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Abstract— The rapid diversification of services in 5G and
beyond networks, including enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communications (URLLC), and
voice services (VOLTE), calls for more intelligent and adaptive
approaches to radio resource management. Network slicing
provides a way to logically partition network resources to meet
these different service requirements. However, static allocation,
often referred to as hard slicing, cannot respond to fluctuating
traffic conditions. This limitation results in inefficient use of
spectrum and a decline in the Quality of Experience (QoE) for
users. Traditional reinforcement learning (RL) techniques have
been explored to address this challenge, but their dependence on
unstable value-function optimization and the need for online
interaction make them difficult to deploy in highly variable or
safety-critical wireless environments. To address these issues, this
paper presents a new method for dynamic radio resource
allocation on network slices using a Decision Transformer (DT),
an offline RL framework that frames the slicing task as a sequence
modeling problem. The DT learns to distribute bandwidth across
service slices in a way that maximizes both spectral efficiency and
user satisfaction. The model is trained entirely on an offline
dataset created from a combination of expert heuristic policies.
This training approach provides exposure to diverse and high-
quality behaviors without requiring unsafe or costly online
exploration. Simulation results show that the proposed DT-based
method achieves clear improvements over conventional hard
slicing and traditional RL-based approaches. The system delivers
higher overall utility and better service-level success rates for
VoLTE, eMBB, and URLLC traffic.

Keywords— 5G, Network Slicing, Decision Transformer, Offline
Reinforcement Learning, Radio Resource Management.

L INTRODUCTION

Modern 5G networks are designed to support an increasingly
diverse set of services, each with unique performance and
expectations [1]. Enhanced Mobile Broadband (eMBB) requires
consistently high data rates to support bandwidth-intensive
applications such as high-definition video streaming. Ultra-
Reliable Low-Latency Communications (URLLC) demands
extremely low delay and high reliability for mission-critical
applications, including autonomous systems and industrial
automation. Massive Machine-Type Communications (mMTC)
involves connecting large numbers of low-power devices [2]. In
addition to these service classes, operators must also support
legacy traffic such as Voice over LTE (VoLTE).
Accommodating these heterogeneous requirements on a

common physical infrastructure makes radio
management (RRM) increasingly challenging [3].

resource

Network slicing has emerged as one of the most promising
mechanisms to address this challenge. By creating multiple
virtualized, end-to-end networks over a shared physical
infrastructure [4], slicing allows operators to tailor resources to
the needs of different service categories. In the Radio Access
Network (RAN), this often involves partitioning bandwidth into
separate slices. The simplest approach, known as hard slicing,
assigns fixed portions of bandwidth to each slice. While easy to
deploy, static allocation cannot keep pace with the bursty and
unpredictable nature of modern wireless traffic. This mismatch
often results in underutilized resources in one slice and unmet
demand in another, ultimately degrading the Quality of
Experience (QoE). Dynamic resource allocation schemes are
therefore essential. Deep Reinforcement Learning (DRL) has
been widely explored as a potential solution, owing to its ability
to learn effective control strategies in complex environments.
However, most DRL approaches rely on online training and
require repeated interaction with live network during learning.
This dependence can introduce performance instability, long
training times, and safety concerns, particularly in operation on
cellular systems [5] where exploratory actions may disrupt
ongoing services.

To overcome these limitations, this work adopts an offline
reinforcement learning (RL) approach and introduces Decision
Transformer (DT) architecture [6] for dynamic resource
management in network slicing. Instead of learning through
trial-and-error in the live network, the DT learns directly from
pre-collected datasets, reframing the RL problem as a
conditional sequence modeling task. This makes the method
naturally compatible with telecommunications systems, where
large volumes of network logs can be gathered without
interfering with real users. The main contributions of this paper
are summarized as follows:

e We formulate dynamic bandwidth allocation across
VoLTE, eMBB, and URLLC slices as an offline DRL
problem.

e We design and implement a DT that learns a slicing policy
from a dataset generated using multiple expert heuristics.

e Through extensive simulations, we demonstrate that our
method significantly outperforms static hard slicing and
existing RL-based state-of-the-art approaches in terms of
overall system utility and per-slice Successful Service
Rate (SSR).



