
Decision Transformer for Dynamic Radio Resource 

Management in Network Slicing

Harun Ur Rashid, Seong Ho Jeong*  

Dept. of Information and Communications Engineering 

Hankuk University of Foreign Studies (HUFS) 

Seoul, Korea 

Email: harun@hufs.ac.kr, *shjeong@hufs.ac.kr

Abstract— The rapid diversification of services in 5G and 

beyond networks, including enhanced Mobile Broadband (eMBB), 

Ultra-Reliable Low-Latency Communications (URLLC), and 

voice services (VoLTE), calls for more intelligent and adaptive 

approaches to radio resource management. Network slicing 

provides a way to logically partition network resources to meet 

these different service requirements. However, static allocation, 

often referred to as hard slicing, cannot respond to fluctuating 

traffic conditions. This limitation results in inefficient use of 

spectrum and a decline in the Quality of Experience (QoE) for 

users. Traditional reinforcement learning (RL) techniques have 

been explored to address this challenge, but their dependence on 

unstable value-function optimization and the need for online 

interaction make them difficult to deploy in highly variable or 

safety-critical wireless environments. To address these issues, this 

paper presents a new method for dynamic radio resource 

allocation on network slices using a Decision Transformer (DT), 

an offline RL framework that frames the slicing task as a sequence 

modeling problem. The DT learns to distribute bandwidth across 

service slices in a way that maximizes both spectral efficiency and 

user satisfaction. The model is trained entirely on an offline 

dataset created from a combination of expert heuristic policies. 

This training approach provides exposure to diverse and high-

quality behaviors without requiring unsafe or costly online 

exploration. Simulation results show that the proposed DT-based 

method achieves clear improvements over conventional hard 

slicing and traditional RL-based approaches. The system delivers 

higher overall utility and better service-level success rates for 

VoLTE, eMBB, and URLLC traffic. 

Keywords— 5G, Network Slicing, Decision Transformer, Offline 

Reinforcement Learning, Radio Resource Management. 

I.  INTRODUCTION  

Modern 5G networks are designed to support an increasingly 
diverse set of services, each with unique performance and 
expectations [1]. Enhanced Mobile Broadband (eMBB) requires 
consistently high data rates to support bandwidth-intensive 
applications such as high-definition video streaming. Ultra-
Reliable Low-Latency Communications (URLLC) demands 
extremely low delay and high reliability for mission-critical 
applications, including autonomous systems and industrial 
automation. Massive Machine-Type Communications (mMTC) 
involves connecting large numbers of low-power devices [2]. In 
addition to these service classes, operators must also support 
legacy traffic such as Voice over LTE (VoLTE). 
Accommodating these heterogeneous requirements on a 

common physical infrastructure makes radio resource 
management (RRM) increasingly challenging [3]. 

Network slicing has emerged as one of the most promising 
mechanisms to address this challenge. By creating multiple 
virtualized, end-to-end networks over a shared physical 
infrastructure [4], slicing allows operators to tailor resources to 
the needs of different service categories. In the Radio Access 
Network (RAN), this often involves partitioning bandwidth into 
separate slices. The simplest approach, known as hard slicing, 
assigns fixed portions of bandwidth to each slice. While easy to 
deploy, static allocation cannot keep pace with the bursty and 
unpredictable nature of modern wireless traffic. This mismatch 
often results in underutilized resources in one slice and unmet 
demand in another, ultimately degrading the Quality of 
Experience (QoE). Dynamic resource allocation schemes are 
therefore essential. Deep Reinforcement Learning (DRL) has 
been widely explored as a potential solution, owing to its ability 
to learn effective control strategies in complex environments. 
However, most DRL approaches rely on online training and 
require repeated interaction with live network during learning. 
This dependence can introduce performance instability, long 
training times, and safety concerns, particularly in operation on 
cellular systems [5] where exploratory actions may disrupt 
ongoing services. 

