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Abstract—This paper investigates whether xXLSTM, a recent
extension of LSTM networks, provides advantages for financial
time series forecasting. Using Hang Seng Index data, we con-
ducted a comparative analysis of XLSTM and conventional LSTM
models under multiple signal decomposition frameworks, includ-
ing EEMD, CEEMD, and UPEMD. Our experimental results
demonstrate that UPEMD-LSTM achieves the best performance
with a MAPE of 0.52%, and UPEMD-xXxLSTM follows with a
MAPE of 0.72%. The comparison between architectures reveals
that the benefits of XLSTM are conditional on proper signal
preprocessing. Consequently, architectural improvements alone
are not sufficient for financial prediction. The results of this study
offer evidence-based recommendations on the deployment of xL-
STM architectures for financial prediction tasks and demonstrate
that domain-specific preprocessing remains essential to achieve
superior forecast performance.

Index Terms—xLSTM, LSTM, Signal Decomposition, UP-
EMD, Financial Time Series, Stock Prediction, Hang Seng Index

I. INTRODUCTION

Financial time series forecasting remains one of the most
challenging problems in both academic research and practical
applications due to the inherent complexity of financial mar-
kets. These markets are characterized by non-stationary dy-
namics, nonlinear dependencies, volatility clustering, fat-tailed
return distributions, and regime shifts [1]. Long Short-Term
Memory (LSTM) networks have emerged as a powerful tool to
model temporal dependencies in financial data, demonstrating
superior performance over traditional statistical methods [2],
[3]. However, LSTM architectures face persistent challenges,
including gradient vanishing in very long sequences, limited
memory capacity, and difficulties in capturing multi-scale
temporal patterns that characterize financial markets [4], [5].

Recently, extended LSTM (xLSTM) was introduced [4],
[5] to handle the fundamental limitations of traditional LSTM
through two key innovations, exponential gating mechanisms
in scalar LSTM (sLSTM) and matrix memory structures in
matrix LSTM (mLSTM). These architectural improvements
have demonstrated remarkable success in natural language
processing (NLP) tasks, achieving performance competitive
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with state-of-the-art Transformer models while maintaining
the computational efficiency of recurrent architectures [4],
[5]. The exponential gating allows for stronger gradient flow
and more flexible information retention, while matrix memory
enables richer representational capacity through structured
memory updates. Despite these promising results in NLP, the
applicability of xLSTM to financial time series forecasting
remains largely unexplored, raising a critical question, i.e., do
the architectural improvements of XLSTM translate to better
performance in financial prediction, or do financial time series
require domain-specific adaptations?

The financial domain presents unique challenges that differ
substantially from NLP applications. Financial time series
exhibit complex multi-scale patterns, sudden regime changes,
and extreme sensitivity to external shocks. These character-
istics may require architectural considerations different from
language modeling. Furthermore, signal decomposition meth-
ods such as empirical mode decomposition (EMD) and its
variants have proven to be effective for handling non-stationary
financial data by decomposing complex signals into simpler
intrinsic mode functions (IMFs) [6]-[8]. However, the inter-
action between advanced recurrent architectures and decom-
position preprocessing techniques has not been systematically
investigated.

This paper aims to fill these gaps by conducting a com-
prehensive empirical study based on data from the Hang
Seng Index (HSI). We investigate three key research ques-
tions as follows. (1) Does XxLSTM outperform traditional
LSTM for financial forecasting? (2) How do different signal
decomposition methods (EEMD, CEEMD, UPEMD) affect
model performance? (3) Which combination of architecture
and signal decomposition yields optimal results? Our experi-
mental results reveal that UPEMD-LSTM achieves the best
performance with a MAPE value of 0.52%, followed by
UPEMD-XLSTM (0.72%). Interestingly, xLSTM demonstrates
superiority over LSTM only when combined with EEMD
decomposition, whereas LSTM-based models exhibit better
performance with CEEMD and UPEMD preprocessing. It



suggests that architectural innovation alone is insufficient for
financial prediction tasks.