II.  RELATED STUDIES

Research on intelligent resource management on network
slice for 5G and beyond 5G networks has expanded rapidly,
moving from supervised learning for basic classification tasks to
advanced reinforcement learning for dynamic and large-scale
decision making. Early supervised approaches [7] primarily
addressed foundational functions such as slice identification and
traffic categorization. These methods offered wuseful
preprocessing capabilities but were unable to handle the
temporal dependencies and rapid fluctuations inherent in real
radio access networks, which limits their impact on real-time
resource control. To address dynamic resource allocation, most
prior work relies on online DRL. For example, GAN (generative
adversarial networks)- assisted distributional Q-learning
methods [8] attempt to learn full return distributions to improve
policy robustness under uncertainty, yet they still require
extensive online exploration. Transformer-based architectures
[9], [10] have also been integrated into online actor-critic
frameworks for tasks such as sequence-aware service function
chaining or one-shot slice placement. Although such approaches
improve the capacity to model long-range temporal
relationships, they inherit fundamental limitations of online RL
including sample inefficiency, unstable value-function
optimization, and the need for continuous interaction with a live
network environment.

Recent studies further illustrate the limitations of online
multi-agent reinforcement learning (MARL). The UAV
(unmanned aerial vehicle)- assisted slicing framework
MADDPG-M&L (Multi-Agent Deep Deterministic Policy
Gradient based on Matching Game and Lagrangian Dual)
proposes joint user association and slice resource allocation
using stable matching and multi-agent policy updates [11].
While effective in dynamic UAV scenarios, the method depends
entirely on online MARL, which introduces considerable
instability and requires repeated interactions with the
environment. This reliance on continuous exploration can be
problematic for network slicing where mistaken decisions
immediately degrade user experience. Similarly, the heuristic-
assisted multi-agent DRL scheme for QoS-security tradeoff in
RAN slicing addresses slice isolation and user mobility but still
operates purely in an online multi-agent setting [12]. While the
method introduces security-aware objectives, its dependence on
real-time environment interaction restricts scalability and
increases deployment risk. Moreover, the approach uses
handcrafted heuristics to guide learning, which may bias the
policy and limit its generalization to unseen scenarios.

Another line of work [13] applies MARL frameworks to
VLC-NOMA (Visible Light Communication — Non-Orthogonal
Multiple Access) environments to jointly manage power
allocation and stability concerns such as interference and
handovers. These studies demonstrate the ability of MARL to
capture complex interactions among multiple access points and
users, but they again rely on online updates and full environment
availability during training [13]. In practice, gathering such
training data is expensive and often unsafe because it requires
exploration that can degrade user quality of service (QoS). Only
very recent research [14] explores offline learning. An offline
multi-agent RL framework [14] has been proposed for radio
resource management, showing that policies can be learned

entirely from static datasets using conservative Q-learning to
mitigate out-of-distribution errors. This work demonstrates the
potential of offline MARL for scalability and safety. However,
it focuses on generic RRM tasks such as scheduling and power
control and does not consider the unique constraints of network
slicing, including isolation, service differentiation, or slice-level
utility tradeoffs. Furthermore, it does not integrate sequence
modeling and therefore cannot exploit temporal structure as
effectively as transformer-based approaches.

Therefore, existing research overwhelmingly depends on
online RL or online MARL, which increases operational costs,
and exposes the network to instability. Transformer-empowered
RL is emerging but has not yet been explored in an offline
context for network slicing. Literature lacks a framework
capable of learning high-quality slicing decisions directly from
logged trajectories without online exploration. This gap
motivates the use of a Decision Transformer [6] that reframes
radio resource allocation as a conditional sequence modeling
problem, enabling robust learning from historical multi-slice
data while avoiding the pitfalls of traditional online RL.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network and Service Model

We model a single-cell downlink scenario where a Base
Station (BS) serves multiple User Equipment’s (UEs) with
diverse service requirements. The system consists of a single BS
located at the center of a circular cell, serving N UEs. We
consider three distinct service slices: VoLTE, eMBB, and
URLLC. Each UE is randomly assigned to one of these slices.
Let, K = (1,2,3) denote the set of slices, corresponding to
VoLTE, eMBB and URLLC, respectively. The total system
bandwidth B;,;4; is shared among the slices and dynamically
partitioned at each time slot.