To overcome these limitations, this work adopts an offline 
reinforcement learning (RL) approach and introduces Decision 
Transformer (DT) architecture [6] for dynamic resource 
management in network slicing. Instead of learning through 
trial-and-error in the live network, the DT learns directly from 
pre-collected datasets, reframing the RL problem as a 
conditional sequence modeling task. This makes the method 
naturally compatible with telecommunications systems, where 
large volumes of network logs can be gathered without 
interfering with real users. The main contributions of this paper 
are summarized as follows: 

• We formulate dynamic bandwidth allocation across 
VoLTE, eMBB, and URLLC slices as an offline DRL 
problem. 

• We design and implement a DT that learns a slicing policy 
from a dataset generated using multiple expert heuristics. 

• Through extensive simulations, we demonstrate that our 
method significantly outperforms static hard slicing and 
existing RL-based state-of-the-art approaches in terms of 
overall system utility and per-slice Successful Service 
Rate (SSR). 



II. RELATED STUDIES 

Research on intelligent resource management on network 
slice for 5G and beyond 5G networks has expanded rapidly, 
moving from supervised learning for basic classification tasks to 
advanced reinforcement learning for dynamic and large-scale 
decision making. Early supervised approaches [7] primarily 
addressed foundational functions such as slice identification and 
traffic categorization. These methods offered useful 
preprocessing capabilities but were unable to handle the 
temporal dependencies and rapid fluctuations inherent in real 
radio access networks, which limits their impact on real-time 
resource control. To address dynamic resource allocation, most 
prior work relies on online DRL. For example, GAN (generative 
adversarial networks)- assisted distributional Q-learning 
methods [8] attempt to learn full return distributions to improve 
policy robustness under uncertainty, yet they still require 
extensive online exploration. Transformer-based architectures 
[9], [10] have also been integrated into online actor-critic 
frameworks for tasks such as sequence-aware service function 
chaining or one-shot slice placement. Although such approaches 
improve the capacity to model long-range temporal 
relationships, they inherit fundamental limitations of online RL 
including sample inefficiency, unstable value-function 
optimization, and the need for continuous interaction with a live 
network environment. 

Recent studies further illustrate the limitations of online 
multi-agent reinforcement learning (MARL). The UAV 
(unmanned aerial vehicle)- assisted slicing framework 
MADDPG-M&L (Multi-Agent Deep Deterministic Policy 
Gradient based on Matching Game and Lagrangian Dual) 
proposes joint user association and slice resource allocation 
using stable matching and multi-agent policy updates [11]. 
While effective in dynamic UAV scenarios, the method depends 
entirely on online MARL, which introduces considerable 
instability and requires repeated interactions with the 
environment. This reliance on continuous exploration can be 
problematic for network slicing where mistaken decisions 
immediately degrade user experience. Similarly, the heuristic-
assisted multi-agent DRL scheme for QoS-security tradeoff in 
RAN slicing addresses slice isolation and user mobility but still 
operates purely in an online multi-agent setting [12]. While the 
method introduces security-aware objectives, its dependence on 
real-time environment interaction restricts scalability and 
increases deployment risk. Moreover, the approach uses 
handcrafted heuristics to guide learning, which may bias the 
policy and limit its generalization to unseen scenarios.  

Another line of work [13] applies MARL frameworks to 
VLC-NOMA (Visible Light Communication – Non-Orthogonal 
Multiple Access) environments to jointly manage power 
allocation and stability concerns such as interference and 
handovers. These studies demonstrate the ability of MARL to 
capture complex interactions among multiple access points and 
users, but they again rely on online updates and full environment 
availability during training [13]. In practice, gathering such 
training data is expensive and often unsafe because it requires 
exploration that can degrade user quality of service (QoS). Only 
very recent research [14] explores offline learning. An offline 
multi-agent RL framework [14] has been proposed for radio 
resource management, showing that policies can be learned 

entirely from static datasets using conservative Q-learning to 
mitigate out-of-distribution errors. This work demonstrates the 
potential of offline MARL for scalability and safety. However, 
it focuses on generic RRM tasks such as scheduling and power 
control and does not consider the unique constraints of network 
slicing, including isolation, service differentiation, or slice-level 
utility tradeoffs. Furthermore, it does not integrate sequence 
modeling and therefore cannot exploit temporal structure as 
effectively as transformer-based approaches. 

