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Abstract—In recent years, the Internet of Things (IoT), in
which various devices are connected to networks, has become
widespread and is bringing benefits to society. On the other
hand, there is a risk of information leakage from IoT devices
and unintended behavior of devices. In order to communicate
securely, it is necessary to understand the devices, and device
identification technology that identifies them based on their
characteristics is required. Methods using traffic data from IoT
devices have been proposed so far, but they do not communicate
on a daily basis, which makes it time-consuming to acquire nec-
essary data and causes the time required for identification to be
unpredictable. This paper proposes a device identification method
that does not require long-term data acquisition, focusing on
DNS queries issued by IoT devices immediately after connecting
to the network. When they connect to a network, their initial
operation involves communication with a cloud server, and the
target domains are characteristic of each device. We identify
devices using traffic data within a short period after connection
and measure the accuracy of this identification. As a result of
the identification, we demonstrate that an identification accuracy
of 99 % at the vendor level and 87 % at the device name level
can be achieved using data within 60 seconds after connection.

Index Terms—IoT, DNS, Machine Learning, Network.

I. INTRODUCTION

In recent years, the Internet of Things (IoT), where vari-
ous devices are connected to the internet, has been rapidly
spreading. IoT devices range from general-purpose devices
like smartphones and PCs to specific-purpose devices such
as cameras and home appliances, and it is predicted that
approximately 40.6 billion IoT devices will be connected to
networks by 2034 [1]. They are useful in many fields, and in
the transportation sector, inventory management systems using
RF tags have been established [2].

While IoT offers significant benefits to society, there is
a possibility of information leakage and unexpected device
operations due to the vulnerabilities of IoT devices and the
low security awareness of people [3]. For example, DDoS
(Distributed Denial of Service) attacks by malware-infected
IoT devices, and eavesdropping on communication data such
as sniffing and snooping are conceivable [4]. To prevent these
damages, it is required to accurately grasp their vulnerabilities
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and network connection status by administrators, and to appro-
priately isolate networks according to the type and purpose of
the devices. However, manual registration of MAC addresses
and device names, for example, poses challenges such as
the occurrence of human errors and an increased burden on
administrators. Therefore, in addition to detecting connected
devices, IoT device identification that automatically identifies
them based on their characteristics (type, purpose) is essential
for security measures.

Previously, machine learning-based device identification
methods using device traffic data have been proposed. How-
ever, these studies require long-term traffic data for learning,
which not only increases the learning cost but also takes a long
time for device identification as a whole. This paper proposes
an [oT device identification method that does not require long-
term traffic data. The goal is to reduce the time required for
device identification and achieve it with stable accuracy.

II. RELATED WORK

A binary classification method for IoT/non-IoT devices
based on domain analysis within DNS queries has been
proposed [5]. Feature vectors were created using Word2 Vec,
and classification was performed using six machine learning
models (Naive Bayes, Logistic Regression, k-means, SVM,
Decision Tree, Random Forest). As a result, the accuracy when
using Random Forest ranged from a highest of 99.1 % to a
lowest of 83.0 %.

Regarding multi-class classification of IoT devices, a
method has been proposed to identify devices by creating
fingerprints for each device based on domain names in DNS
queries and their frequencies, and calculating cosine similarity
[6]. Each device’s fingerprint included four elements: the
number of time windows, the query probability for each
domain, the IDF value for each domain, and a threshold. The
results showed that when the threshold was set at 0.1 %,
it was possible to accurately classify 50 out of 52 devices.
Furthermore, a classification method has been proposed using
a neural network trained with DNS queries as input [7].
Classification was performed by switching the power of the
IoT device to make it perform its initial operation, and utilizing
the DNS queries generated during that time. To treat DNS
queries that differ only in their subdomains as the same, the



SLD (Second-Level Domain) was hashed and used as the input
value for the learning model. As a result, the proposed method
achieved 93 % accuracy at the vendor level and 82 % accuracy
at the device level.