Traffic Models: The arrival of data packets for each service
follows distinct statistical models based on 3GPP specifications.
VoLTE traffic is modeled as a VoIP source, eMBB follows a
Pareto distribution to simulate bursty video traffic, and URLLC
traffic is based on an exponential model for sporadic, critical
data packets [8]. Let D, (t) denote the total packet arrivals for
slice k at time step t.

Channel Model: The channel gain for each UE i, denoted
by gi, incorporates distance-based path loss according to the
3GPP TR 36.814 model [15] and log-normal shadowing. The
achievable data rate of UE i is given by

Pg;
R; = L;B,log, (1 + NoBk)

(1

where L; is the number of MIMO layers, B, is the
bandwidth allocated to the slice of UE i, P; is the transmit
power, and N, is the noise spectral density.

B. Reinforcement Learning Formulation

We frame the dynamic slicing problem as a Markov
Decision Process (MDP), which is defined by a tuple
(S5,4,P,R,y).
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Fig. 1. The Decision Transformer architecture. It takes sequences of
rewards-to-go, states, and actions as input and autoregressively
predicts the next action that achieves the target return.

State Space (S): The state s; € S at time step t must capture
the essential network conditions. We define the state as a
concatenated vector containing three key metrics for each of the
K service slices:

St = [ul,...,uK,bl,...,bK,ll, ...,lK] (2)

where, for each slice k € {1,...,K}, uy is the number of
active UEs, by, is the average buffer size of active UEs, and [},
is the average packet latency. This state representation provides
a comprehensive yet compact snapshot of the current load and
QoE for each slice.

Action Space (A): The action a; € A is the agent's decision

on how to partition the total system bandwidth By,;;. The action
space is discretized, where each action is a vector:

a, =[By,B; ..., Bk] st ZBk = Biotal

3)

The action space is discretized using a predefined resolution
parameter that determines the minimum allocatable bandwidth
unit.

Reward Function (R): To jointly optimize network
efficiency and user satisfaction, the reward r; is defined as a
weighted sum of the system-level Spectral Efficiency (SE) and
SSR, a QoE metric.

T, = W . SE; + Z wy .SSR;,
“)

where wg, and w;, are tunable weighting factors.
The system spectral efficiency at time t is given by

SE. = ?’zl Ri
¢ Btotal (5)

The SLA Satisfaction Ration for slice k is defined as
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where N4 is the number of packets successfully delivered
within the shce—speciﬁc rate and latency constraints, and Dy (t)
is the total number of packet arrivals for slice k.

IV.  DECISION TRANSFORMER FOR RESOURCE SLICING

Instead of learning online, our approach uses the decision
transformer to learn a slicing policy from a pre-collected dataset
of interactions.

A. Offline Data Generation

A crucial component of offline RL is the quality of the
training dataset. A dataset collected from a purely random policy
may lack examples of high-reward behavior. To address this, we
generate our dataset using an €-greedy policy built upon a
mixture of expert heuristics by using cellular environment [8].
With probability 1 — €, the agent executes a random action to
ensure exploration. With probability €, it randomly chooses one
of three expert policies:

Latency-Aware Expert: Allocates the majority of
bandwidth to the slice with the highest average packet latency
(prioritizing URLLC).

Buffer-Aware Expert: Allocates the majority of bandwidth
to the slice with the largest average data buffer (prioritizing
e¢MBB).

Fairness Expert: Allocates bandwidth as evenly as possible
among the active slices.

This approach populates the dataset with diverse and
effective trajectories, providing a rich learning signal for the DT
model.