Therefore, existing research overwhelmingly depends on 
online RL or online MARL, which increases operational costs, 
and exposes the network to instability. Transformer-empowered 
RL is emerging but has not yet been explored in an offline 
context for network slicing. Literature lacks a framework 
capable of learning high-quality slicing decisions directly from 
logged trajectories without online exploration. This gap 
motivates the use of a Decision Transformer [6] that reframes 
radio resource allocation as a conditional sequence modeling 
problem, enabling robust learning from historical multi-slice 
data while avoiding the pitfalls of traditional online RL. 

III. SYSTEM MODEL AND PROBLEM FORMULATION 

A. Network and Service Model 

We model a single-cell downlink scenario where a Base 
Station (BS) serves multiple User Equipment’s (UEs) with 
diverse service requirements. The system consists of a single BS 
located at the center of a circular cell, serving 𝑁  UEs. We 
consider three distinct service slices: VoLTE, eMBB, and 
URLLC. Each UE is randomly assigned to one of these slices. 
Let, 𝐾 = (1,2,3)  denote the set of slices, corresponding to 
VoLTE, eMBB and URLLC, respectively. The total system 
bandwidth 𝐵𝑡𝑜𝑡𝑎𝑙  is shared among the slices and dynamically 
partitioned at each time slot. 

Traffic Models: The arrival of data packets for each service 
follows distinct statistical models based on 3GPP specifications. 
VoLTE traffic is modeled as a VoIP source, eMBB follows a 
Pareto distribution to simulate bursty video traffic, and URLLC 
traffic is based on an exponential model for sporadic, critical 
data packets [8]. Let 𝐷𝑘(𝑡) denote the total packet arrivals for 
slice 𝑘 at time step 𝑡.  

Channel Model: The channel gain for each UE 𝑖, denoted 
by 𝑔𝑖 , incorporates distance-based path loss according to the 
3GPP TR 36.814 model [15] and log-normal shadowing. The 
achievable data rate of UE 𝑖 is given by 

 
𝑅𝑖 = 𝐿𝑖𝐵𝑘𝑙𝑜𝑔2  1 +

𝑃𝑖𝑔𝑖

𝑁0𝐵𝑘

  
 () 

where 𝐿𝑖  is the number of MIMO layers, 𝐵𝑘  is the 
bandwidth allocated to the slice of UE 𝑖 , 𝑃𝑖  is the transmit 
power, and 𝑁0 is the noise spectral density. 

B. Reinforcement Learning Formulation  

We frame the dynamic slicing problem as a Markov 
Decision Process (MDP), which is defined by a tuple 
(𝑆, 𝐴, 𝑃, 𝑅, 𝛾). 



 
Fig. 1. The Decision Transformer architecture. It takes sequences of 

rewards-to-go, states, and actions as input and autoregressively 

predicts the next action that achieves the target return. 

State Space (S): The state st ∈ S at time step 𝑡 must capture 
the essential network conditions. We define the state as a 
concatenated vector containing three key metrics for each of the 
𝐾 service slices: 

 𝑠𝑡 =  𝑢1 , … , 𝑢𝐾 , 𝑏1 , … , 𝑏𝐾 , 𝑙1 , … , 𝑙𝐾   () 

where, for each slice 𝑘 ∈ {1, . . . , 𝐾}, 𝑢𝑘  is the number of 

active UEs, 𝑏𝑘 is the average buffer size of active UEs, and 𝑙𝑘 

is the average packet latency. This state representation provides 

a comprehensive yet compact snapshot of the current load and 

QoE for each slice. 
Action Space (A): The action 𝑎𝑡 ∈ 𝐴 is the agent's decision 

on how to partition the total system bandwidth 𝐵𝑡𝑜𝑡𝑎𝑙 . The action 
space is discretized, where each action is a vector: 

 

𝑎𝑡 =  𝐵1 , 𝐵2 … , 𝐵𝐾      s.t.   𝐵𝑘 = Btotal

𝐾

𝑘=1

 

 () 

The action space is discretized using a predefined resolution 
parameter that determines the minimum allocatable bandwidth 
unit. 