These studies require long-term packet observation, lead-
ing to high learning costs. This is because IoT devices do
not communicate frequently, but rather communicate when
specific operations (such as starting cleaning or switching
power) are performed. To address this challenge, this paper
focuses on the fact that IoT devices communicate with specific
cloud servers during their initial network connection, and aims
to identify them with low learning costs by using the DNS
queries made at that time. Previous studies also used DNS
queries immediately after connection [7]. However there are
concerns about the cost of building a switching system and
the impact on devices due to frequent switching, as the power
of IoT devices is frequently turned on and off to acquire
data. Furthermore, vectorization is performed on the SLD,
which may lead to a loss of information for highly unique
domains. This paper proposes a method that more accurately
reflects domain uniqueness by using the entire domain within
DNS queries and achieving network connection switching by
performing packet filtering of IoT devices on the gateway
router.

ITII. PROPOSED METHOD
A. Usefulness of DNS Queries

Devices connected to the network communicate by spec-
ifying the domain of the communication partner, and go
through several DNS servers in the process. In the case of IoT
devices, they often communicate with specific cloud servers,
and unique domains can be confirmed within DNS queries
depending on the device type and vendor. Furthermore, since
communication behavior differs depending on the presence or
absence of network connectivity, it is expected that IoT device
identification can be achieved by observing DNS queries
immediately after connection.

B. Configuration and Operation Sequence of loT Devices

Most IoT devices are deployed on-site, and their vendors
often provide smartphone applications to acquire device data
and cloud services to store the collected data. Therefore,
they are connected to cloud servers, and have a self-healing
system against failures for sustainable operation. For example,
if communication with the cloud server fails, after several
retries, the device restarts and proceeds to the initial setup
procedure. Conversely, by blocking such communication, it is
also possible to intentionally transition the device to its initial
state.

C. Communication Behavior of IoT Devices When Network is
Disconnected

This paper focuses on the traffic generated when IoT devices
are disconnected from the network and enter an initial state.
Figure 1 shows the overall flow of communication patterns of
IoT devices during network disconnection. When disconnected
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Fig. 2. Dynamic Filtering

from the network, the device can no longer receive ACK
packets from the communication partner for the data packets it
sent. It retransmits packets each time the TCP retransmission
timer expires. If ACK packets are still not received, the TCP
stack terminates the connection. At this point, it detects a
communication failure from the network and performs a soft
reset or a hard reset. Subsequently, as part of the initial
operation to establish communication with the cloud server,
it issues a DNS query to resolve the server domain name.

D. Acquiring DNS Queries through Packet Filtering

Considering the communication patterns described above,
DNS queries are acquired by controlling the communication
of IoT devices at the gateway router. However, the filtering
time required for the initial state transition varies for each
device, necessitating dynamic changes to the filtering time.
This paper executes the flow shown in Figure 2 to acquire
traffic data after connection. For IoT devices where DNS
queries are confirmed during filtering, it is determined that



the device has been reset and has transitioned to its initial
state. The DNS queries issued by the device after filtering
is lifted (network reconnection) are then recorded. For IoT
devices where no DNS queries are confirmed, it is considered
that the filtering time is insufficient. Therefore, the operation
is repeated by setting twice the current filtering time as the
new filtering time. The initial value for the filtering time is set
to 30 seconds.

E. Feature Vector and Dataset Creation

This section describes how to create feature vectors from
domain names in DNS queries. Domain names consist of low-
ercase English letters (a-z), numbers (0-9), dots, and hyphens,
totaling 38 distinct characters. For Bag-of-Words, we process
each character individually, while for Word2Vec, we split the
domain by dots. For example, the domain www.company.com
is split as follows.