B. Decision Transformer Architecture

The decision transformer models the joint distribution of a
trajectory T = (Sg, g, Ty, S1,aq,71,...) using a GPT-like
Transformer architecture. Instead of conditioning on past states
to predict an action, the DT conditions on a desired future
outcome, specified as the reward-to-go (RTG), R, = Zfrzt Ty

The model input at each time step t is a sequence of the last
C triplets of RTGs, states, and actions:

Rtﬁst'at) (7)

(Rt—C+1' St—C+10 Ae—C+1r s



v A prediction task. Using only offline trajectories, the agent
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guarantees. However, a clear performance gap emerges for the
; URLLC slice. The DT consistently sustains a high SSR, even
=r= Hard Slicing X . . . .
+ : during episodes characterized by fluctuating queue lengths or
sudden bursts of latency-sensitive packets.
Fig. 2. System utility of hard and DT based slicing baseline

Evaluation Episode

Each modality (RTG, state, action) is first passed through an e
embedding layer to project it into a high-dimensional space. A
timestep embedding is added to each token to provide positional
context. The resulting sequence of embeddings is processed by
a series of self-attention-based Transformer blocks. The model
is trained with a causal self-attention mask to ensure that the
prediction for timestep t only depends on past inputs. The DT is 04 -
trained to predict the next state, the next action, and the next
RTG, but during inference, we only use the action head to select 032 ]
the next bandwidth allocation, as shown in Fig. 1. By providing
a high target RTG during evaluation, we steer the agent to
generate actions that lead to high cumulative rewards. oo
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V. PERFORMANCE EVALUATION

This section presents a comprehensive evaluation of the 1ol
proposed decision transformer compared with a static hard
slicing baseline. All experiments are conducted in a custom .
Python/TensorFlow simulation environment designed to '

emulate realistic traffic dynamics and QoE constraints across
VoLTE, eMBB, and URLLC services.
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A. Simulation Setup 0.4
Table 1 summarizes the key parameters used in our

experiments. The DT is train'ed for 200 epoch using an offline R [y

dataset composed of 100 episodes generated by a mixture of Hard eMBE S5R

heuristic slicing policies. The hard slicing baseline allocates ) : T .
bandwidth equally among the three services at all times, Episode
irrespective of traffic variations. The experiment uses 1000kHz (b) cMBB SSR
action resolution, resulting in a substantially larger action space
and making the dynamic allocation problem more challenging.
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TABLE I. SIMULATION PARAMETERS

Parameter Values o

Total Bandwidth 20 MHz

BS Transmit Power 46 dBm o 067

Cell Radius 40 m @

Number of UEs 100 0.4

Service Types VoLTE, eMBB, URLLC

MIMO Configuration 64 layers

Context Length C 50 timesteps 021 — DT URLLC 55R

QoE Weights (wy) VoLTE: 1,eMBB: 1, URLLC: 6 -w- Hard URLLC SSR

SE Welght (W e) 0.01 H14] T T T T T
o 2 4 5 8

B. Reinforcement Learning Formulation Episode
The DT agent learns a bandwidth allocation strategy by (c) URLLC SSR

modeling the slicing process as a conditional sequence Fig. 3. SSR comparison on network slices
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(b) Bandwidth allocation per Episode on DT
Fig. 4. Dynamic bandwidth allocation over evaluation episode

The higher URLLC SSR achieved by the DT-based
approach can be attributed to its trajectory-aware decision-
making and conditioning on reward-to-go. By considering the
historical state transitions and anticipating future SLA
violations, the DT dynamically reallocates bandwidth to
URLLC during transient congestion events. In contrast, the hard
slicing baseline relies on static resource partitioning and lacks
the ability to adapt to sudden bursts of latency-sensitive traffic,
resulting in occasional SSR degradation. This instability reflects
its inability to temporarily prioritize URLLC traffic in moments
where rapid adaptation is essential.

The adaptive behavior of the DT is further illustrated in Fig.
4, which visualizes the evolution of per-slice bandwidth
allocation over evaluation episodes. Due to the fixed total
system bandwidth constraint, the absolute variations in per-slice
bandwidth allocation occur within a narrow numerical range,
potentially obscuring meaningful adaptations when plotted on a
single continuous axis. To improve interpretability, a broken y-
axis is employed, separating the operating ranges of VoLTE and
eMBB/URLLC slices.

In Fig. 4(a), the hard slicing baseline assigns static and
identical bandwidth shares to all slices, resulting in flat
allocation curves across episodes. However, in Fig. 4(b) shows
that the DT-based policy dynamically reallocates bandwidth in
response to instantaneous network conditions. The upper axis
reveals fine-grained bandwidth adjustments between eMBB and
URLLC, with URLLC receiving temporary allocation boosts
during latency-critical episodes. Meanwhile, the lower axis

shows smaller but deliberate VoLTE adjustments, reflecting its
relatively stable traffic characteristics.