The contributions of this study are as follows.

o We establish a comprehensive experimental framework
systematically comparing LSTM and xLSTM architec-
tures combined with various signal decomposition meth-
ods (EEMD, CEEMD, UPEMD) for financial time series
forecasting.

o We demonstrate that preprocessing quality, particularly
UPEMD, contributes more significantly to predictive per-
formance than architectural sophistication, with UPEMD-
LSTM achieving the lowest MAPE (0.52%) among all
tested configurations.

o We provide empirical insights and practical guidelines
for financial forecasting, i.e., (1) prioritizing high-quality
feature engineering over complex architectures and (2)
identifying that the benefits of xLSTM are method-
dependent rather than universal.

II. RELATED WORK

In this section, we briefly introduce related work, including
model architectures and signal decomposition methods.

A. Long Short-Term Memory Networks

Traditional recurrent neural networks (RNN) suffer from
the vanishing gradient problem, which limits their ability to
learn long-term dependencies [9]. Long Short-Term Memory
(LSTM) networks [10], deal with the problem of vanishing
gradients in RNNs through a gating mechanism that controls
the flow of information. The architecture employs three gates,
the input gate, the forget gate, and the output gate, to regulate
the cell state, allowing the network to selectively retain or
discard information over long sequences [11]. The cell state
¢t is updated through the forget gate f;, the input gate i;, and
the cell inputs z;, while the output gate o; controls the hidden
state h; as

c=ftOc1+i Oz, hy=0OY(cy), (D

where ® denotes element-wise multiplication, and ¢ is a non-
linear activation function. This feature makes it the dominant
architecture for time series forecasting prior to recent advances
such as xLSTM [12].

B. xLSTM Architecture

Extended LSTM (xLSTM), introduced by Beck et al. [4],
[5], represents a substantial architectural refinement of the
classical LSTM framework. The XLSTM incorporates expo-
nential gating functions and higher-capacity memory structures
to alleviate intrinsic representational and scaling limitations
observed in standard LSTM models. The architecture is orga-
nized into two fundamental modules, scalar LSTM (sLSTM)
and matrix LSTM (mLSTM), each formulated to overcome
specific theoretical and operational limitations of conventional
LSTM models.

The sLSTM block introduces an exponential gating mech-
anism for the input gate, replacing standard sigmoid acti-
vation (o) with an exponential function. This modification

enables a more flexible information flow and stronger gra-
dient propagation. Specifically, the input gate is computed as
i = exp(i¢), where iy = W;x; + R;h;_1 + b; to allow for
potentially unbounded activation values. To prevent numerical
instability from exponential growth, sLSTM incorporates a
normalization mechanism that tracks the maximum gate ac-
tivation and normalizes the cell state accordingly [4], where
my; = max(log(f;) + my_1,log(i;)) is chosen to stabilize
the exponential function. This design preserves the benefits
of exponential gating while maintaining the stability of the
training.

The mLSTM block replaces the scalar hidden state with
a matrix memory structure, enabling richer representational
capacity through covariance-like updates. Drawing inspiration
from attention mechanisms in Transformers [13], mLSTM
uses query, key, and value projections to update its matrix
memory as C; = f; ® C;_1 + iyv;k}. This formulation
allows the model to maintain structured relationships between
different feature dimensions, providing greater modeling ca-
pacity than traditional scalar-based approaches [4], [5]. The
matrix memory can be viewed as storing multiple competing
hypotheses about the temporal dynamics, which are then
queried at each time step.

Although xLSTM has demonstrated impressive results in
language modeling tasks, achieving performance comparable
to that of Transformers with significantly fewer parameters [4],
its application beyond NLP remains limited. To our knowl-
edge, no prior work has systematically evaluated xLSTM for
financial time series forecasting, leaving open questions about
its effectiveness in domains with different data characteristics.

Fig. 1: Structure of xLSTM. (a) The sLSTM Block; (b) The
mLSTM Block. (Adopted from [4]).