99 99 93 99 93 99 9999

o Bag-of-Words : ["w”, “w”, "w”, 7, 7c¢”, 70", "m”,
”p”’ ”a’”) ”n”’ ”y”) ”'”’ ”c”’ ”0”7 ”m”

o« Word2Vec : ["www”, “company”’, “com”

For Bag-of-Words, we prepare a 38-dimensional array (with
all elements initially set to 0). When the K-th character among
the 38 types (in the order of a-z, 0-9, ”.”, ”-”) appears in
the domain name, we increment the K-th element of the
array to create the feature vector. For Word2Vec, we use the
Gensim library provided in Python, setting a window size of
3 to create 38-dimensional vectors. The internal algorithm
used is CBOW. Furthermore, for data labeling, we perform
two types of labels: device name and vendor name, and we
will confirm the identification accuracy using three types of
machine learning models: k-means, SVM, and Random Forest.

FE. Conversion to a Single Vector

It is necessary to create a single feature vector from multiple
DNS queries issued by a specific IoT device. In this paper, we
consider the set of queried domains as a “document” and the
domains within it as ”words,” and calculate the TF-IDF value
for each domain. By multiplying the feature vector created
from the domains with the TF-IDF values, we create a single
feature vector for each device.

IV. IMPLEMENTATION
A. Evaluation Environment

In this paper, we use the network constructed within the
Sugimoto Campus of Osaka Metropolitan University as the
evaluation environment. Figure 3 shows the network environ-
ment for acquiring traffic data from IoT devices. IoT devices
installed in each room on the floor are connected to access
points installed in the same room, and all access points are
connected to one switch. An Identification Server for packet
capture and a Gateway Router are placed upstream of the
switch, and this router performs packet filtering for the IoT
devices. The NAT function is disabled within the access points
and the router, and each IoT device has a fixed IP address.
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Fig. 3. Network environment for acquiring traffic data from IoT devices

TABLE I
LisT OF IOT DEVICES

[ Device Name | Vendor Name | Number of Devices |

SmartHub B 6
Plugl B 3
Camera D 1
Plug2 D 4
SmartTV F 1
Cleaner2 G 2

B. Evaluation Metrics

As evaluation metrics for the learning model, we use ac-
curacy, macro-averaged precision, macro-averaged recall, and
macro-averaged Fl-score. In the case of multi-class classifi-
cation, it is necessary to average across classes, so we adopt
the macro average.

C. Experimental Data

We collect traffic data of IoT devices using the network
built within the Sugimoto Campus of Osaka Metropolitan
University. In this experiment, we use Scapy, a Python library
for packet capture on the Identification Server. The data
acquisition period is 6 days, from June 6 (Fri) to June 11
(Wed). Of the data acquired, 80 % is used as training data to
train the model, and the remaining 20 % is used as test data to
measure the accuracy of device identification. Table I shows
the IoT devices targeted for device identification.



TABLE II
LABELED BY VENDOR NAME
[ Vectorization | Model [ Accuracy | Precision | Recall | Fl-score |
k-means 0.9916 0.9952 0.9804 0.9876
Bag-of-Words SVM 0.9895 0.9819 0.9919 0.9866
RF 0.9895 0.9935 0.9930 0.9933
k-means 0.8634 0.7245 0.6773 0.6909
Word2Vec SVM 0.8739 0.8771 0.7018 0.7162
RF 0.8761 07915 | 0.7211 | 0.7408
TABLE III
LABELED BY DEVICE NAME
[ Vectorization | Model [ Accuracy | Precision | Recall | Fl-score |
k-means 0.8634 0.9459 0.7949 0.7833
Bag-of-Words SVM 0.8613 0.9417 0.7984 0.7821
RF 0.8739 0.9526 0.8226 0.8211
k-means 0.7269 0.5479 0.5636 0.5446
Word2Vec SVM 0.7521 0.7413 0.5670 0.5485
RF 0.7353 0.6011 0.5909 0.5861
V. RESULT

First, Section V-A describes the learning results of the
proposed method. Next, Section V-B verifies the time required
for stable device identification. Finally, Section V-C verifies
device identification without network disconnection. In all
experiments, 80 % of the packet data is randomly allocated for
training data and 20 % for testing data. Learning is performed
using two types of feature extraction algorithms (Bag-of-
Words, Word2Vec) and three types of learning models (k-
means, SVM, Random Forest). The learning models used are
the machine learning library Scikit Learn provided in Python,
and all parameters are set to their default values.

