in the deployed path, we temper softmax probabilities using a
power transform,

p̂(T ) =
p̂ 1/T∑K
k=1 p̂

1/T
k

,

TABLE I
TEST PERFORMANCE SUMMARY (TOP-1/TOP-3 AND LOSS).

Setting Top-1 Acc. Top-3 Acc.

No TTA 0.9700 0.9995
TTA 0.9735 0.9995

Test loss (cross-entropy): 0.4416

and select T ⋆ ∈ [0.5, 3.0] on a grid by minimizing the negative
log-likelihood on the validation set. The learned T ⋆ is then
applied to test-time probabilities (after TTA).

H. Evaluation Protocol

We report top-1 accuracy and top-3 accuracy (Keras
SparseTopKCategoricalAccuracy) on the test set.
For detailed analysis, we compute per-class precision, recall,
and F1-score; a normalized confusion matrix; ROC; AUC [13];
and PR curves for all classes [14]. We further assess calibration
with reliability diagrams and the ECE [16]. Finally, we provide
qualitative explanations via Grad-CAM visualizations [15]
on both correctly and incorrectly classified, high-confidence
samples.

I. Reproducibility

All results were obtained with batch size 32, image res-
olution 224 × 224, and two training stages of six epochs
each. Augmentations and preprocessing were defined within
the model graph to ensure determinism under a fixed random
seed. Code emits CSV reports and saves the final Keras model
artifact to facilitate downstream use.

III. RESULTS

This section reports the performance of the proposed
fruit–ripeness classifier on the held-out test set. Unless oth-
erwise stated, predictions were produced with TTA and prob-
abilities were later calibrated by temperature scaling tuned on
the validation split (the full implementation is provided in the
code listing). We summarize results using standard metrics and
plots: the confusion matrix, ROC curves and AUC, PR curves
and AP, per-class precision/recall/F1, and reliability diagrams
to quantify calibration via the ECE. Table I summarizes overall
test performance (Top-1/Top-3 accuracy) and loss on the held-
out test set. In our setting, TTA yields a modest Top-1 gain
and no material change in Top-3, indicating a favorable but
marginal accuracy–latency trade-off.

As a reproducibility check, all scalar results in Ta-
bles I and II match the values emitted by our script in
metrics.txt.

A. Training Dynamics and Convergence

Fig. 3 summarizes the learning behavior across epochs.
Training and validation curves evolve smoothly without signs
of instability, and early stopping prevents overfitting. These
plots, together with the learning-rate trace in Fig. 2, indicate
a stable optimization process under the two-stage fine-tuning
schedule.



TABLE II
GLOBAL RANKING AND CALIBRATION SUMMARY ON THE TEST SET.

Metric Micro Macro

AUC (ROC) 1.000 0.999
AP (PR) 0.997 n/a

Calibration (Expected Calibration Error, ECE)

Before temperature scaling 0.044
After temperature scaling 0.004

Fig. 3. Training dynamics. Left: training vs. validation accuracy per epoch.
Right: training vs. validation loss per epoch. Curves show smooth convergence
without divergence, consistent with the early-stopping and Reduce-on-Plateau
strategy.

In addition, Fig. 4 tracks top-3 accuracy over epochs,
mirroring the stable trends observed for top-1 accuracy and
loss.

B. Confusion Matrix and Error Modes

Fig. 5 (row-normalized confusion matrix) shows near-
perfect recognition across the nine classes. The freshbanana
and rottenbanana categories achieve near-perfect recall (0.998
and 0.995, respectively), while freshapples, freshoranges, rot-
tenapples, and rottenoranges remain in the 0.97–0.99 range.
The most challenging categories are the unripe classes: unripe
apple attains a recall of 0.889 (332/374 correct), with confu-
sions primarily toward unripe orange (5.9%) and freshapples
(3.2%); unripe orange reaches 0.942 (254/270 correct), with
3.7% of samples predicted as unripe apple. Misclassifications
remain largely within the same fruit family or adjacent matu-
rity stages, reflecting the fine-grained visual similarity among
these categories.

C. ROC Characteristics

Fig. 6 reports ROC curves. The micro-averaged
AUC—aggregating decisions over all classes—is 1.000,
while the macro-averaged AUC—averaging per-class
ROCs—is 0.999. These values indicate excellent separability
for every class and minimal class imbalance effects on
ranking performance.

D. Precision–Recall Behavior

The PR analysis in Fig. 7 shows a micro-AP of 0.997.
Precision remains essentially at 1.0 over almost the entire
recall range, with only a slight drop as recall approaches 1.0.
This behavior confirms that the classifier maintains very low
false-positive rates even when operating at high recall.