C. Signal Decomposition for Financial Forecasting

Empirical mode decomposition (EMD) is an adaptive
method to decompose nonlinear and nonstationary time series
[14]. Although EMD has been widely applied, it exhibits
certain limitations when analyzing intermittent signals, leading
to the well-known mode-mixing problem [14], [15]. Sev-
eral modified approaches have been developed to overcome
this limitation by introducing controlled perturbations to the



original signal. For example, the ensemble empirical mode
decomposition (EEMD) employs noise-assisted perturbation to
reduce mode mixing [16]. Nevertheless, EEMD can introduce
side effects such as mode splitting and residual noise. To
solve these problems, further refinements have been developed,
including complete ensemble empirical mode decomposition
(CEEMD) [17], [18], improved CEEMD (ICEEMD) [19], and
uniform phase empirical mode decomposition (UPEMD) [20].

EMD and its variants have gained significant attention for
financial time series analysis due to their ability to adap-
tively decompose non-stationary signals into intrinsic mode
functions (IMFs) representing different frequency components.
Notable prior studies include applications of empirical mode
decomposition (EMD) [6], [21], ensemble empirical mode
decomposition (EEMD) [22], and CEEMD [23]. However,
prior work has mainly focused on combining decomposition
methods with traditional LSTM or simpler neural networks,
leaving unexplored potential fusion with more advanced ar-
chitectures such as xXLSTM.

D. LSTM and xLSTM for Financial Time Series Forecasting

LSTM networks have become a popular approach for finan-
cial prediction due to their ability to capture long-term depen-
dencies in sequential data [3], [12], [24]-[26], and thus could
outperform traditional methods for predicting stock prices.
Recent work has explored hybrid approaches that integrate
LSTM models with signal decomposition methods such as
CEEMD [23]. Combining CEEMD and LSTM or LSTM with
the attention layer demonstrated improved prediction accuracy
compared to existing empirical studies [27]-[30]. In addition,
ensemble frameworks incorporating EEMD with a hybrid
model structure consisting of CNN, LSTM, and attention
mechanisms show promising prediction results [8].

Despite these advances, LSTM-based methods still face
challenges in financial applications. Gradient vanishing contin-
ues to restrict the effective context window for long sequences,
and the fixed-size hidden state often becomes an information
bottleneck when capturing the multi-scale dynamics of finan-
cial markets.

Although preliminary studies have demonstrated the appli-
cation of XLSTM in stock price forecasting with performance
comparisons against traditional LSTM [31], [32], these works
did not integrate feature engineering or preprocessing methods.
Meanwhile, other research has explored xXLSTM with series
decomposition to extract trend and seasonal components [33],
but lacked empirical validation in financial data.

III. EXPERIMENTS
A. Data

We used daily Hang Seng Index (HSI) data from January
2, 2008 to July 31, 2025, comprising 4,328 trading days. The
data set includes standard OHLC features (open, high, low,
and close) and spans two major market disruptions, the 2008
global financial crisis and the COVID-19 shock from 2020
to 2021, providing a rich temporal landscape with significant
regime shifts. This long-horizon data set captures structurally

heterogeneous conditions ranging from sustained uptrends
and downturns to high-volatility phases, which enables a
comprehensive evaluation of model robustness across different
economic scenarios. We divide the data chronologically into
training and testing sets using a 90/10 split ratio, with 433
samples in the test set.

For signal decomposition experiments, we applied EEMD,
CEEMD, and UPEMD to decompose the closing price into 12
intrinsic mode functions (IMFs) that represent components of
different frequencies. To establish a benchmark, we further
include models trained directly on the raw OHLC inputs
without any decomposition. All features are normalized using
the min-max scaling fitted on the training set and applied
to both the training and the testing data. This design yields
eight experimental settings (OHLC-LSTM, EEMD-LSTM,
CEEMD-LSTM, UPEMD-LSTM, OHLC-xLSTM, EEMD-
xLSTM, CEEMD-XLSTM, and UPEMD-xLSTM), which fa-
cilitate systematic comparison of decomposition methods and
model architectures.