A. Identification of IoT Devices by Proposed Method

1) Identification Results: The results of training using data
from 120 seconds after network connection are shown in
Tables II and III. When labeling by vendor name, very high
accuracy is obtained using Bag-of-Words. However, when
using Word2Vec, all learning models result in an accuracy
rate below 90 %.

Similarly, when labeling by device name, high accuracy
is obtained using Bag-of-Words. However, the accuracy is
slightly lower compared to when labeling by vendor name.
On the other hand, when using Word2Vec, even with SVM
learning which yields the best results, the accuracy rate
remains slightly above 75 %, and the overall accuracy is low.

2) Discussion on Identification Results: Regarding the de-
crease in identification accuracy for each device name, the
main cause is thought to be that IoT devices from the same
vendor access common domains. The confusion matrices for
the learning results using vendor names and device names for
labeling, with Bag-of-Words and RandomForest, are shown
in Figures 4 and 5, respectively. Figure 5 shows that the
main misclassification in labeling by device name is the
classification of data obtained from Plugl as SmartHub. Upon
examining the actual packet data, SmartHub and Plugl, which
are from the same vendor, access common domains, and
both issue queries only to those domains. In this case, we
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Fig. 4. Learning results of Random Forest model when labeled by vendor
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Fig. 5. Learning results of Random Forest model when labeled by device
name (Bag-of-Words)

believe that misclassification occurred because the proposed
method creates identical or very similar vectors between the
two devices.

Furthermore, we will consider the point that the learning
results when using Word2Vec are generally not favorable.
Word2Vec creates feature vectors using a neural network.
Since the weights in the intermediate layer can take negative
values during the learning process, both positive and negative
values appear in the elements of the generated feature vectors.
In the proposed method, for a set of domains accessed by a
specific device, after creating features from each domain, the
TF-IDF for each domain is calculated and multiplied by the
feature vector. In this case, the positive and negative elements
of the feature vector may cancel each other out, and the
original domain’s characteristics may not be reflected. We
believe that correct classification is more difficult with the
final feature vector obtained from the set of domains.

B. Verification of Time Required for Stable Device Identifica-
tion

In the previous section, device identification has been per-
formed using packet data generated within 120 seconds after
an IoT device reconnected to the network, achieving high
accuracy for each vendor and device. This section verifies
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Fig. 7. Learning results by Random Forest when using packet data for
20 seconds from network connection (Bag-of-Words)

the time required for stable and accurate device identification.
The verification is conducted using Random Forest, which has
yielded the highest accuracy in labeling by device name.

1) Verification Procedure and Results: As a verification
method, we increase the packet data used for training by
5 second intervals: 5 seconds, 10 seconds, and 15 seconds
after network connection, and then confirm the classification
accuracy for each case. The results of the training using
Random Forest are shown in Figure 6. The Accuracy shows
a stable trend from 30 seconds after network connection
onwards, while the Precision shows a stable trend from 50
seconds onwards. Recall and F1-score show similar trends,
with some numerical fluctuations for a period after network
connection.

2) Discussion on Verification Results: Let’s consider the
point that a certain level of numerical values is obtained
even within 5 seconds after network connection. Figure 7
shows the confusion matrix of the learning results by Random
Forest when using packet data for the first 5 seconds after
network connection. From Figure 7, it can be seen that a large
number of queries occur even in a short time after connection.
Therefore, the initial operation of IoT devices immediately
after network connection is crucial for IoT device identification
with low learning cost.