Fig. 4. Top-3 accuracy over epochs (train/validation), complementing the
Top-1 trends.

Fig. 5. Confusion matrix for the nine-class fruit-ripeness classifier.

E. Per-Class Metrics

Per-class precision/recall/F1 scores are summarized in
Fig. 8. Precision is ≥ 0.96 for all categories, reaching ≈ 1.00
for freshbanana and rottenbanana. F1-scores are correspond-
ingly high (≈ 0.97–1.00) for the majority of classes. The
lowest F1 occurs for unripe apple, driven by the aforemen-
tioned recall of 0.89; nonetheless, its precision remains high,
indicating that most predictions for this class are correct when
made. Overall, these results corroborate the confusion-matrix
trends and highlight that remaining errors concentrate in fine-
grained, visually similar maturity states.

F. Probabilistic Calibration

Reliability diagrams in Figs. 9 and 10 quantify confidence
alignment. Prior to temperature scaling, the model is mildly



TABLE III
TOP CONFUSIONS ON THE TEST SET (ROW-NORMALIZED).

True → Predicted Percent Count

unripe apple → unripe orange 5.9% 22
unripe apple → freshapples 3.2% 12
unripe orange → unripe apple 3.7% 10

Fig. 6. Receiver Operating Characteristic (ROC) curves with micro and macro
averaging.

over-confident in mid-confidence bins. After applying temper-
ature scaling fitted on the validation split, the reliability curve
closely follows the identity line and the ECE decreases to
0.004, yielding probability estimates that are appropriate for
thresholding and downstream decision-making. We compute
ECE with 10 equal-width bins in confidence. The temper-
ature T ⋆ is selected by grid search on the validation set
to minimize the negative log-likelihood, and then applied to
test-time probabilities. These calibrated probabilities enable
reliable thresholding for automated sorting and human-in-the-
loop triage, mitigating over-confidence in ambiguous, fine-
grained cases.

IV. CONCLUSIONS

1) Effective calibrated transfer learning. The pro-
posed two-stage fine-tuning pipeline—centered on
EfficientNet-B0 with MobileNetV2 as a lightweight
fallback—in combination with class-weighted cross-
entropy, label smoothing, AdamW, gradient clipping,
and SWA, yielded strong performance on the nine-
class Fruit Ripeness benchmark. With TTA, the model
reached a Top-1 accuracy of 0.9735 (Top-3: 0.9995) and
near-perfect ranking quality (micro ROC–AUC 1.000,
macro ROC–AUC 0.999), indicating that the learned
representation discriminates the fine-grained maturity
states effectively.

2) Reliability substantially improved by TS. Post-hoc
temperature scaling reduced the ECE from 0.044 to
0.004, aligning predicted confidences with empirical

Fig. 7. Precision–Recall (PR) curves with micro-averaged summary.

Fig. 8. Per-class precision, recall, and F1-score across the nine categories.

accuracy without sacrificing top-k performance. To-
gether with mild TTA, this reliability stack provides
well-calibrated probabilities suitable for threshold-based
automation and human-in-the-loop triage in practical
sorting workflows.

3) Errors are concentrated in adjacent maturity states.
Confusion analysis revealed that residual mistakes
mainly occur between visually neighboring categories
within the same fruit family. In particular, the unripe
classes remain the most challenging (e.g., unripe apple
recall of 0.889, with predominant confusions toward
unripe orange at 5.9% and freshapples at 3.2%). This
pattern is consistent with subtle color/texture transitions
and underscores the task’s fine-grained nature rather than
systemic model failure.

4) Interpretability supports trustworthy deployment.
Grad-CAM visualizations indicate that decisions are
driven by semantically meaningful fruit regions, rather
than by spurious backgrounds or containers. This im-
proves transparency for stakeholders, aids diagnosis of
rare failure cases, and strengthens the case for deploying



Fig. 9. Reliability diagram before temperature scaling.

Fig. 10. Reliability diagram after temperature scaling.

the model in settings where explainability and quality
assurance are required.

5) Practicality and reproducibility for low-resource set-
tings. The end-to-end recipe relies solely on standard
TensorFlow/Keras components and commodity augmen-
tations, uses deterministic seeds, and exports metrics
and artifacts for auditability. The modest TTA accuracy
gain, coupled with markedly better calibration, offers
a favorable accuracy–latency–reliability trade-off. These
properties make the approach an actionable baseline for
food-quality applications on smartphones or single-GPU
systems, while leaving room for future improvements
via newer backbones (e.g., EfficientNetV2, ConvNeXt)
or adaptive test-time training.
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