B. Model Architecture

The LSTM baseline consists of two LSTM layers with 64
hidden units each, followed by a feedforward network with 32
units using PReLU activation. Dropout (rate=0.2) is applied
after the first LSTM layer. The model processes sequences of
length 5 with 13 input features and outputs a single prediction
value. We use the Adam optimizer with mean squared error
loss.

Table I summarizes the XLSTM architecture and training
configurations. The model consists of four layers that al-
ternate between sLSTM and mLSTM blocks, with residual
connections and dropout regularization. For input based on
decomposition, the 12 IMFs and the residual component yield
13 input features; the baseline uses 4 features (OHLC). The
architecture outputs predictions one-day-ahead. We use Adam
optimizer (learning rate: 0.001), batch size 16, and train for
100 epochs. All models share the same architecture, differing
only in input dimensions.

TABLE I: Architecture and Hyperparameters of the xXLSTM
Model

Component Specification

Model Architecture
Input dimension 13 IMFs or 4 raw features (OHLC)
Sequence length 5 trading days
Hidden units 32
Network structure 4 layers (2 sSLSTM + 2 mLSTM)
Dropout rate 0.1
Output dimension 1 (next-day prediction)
Total parameters ~26,000

Training Configuration
Batch size 16
Optimization algorithm  Adam
Learning rate 0.001
Number of epochs 100
Loss function Mean Squared Error (MSE)




C. Empirical Results

Figure 2 visualizes the forecast results of all eight model
configurations in the test set. Panel (a) compares the predic-
tions of four LSTM-based models with actual market prices,
and panel (b) presents the corresponding results for xLSTM-
based models. Among LSTM variants, UPEMD-LSTM (red
line) demonstrates the closest predictions to the actual values
(black line), while EEMD-LSTM exhibits the largest devia-
tions. Similarly, for xXLSTM architectures, UPEMD-xLSTM
produces the most accurate predictions, while CEEMD-
xLSTM shows the poorest performance.

To quantify these visual observations, we evaluated all
models using the mean squared error (MSE) and the mean
absolute percentage error (MAPE). Table II summarizes the
performance metrics of the test set for all configurations. The
results confirm that UPEMD preprocessing consistently yields
superior predictive accuracy across both architectures, with
UPEMD-LSTM achieving the lowest MAPE of 0.52%.

The findings can also be supported by Figure 3, which
shows the distribution of MAPE values across all model
configurations using a heatmap visualization. The lighter
colors (yellow and light green) clearly indicate the supe-
rior performance of the UPEMD-based models, with both
UPEMD-LSTM and UPEMD-xLSTM achieving the lowest
prediction errors in the test set. In contrast, the EEMD and
CEEMD decomposition methods exhibit consistently higher
errors, represented by darker colors on the heatmap. The
OHLC model configurations demonstrate relatively stable per-
formance across both architectures with moderate errors.

TABLE II: Predictive Performance Comparison on Hang Seng
Index Test Set

Model MSE MAPE (%)
LSTM-based Models
OHLC-LSTM 134,595.10 1.34
EEMD-LSTM 165,975.80 1.79
CEEMD-LSTM 76,719.82 1.23
UPEMD-LSTM 22,385.15 0.52
xLSTM-based Models
OHLC-XxLSTM 144,371.08 1.48
EEMD-XxLSTM 118,720.00 1.59
CEEMD-XLSTM 320,461.00 2.01
UPEMD-XLSTM 32,064.63 0.72

Note: Bold values indicate the best performance within each model family.

Figure 4 presents a direct comparison between LSTM
and xLSTM architectures under identical feature sets. The
results reveal that xLSTM outperforms LSTM only when com-
bined with EEMD decomposition; for CEEMD and UPEMD
preprocessing, traditional LSTM consistently achieves lower
prediction errors. Figure 5 further supports this observation
by quantifying the relative performance gain of xXLSTM over
LSTM across different decomposition methods. The figure
clearly shows a positive improvement rate only for the EEMD
configuration, while CEEMD and UPEMD exhibit negative
values, indicating that LSTM outperforms xLSTM in these
cases.