Although the magnitude of these bandwidth reallocations is
small in absolute terms, they are sufficient to significantly
impact URLLC latency performance and SSR, as demonstrated
in Fig. 3. These results confirm that the DT learns precise and
service-aware prioritization policies, rather than relying on static
or myopic resource allocation. Its ability to learn from offline
data, adapt bandwidth allocation to instantaneous network
states, and maintain high per-slice reliability, especially for
URLLC - positions it as a promising alternative to both static
slicing approaches and traditional online reinforcement learning
techniques.

Finally, Fig. 3(a) and Fig. 4(b) should be interpreted jointly.
While Fig. 4(b) illustrates how the DT reallocates bandwidth
across slices, Fig. 3 reflects whether slice-specific SLA
constraints are satisfied. Importantly, SSR is a threshold-based
metric: once the minimum rate and latency requirements of a
slice are met, additional bandwidth does not further improve
SSR. This explains why the DT assigns slightly lower bandwidth
to VoLTE compared to hard slicing while still achieving
identical VoLTE SSR. In contrast, URLLC SSR is highly
sensitive to transient congestion, and the DT’s ability to
temporarily boost URLLC bandwidth directly translates into
improved and more stable URLLC reliability.

C. Simulation Environment and DT Training Details

The above results are obtained using a custom-built system-
level simulator designed in [8] to capture the essential dynamics
of downlink radio resource management in a network slicing
scenario. The simulator models per-slice traffic arrivals based on
3GPP-inspired [15] statistical distributions, realistic channel
conditions including path loss and shadowing, per-UE buffering
behavior, and slice-specific latency constraints. At each
scheduling interval, bandwidth allocation decisions are applied,
and packet-level outcomes are tracked to compute latency and
SSR metrics.

TABLE II. DECISION TRANSFORMER TRAINING AND INFERENCE
CONFIGURATION.

Description

Offline supervised sequence modeling

State—action—reward trajectories from

simulator

50 timesteps

Reward-to-go, state, action

Minimize action prediction loss

Not required

Single forward pass per timestep

Real-time RAN control

Component
Training Mode
Training Data

Context Length

Input Tokens

Training Objective
Online Interaction
Inference Cost
Deployment Suitability

The Decision Transformer is trained entirely offline using
trajectories collected from the simulator under a mixture of
baseline and exploratory slicing policies. Each trajectory
consists of sequences of states, actions, and rewards, where
rewards encode a weighted combination of spectral efficiency
and slice-level SSR. During training, the DT learns to predict
bandwidth allocation actions conditioned on the observed state
and a desired reward-to-go, without requiring online interaction
with the environment.
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Fig. 5. Offline training and online inference pipeline of the Decision
Transformer for dynamic radio resource management

At inference time, the trained DT operates as a lightweight
policy that produces bandwidth allocation decisions via a single
forward pass, making it suitable for real-time RAN control. No
online policy updates or value function evaluations are required.
Table Il summarizes the DT training and inference configuration
used in this work.

Furthermore, while the experiments in this study rely on
synthetic traffic and channel models, the proposed framework is
not limited to simulated data. In practical deployments, DT
training can leverage historical RAN logs containing traffic
statistics, buffer states, and QoS measurements, making it
particularly well suited for offline, data-driven optimization.
Fig. 5 illustrates the overall offline training and online inference
pipeline of the proposed DT-based slicing framework.
Incorporating real-world network traces is identified as an
important direction for future work.

VI. CONCLUSIONS

In this paper, we proposed and evaluated a decision
transformer for dynamic radio resource slicing in a SG wireless
network scenario. By formulating the problem within an offline
reinforcement learning framework, we were able to train a
sophisticated policy on a static dataset without the need for risky
and inefficient online exploration. Our results clearly show that
the DT has learnt an effective, dynamic policy that adapts to
fluctuating traffic demands. It significantly outperforms a static
hard slicing baseline and state-of-the-art studies [8], delivering
higher overall system utility and improved SSR for all service
types. Future work will explore the application of this model in
more complex multi-cell environments and incorporate
additional resource dimensions such as power and scheduling
priorities.
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