Reward Function (R): To jointly optimize network 
efficiency and user satisfaction, the reward 𝑟𝑡  is defined as a 
weighted sum of the system-level Spectral Efficiency (SE) and 
SSR, a QoE metric. 

 
𝑟𝑡 = 𝑤𝑠𝑒  . SE𝑡 +  𝑤𝑘  .SSR𝑘 ,𝑡

𝐾

𝑘=1

 

 () 

where 𝑤𝑠𝑒 and 𝑤𝑘 are tunable weighting factors. 

The system spectral efficiency at time 𝑡 is given by  

 
𝑆𝐸𝑡 =

 𝑅𝑖
𝑁
𝑖=1

𝐵total

 
 () 

The SLA Satisfaction Ration for slice 𝑘 is defined as  

 
SSR𝑘,𝑡 =

𝑁𝑘 ,𝑡
succ

𝐷𝑘(𝑡)
 

 () 

 where 𝑁𝑘,𝑡
succ  is the number of packets successfully delivered 

within the slice-specific rate and latency constraints, and 𝐷𝑘(𝑡) 

is the total number of packet arrivals for slice 𝑘. 

IV.  DECISION TRANSFORMER FOR RESOURCE SLICING 

Instead of learning online, our approach uses the decision 
transformer to learn a slicing policy from a pre-collected dataset 
of interactions. 

A. Offline Data Generation 

A crucial component of offline RL is the quality of the 
training dataset. A dataset collected from a purely random policy 
may lack examples of high-reward behavior. To address this, we 
generate our dataset using an 𝜖 -greedy policy built upon a 
mixture of expert heuristics by using cellular environment [8]. 
With probability 1 − 𝜖, the agent executes a random action to 
ensure exploration. With probability 𝜖, it randomly chooses one 
of three expert policies: 

Latency-Aware Expert: Allocates the majority of 
bandwidth to the slice with the highest average packet latency 
(prioritizing URLLC). 

Buffer-Aware Expert: Allocates the majority of bandwidth 
to the slice with the largest average data buffer (prioritizing 
eMBB). 

Fairness Expert: Allocates bandwidth as evenly as possible 
among the active slices. 

This approach populates the dataset with diverse and 
effective trajectories, providing a rich learning signal for the DT 
model. 

B. Decision Transformer Architecture  

The decision transformer models the joint distribution of a 
trajectory 𝜏 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, . . . )  using a GPT-like 
Transformer architecture. Instead of conditioning on past states 
to predict an action, the DT conditions on a desired future 

outcome, specified as the reward-to-go (RTG), 𝑅̂𝑡 =  𝑟𝑡′
𝑇
𝑡′=𝑡 . 

The model input at each time step 𝑡 is a sequence of the last 
𝐶 triplets of RTGs, states, and actions: 

  𝑅̂𝑡−𝐶+1 , 𝑠𝑡−𝐶+1 , 𝑎𝑡−𝐶+1 , … , 𝑅̂𝑡 , 𝑠𝑡 , 𝑎𝑡   () 



 
Fig. 2. System utility of hard and DT based slicing baseline  

Each modality (RTG, state, action) is first passed through an 
embedding layer to project it into a high-dimensional space. A 
timestep embedding is added to each token to provide positional 
context. The resulting sequence of embeddings is processed by 
a series of self-attention-based Transformer blocks. The model 
is trained with a causal self-attention mask to ensure that the 
prediction for timestep 𝑡 only depends on past inputs. The DT is 
trained to predict the next state, the next action, and the next 
RTG, but during inference, we only use the action head to select 
the next bandwidth allocation, as shown in Fig. 1. By providing 
a high target RTG during evaluation, we steer the agent to 
generate actions that lead to high cumulative rewards. 

V. PERFORMANCE EVALUATION 

This section presents a comprehensive evaluation of the 

proposed decision transformer compared with a static hard 

slicing baseline. All experiments are conducted in a custom 

Python/TensorFlow simulation environment designed to 

emulate realistic traffic dynamics and QoE constraints across 

VoLTE, eMBB, and URLLC services. 