On the other hand, for SmartTV and Camera, the number
of classified devices is small, and it cannot be said that device
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Fig. 8. Learning results by Random Forest when using packet data for
30 seconds from network connection (Bag-of-Words)
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Fig. 9. Learning results by Random Forest when using packet data for
60 seconds from network connection (Bag-of-Words)

identification is sufficiently performed. Figures 8, 9 show
the confusion matrices of the learning results by Random
Forest when using data for 30 seconds and 60 seconds after
connection, respectively. By using data for 30 seconds after
connection, Camera achieves a classification count comparable
to that in Figure 5, and by using data for 60 seconds after
connection, SmartTV achieves a comparable classification
count. Therefore, it can be said that most of the devices used
in this experiment can be stably identified by utilizing traffic
data for 60 seconds after network connection.

C. Device Ildentification Without Network Connection Switch-
ing

In previous experiments, devices have been identified using
traffic data from their initial operation by disconnecting them
from the network through filtering their communication within
the Gateway Router. This section verifies device identification
when using normal IoT device traffic data without performing
such processing.

1) Verification Method: Traffic data was collected for six
days from February 4 (Tue) to February 9 (Sat) from the
network within the Sugimoto Campus of Osaka Metropolitan
University. From the obtained traffic data, data for consecutive
x seconds is extracted, and feature vectors are created using
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Bag-of-Words and TF-IDF. The created dataset is given as
input to three learning models (k-means, SVM, Random
Forest) for learning. It is possible that the extracted dataset
may not contain DNS queries from specific IoT devices, and
not all devices may be subject to classification. If accuracy,
which is the correct answer rate for the entire test data, is
used as an evaluation metric for the learning results at this
time, a high numerical value will be obtained as a result of
the overall learning, even if there are IoT devices that are not
classified. This is not appropriate from the perspective of IoT
device identification.

Therefore, this time, the learning evaluation is performed by
defining Accuracy as the average recall for each IoT device (0
if there is no data). This allows the presence of IoT devices
that are not classified to be reflected in the results.

2) Verification Results: First, using the defined Accuracy
as an evaluation metric, training for device identification is
performed using traffic data from 60 seconds after network
connection and Bag-of-Words. Next, training for device iden-
tification without switching network connections is performed,
and these two results are shown in Figure 10. In the case where
switching is not performed, significant variations in the results
occur even when the window sizes do not differ much. On
the other hand, when switching is performed, relatively stable
accuracy is maintained.

3) Discussion on Verification Results: A contributing factor
to the results is the frequency of DNS queries generated by
IoT devices. For example, Figure 11 shows the number of
DNS queries and their occurrence times for some IoT devices
used in the experiment. It can be seen that considerable time
is required to collect data necessary for device identification,
as they do not issue DNS queries frequently.

On the other hand, since a certain amount of DNS queries

are generated immediately after network connection, it can be
said that utilizing traffic immediately after network connection
is highly effective for rapid IoT device identification.

VI. CONCLUSION

We have proposed a method for identifying IoT devices
using traffic data immediately after a device connects to the
network. Immediately after connection, they perform initial
operations that involve communication with specific servers.
Consequently, they issue DNS queries to domains that are
characteristic of each device. By extracting features from
this traffic data and applying machine learning, we have
demonstrated that device identification is possible with low
training costs and high accuracy. As a result, we have achieved
an accuracy exceeding 99 % at vendor level and over 87 % at
device level. Furthermore, we have shown that stable device
identification for all devices is possible within 60 seconds after
an IoT device reconnects to the network.

We also have investigated device identification using DNS
queries that IoT devices typically issue. The results have
shown significant variations in accuracy compared to our pro-
posed method, indicating that stable IoT device identification
is difficult with data volumes of around 60 seconds. From
these findings, it can be concluded that using DNS queries
immediately after network connection is highly effective for
rapid and low-cost IoT device identification.

Finally, we describe future challenges. The proposed
method can identify devices with high accuracy, but it is
difficult to accurately identify devices when different IoT
devices access the same domain and issue queries only to
that domain. Furthermore, the devices used in this paper are
registered on a network built within university campus, and
their types and numbers are limited. Therefore, it is necessary
to conduct verification in a wider range of networks.
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