This finding challenges the assumption that architectural
sophistication universally translates to improved forecast per-
formance. Specifically, while EEMD-XLSTM demonstrates ad-
vantages over EEMD-LSTM, the more refined decomposition
methods (CEEMD and UPEMD) enable LSTM to achieve su-
perior accuracy compared to their xXLSTM counterparts. These
results suggest that the benefits of XLSTM for financial price
prediction are conditional on preprocessing quality rather than
universally applicable, highlighting that the choice of signal
decomposition method may be more critical than architectural
complexity for this forecasting task.

In addition, we examine model generalization by comparing
performance in training and testing sets to assess potential
overfitting. Figure 6 presents this comparison based on MSE
values, where the dashed diagonal line represents perfect
generalization (training MSE equals testing MSE). Models
positioned above this line exhibit overfitting, whereas those
below suggest unusual generalization behavior. Our analysis
reveals that UPEMD-LSTM and UPEMD-xLSTM both lie
nearly on the diagonal line, indicating robust generalization ca-
pability with well-balanced training and testing performance.
Interestingly, CEEMD-XLSTM exhibits a lower testing MSE
than training MSE, a counterintuitive result that indicates the
need for further investigation. This phenomenon may arise
from random variation in the test set or potential regular-
ization effects during training, although a definitive explana-
tion requires additional empirical analysis. Overall, the figure
confirms that UPEMD-based models achieve the best balance
between model fitting and generalization, further supporting
their superiority for financial forecasting tasks.

IV. CONCLUSION

This study aims to investigate the effectiveness of xXLSTM
architectures for financial time series forecasting through a
systematic comparison with traditional LSTM in multiple
signal decomposition methods. Using data from the Hang
Seng Index during 2008-2025, consisting of major financial
crises, we evaluated eight model configurations that combined
two architectures (LSTM and xLSTM) with four feature
extraction approaches (OHLC baseline, EEMD, CEEMD and
UPEMD). Our empirical findings reveal that preprocessing
quality, particularly through UPEMD decomposition, domi-
nates architectural sophistication in determining forecast ac-
curacy. UPEMD-LSTM achieves the best performance with a
lowest MAPE value of 0.52%, outperforming all other model
configurations. Furthermore, XLSTM demonstrates advantages
over LSTM only when combined with EEMD decomposition,
while traditional LSTM consistently outperforms xXLSTM with
CEEMD and UPEMD preprocessing. These results challenge
the assumption that architectural innovation universally im-
proves performance, highlighting the critical importance of
feature engineering in financial forecasting.

Although the xLSTM architecture integrates sophisticated
mechanisms such as exponential gating and matrix memory,
our empirical evidence suggests that these design innovations
do not necessarily yield superior performance in financial
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Fig. 2: Comparison of LSTM and xLSTM models for Hang Seng Index one-day-ahead forecasting with different feature sets.

(a) shows LSTM predictions; (b) shows xXLSTM predictions.
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Fig. 3: Test MAPE comparison heatmap across models and
feature sets. Lighter colors indicate better performance.
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Fig. 4: Performance comparison between LSTM and xLSTM
models across different feature sets. Lower values indicate
better performance.
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Fig. 6: Training and testing MSE for overfitting analysis.
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applications. The performance of XLSTM appears highly con-
ditional, improving only when preprocessing is less refined.
In contrast, when preprocessing is inadequate, the improved
capacity of xLSTM can partially compensate for the lack
of signal refinement. This finding has important practical
implications, i.e., practitioners should prioritize investment in



robust feature engineering over complex model architectures.

Future work should extend this analysis in several di-
rections. First, investigating different input sequence lengths
would reveal how short-term versus long-term temporal de-
pendencies influence model performance. Second, evaluating
multi-step-ahead predictions (e.g., 5-day, 10-day, 20-day hori-
zons) would assess model robustness across varying forecast
horizons. Third, validating these findings across multiple fi-
nancial markets and asset classes would establish the general-
izability of our conclusions. Finally, exploring the interaction
mechanisms between decomposition quality and architectural
complexity could provide a deeper theoretical understanding
of when architectural sophistication becomes beneficial.
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