A. Simulation Setup 

Table I summarizes the key parameters used in our 
experiments. The DT is trained for 200 epoch using an offline 
dataset composed of 100 episodes generated by a mixture of 
heuristic slicing policies. The hard slicing baseline allocates 
bandwidth equally among the three services at all times, 
irrespective of traffic variations. The experiment uses 1000kHz 
action resolution, resulting in a substantially larger action space 
and making the dynamic allocation problem more challenging.  

TABLE I.  SIMULATION PARAMETERS 

Parameter Values 

Total Bandwidth 20 MHz 

BS Transmit Power 46 dBm 

Cell Radius 40 m 

Number of UEs 100 

Service Types VoLTE, eMBB, URLLC 

MIMO Configuration 64 layers 

Context Length C 50 timesteps 

QoE Weights (𝑤𝑘) VoLTE: 1, eMBB: 1, URLLC: 6 

SE Weight (𝑤𝑠𝑒) 0.01 

B. Reinforcement Learning Formulation  

The DT agent learns a bandwidth allocation strategy by 
modeling the slicing process as a conditional sequence 

prediction task. Using only offline trajectories, the agent 
attempts to maximize a composite utility function showing in 
Fig. 2 that accounts for both spectral efficiency and slice-level 
QoE satisfaction. The hard slicing method does not involve 
learning; it simply enforces a fixed partitioning. 

A more detailed view of service-level performance is shown 
in the per-slice SSR comparisons in Fig. 3. Both approaches 
maintain near-perfect SSR for the VoLTE and eMBB slices, as 
these services generally demand less stringent latency 
guarantees. However, a clear performance gap emerges for the 
URLLC slice. The DT consistently sustains a high SSR, even 
during episodes characterized by fluctuating queue lengths or 
sudden bursts of latency-sensitive packets. 

 
(a) VoLTE SSR 

 
(b) eMBB SSR 

 
(c) URLLC SSR 

Fig. 3. SSR comparison on network slices 



 

(a) Bandwidth allocation per Episode on hard slicing  

 
(b) Bandwidth allocation per Episode on DT 

Fig. 4. Dynamic bandwidth allocation over evaluation episode 

The higher URLLC SSR achieved by the DT-based 
approach can be attributed to its trajectory-aware decision-
making and conditioning on reward-to-go. By considering the 
historical state transitions and anticipating future SLA 
violations, the DT dynamically reallocates bandwidth to 
URLLC during transient congestion events. In contrast, the hard 
slicing baseline relies on static resource partitioning and lacks 
the ability to adapt to sudden bursts of latency-sensitive traffic, 
resulting in occasional SSR degradation. This instability reflects 
its inability to temporarily prioritize URLLC traffic in moments 
where rapid adaptation is essential. 

The adaptive behavior of the DT is further illustrated in Fig. 
4, which visualizes the evolution of per-slice bandwidth 
allocation over evaluation episodes. Due to the fixed total 
system bandwidth constraint, the absolute variations in per-slice 
bandwidth allocation occur within a narrow numerical range, 
potentially obscuring meaningful adaptations when plotted on a 
single continuous axis. To improve interpretability, a broken y-
axis is employed, separating the operating ranges of VoLTE and 
eMBB/URLLC slices. 

In Fig. 4(a), the hard slicing baseline assigns static and 
identical bandwidth shares to all slices, resulting in flat 
allocation curves across episodes. However, in Fig. 4(b) shows 
that the DT-based policy dynamically reallocates bandwidth in 
response to instantaneous network conditions. The upper axis 
reveals fine-grained bandwidth adjustments between eMBB and 
URLLC, with URLLC receiving temporary allocation boosts 
during latency-critical episodes. Meanwhile, the lower axis 

shows smaller but deliberate VoLTE adjustments, reflecting its 
relatively stable traffic characteristics. 

Although the magnitude of these bandwidth reallocations is 
small in absolute terms, they are sufficient to significantly 
impact URLLC latency performance and SSR, as demonstrated 
in Fig. 3. These results confirm that the DT learns precise and 
service-aware prioritization policies, rather than relying on static 
or myopic resource allocation. Its ability to learn from offline 
data, adapt bandwidth allocation to instantaneous network 
states, and maintain high per-slice reliability, especially for 
URLLC - positions it as a promising alternative to both static 
slicing approaches and traditional online reinforcement learning 
techniques. 

Finally, Fig. 3(a) and Fig. 4(b) should be interpreted jointly. 
While Fig. 4(b) illustrates how the DT reallocates bandwidth 
across slices, Fig. 3 reflects whether slice-specific SLA 
constraints are satisfied. Importantly, SSR is a threshold-based 
metric: once the minimum rate and latency requirements of a 
slice are met, additional bandwidth does not further improve 
SSR. This explains why the DT assigns slightly lower bandwidth 
to VoLTE compared to hard slicing while still achieving 
identical VoLTE SSR. In contrast, URLLC SSR is highly 
sensitive to transient congestion, and the DT’s ability to 
temporarily boost URLLC bandwidth directly translates into 
improved and more stable URLLC reliability. 

C. Simulation Environment and DT Training Details 

The above results are obtained using a custom-built system-
level simulator designed in [8] to capture the essential dynamics 
of downlink radio resource management in a network slicing 
scenario. The simulator models per-slice traffic arrivals based on 
3GPP-inspired [15] statistical distributions, realistic channel 
conditions including path loss and shadowing, per-UE buffering 
behavior, and slice-specific latency constraints. At each 
scheduling interval, bandwidth allocation decisions are applied, 
and packet-level outcomes are tracked to compute latency and 
SSR metrics. 

TABLE II.  DECISION TRANSFORMER TRAINING AND INFERENCE 

CONFIGURATION. 

Component Description 

Training Mode Offline supervised sequence modeling 

Training Data State–action–reward trajectories from 

simulator 

Context Length 50 timesteps 

Input Tokens Reward-to-go, state, action 

Training Objective Minimize action prediction loss 

Online Interaction Not required 

Inference Cost Single forward pass per timestep 

Deployment Suitability Real-time RAN control 

 

The Decision Transformer is trained entirely offline using 

trajectories collected from the simulator under a mixture of 

baseline and exploratory slicing policies. Each trajectory 

consists of sequences of states, actions, and rewards, where 

rewards encode a weighted combination of spectral efficiency 

and slice-level SSR. During training, the DT learns to predict 

bandwidth allocation actions conditioned on the observed state 

and a desired reward-to-go, without requiring online interaction 

with the environment. 



 
Fig. 5. Offline training and online inference pipeline of the Decision 

Transformer for dynamic radio resource management  

At inference time, the trained DT operates as a lightweight 
policy that produces bandwidth allocation decisions via a single 
forward pass, making it suitable for real-time RAN control. No 
online policy updates or value function evaluations are required. 
Table II summarizes the DT training and inference configuration 
used in this work. 

Furthermore, while the experiments in this study rely on 
synthetic traffic and channel models, the proposed framework is 
not limited to simulated data. In practical deployments, DT 
training can leverage historical RAN logs containing traffic 
statistics, buffer states, and QoS measurements, making it 
particularly well suited for offline, data-driven optimization. 
Fig. 5 illustrates the overall offline training and online inference 
pipeline of the proposed DT-based slicing framework. 
Incorporating real-world network traces is identified as an 
important direction for future work. 

VI. CONCLUSIONS 

In this paper, we proposed and evaluated a decision 
transformer for dynamic radio resource slicing in a 5G wireless 
network scenario. By formulating the problem within an offline 
reinforcement learning framework, we were able to train a 
sophisticated policy on a static dataset without the need for risky 
and inefficient online exploration. Our results clearly show that 
the DT has learnt an effective, dynamic policy that adapts to 
fluctuating traffic demands. It significantly outperforms a static 
hard slicing baseline and state-of-the-art studies [8], delivering 
higher overall system utility and improved SSR for all service 
types. Future work will explore the application of this model in 
more complex multi-cell environments and incorporate 
additional resource dimensions such as power and scheduling 
priorities. 
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