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Abstract—Existing Transformer-based approaches for time-
series imputation typically rely on full-sequence reconstruction,
which leads to computational inefficiency. To address this, we
propose Conditional Implicit Neural Representation via Cross-
Attention (CINR-CA), a novel framework designed for high-
efficiency imputation. We formulate this task as a Conditional
Implicit Neural Representation (INR) problem. By adopting
a coordinate-based query mechanism, our model selectively
computes outputs only for missing timestamps. This strategy sig-
nificantly reduces inference costs by avoiding unnecessary com-
putations on observed data. Experiments on the ETTh1 dataset
demonstrate that CINR-CA reduces computational complexity
(MFLOPs) by approximately 43% (Large settings) compared to
the state-of-the-art SAITS model, offering a practical solution for
resource-constrained environments where efficiency is important.

Index Terms—Time series imputation, Cross-attention, Implicit
Neural Representations, Computational efficiency, Multivariate
time series

I. INTRODUCTION

Multivariate time series data is widely utilized across di-
verse fields such as transportation, economics, healthcare, and
meteorology. While modern deep learning models demonstrate
excellent performance when complete observations exist, real-
world data often contains significant missing values due to
sensor failures, transmission errors, and system instability.
Representative examples include medical monitoring devices,
environmental sensing systems, and IoT-based infrastructure
networks. Missing values degrade data reliability and nega-
tively impact subsequent tasks like prediction, classification,
and anomaly detection. Therefore, effective missing value
imputation remains a core element for robust time series
analysis.

Traditional approaches to handling missing values are cat-
egorized into deletion strategies and imputation strategies.
The deletion approach removes partially observed records,
potentially causing information loss or statistical bias. The
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imputation approach preserves data by estimating missing
values based on observed information using methods such
as mean or median replacement, regression analysis, and k-
nearest neighbors. However, these methods rely on strong
distributional assumptions and fail to capture the complex
nonlinear temporal dependencies commonly found in real-
world data.

To address these limitations, this study proposes a novel
framework, Conditional Implicit Neural Representation via
Cross-Attention (CINR-CA), inspired by the coordinate-based
paradigm of Implicit Neural Representations (INR). While
INR frameworks typically reconstruct signals by mapping
continuous coordinates (e.g., spatial locations in images) to
signal values, we extend this concept to temporal imputa-
tion. The proposed CINR-CA model treats the time index of
missing data as a query coordinate. By performing attention
mechanisms exclusively on these target positions, the model
avoids the redundancy of full-sequence reconstruction inherent
in standard methods, thereby significantly reducing inference
costs.

The main contributions of this paper are summarized as
follows:

o Novel Architecture for Efficiency: We propose CINR-
CA, a coordinate-based imputation framework that lever-
ages cross-attention to selectively target missing times-
tamps. Unlike existing state-of-the-art models that re-
quire full-sequence reconstruction, our approach explic-
itly queries only the missing positions.

o Inference-Focused Optimization: We demonstrate that
our selective querying mechanism significantly reduces
computational redundancy specifically during the infer-
ence phase, making the model highly suitable for real-
time applications where latency is critical.

o Superior Efficiency-Accuracy Trade-off: Experiments
on the ETTh1 dataset show that CINR-CA reduces com-
putational complexity (MFLOPs) by approximately 43%
compared to SAITS. While maintaining highly competi-
tive accuracy (with a marginal gap), it offers a practical
solution for resource-constrained environments.



II. RELATED WORK

A. Time Series Imputation

Traditional methods for restoring missing values have been
widely used due to their simplicity of implementation and
computational efficiency [1]. Mean imputation is the most
basic approach, filling missing values with the average of
observed values [2]. Linear regression predicts missing values
by leveraging their linear relationship with other variables,
while k-NN-based methods find samples with similar patterns
to estimate missing values [3], [4]. The moving average
filter considers temporal proximity, averaging values from
surrounding time points for use.

These traditional methods offer the advantages of high
computational efficiency and interpretability. However, they
struggle to adequately capture the complex nonlinear patterns
and interactions between variables in multivariate time series
data [5]. Furthermore, most methods heavily rely on the
missing-at-random (MAR) assumption, which assumes miss-
ing values occur randomly [6]. This makes them vulnerable to
bias when dealing with systematic missing patterns frequently
encountered in real-world data [7].

B. Attention-Based Models: SAITS

Recent transformer architectures have attracted significant
attention in the field of time series data imputation due to
their ability to model long-range temporal dependencies [8].
Notably, advanced architectures have been proposed to better
capture multivariate correlations. iTransformer [9] introduced
an inverted structure that embeds the entire time series of
each variate independently to learn multivariate representa-
tions. Similarly, Crossformer [10] utilized a two-stage attention
mechanism to explicitly model cross-dimension dependencies
between different variables. Building upon these architectural
advancements, SAITS (Self-Attention-based Imputation for
Time Series) [11] has achieved major progress in the specific
task of imputation by applying a self-attention mechanism to
distinguish observed and missing values. SAITS integrates the
input sequence with a missing indicator mask, enabling the
model to explicitly learn structural patterns associated with
missingness.

SAITS utilizes a Transformer-based architecture, employing
self-attention mechanisms to explicitly model temporal de-
pendencies between observed and missing values. Despite its
effectiveness, it remains constrained by the fundamental lim-
itations of standard self-attention. First, its reliance on linear
projections limits the capacity to capture complex nonlinear
dynamics inherent in multivariate time series. More critically,
SAITS reconstructs the entire sequence regardless of missing
locations, resulting in significant computational overhead and
a lack of flexibility for selective imputation.

These considerations necessitate an architecture that can
efficiently perform selective completion tailored to missing
timestamps while more flexibly modeling nonlinear temporal
relationships.

C. Implicit Neural Representations

Implicit Neural Representations (INR) [12] have emerged
as a powerful framework for modeling continuous signals
by parameterizing a signal as a mapping from a coordinate
space to its corresponding values via a neural network. Unlike
traditional discrete representations, INR enable resolution-
independent reconstruction by optimizing the network to fit
observed samples, proving particularly effective for restoring
sparse or partially observed signals in domains such as images
and 3D shapes.

The key advantage of INR lies in their ability to represent
complex signals as continuous functions, allowing for flexible
reconstruction where the model is queried only at desired co-
ordinates. Motivated by this, recent works have extended INR
to the temporal domain, treating time as a coordinate to effi-
ciently predict values at specific timestamps. This coordinate-
centric approach provides a compelling foundation for time-
series imputation, enabling the selective reconstruction of
missing values while capturing complex nonlinear dynamics
through MLP-based architectures.

D. Cross-Attention for Selective Reconstruction

Drawing inspiration from the coordinate-based nature of
INR, we propose a novel imputation framework that refor-
mulates time-series restoration as a query-based task.

Analogous to how image INR map spatial coordinates (z, )
to pixel values, our approach treats missing timestamps as
query coordinates within a Cross-Attention mechanism [13],
[14]. This formulation enables selective reconstruction, sig-
nificantly reducing inference computational costs by targeting
only the specific time points requiring imputation, rather than
reconstructing the entire sequence.

By adopting this coordinate-driven strategy, the proposed
framework efficiently integrates the query mechanism with
standard attention operations. This architecture effectively
eliminates the redundancy of full-sequence generation, ensur-
ing that computational resources are allocated exclusively to
the restoration of missing values, thereby achieving a highly
efficient imputation process tailored for resource-constrained
environments.

III. METHOD

In this section, we describe the proposed Cross-
Attention—based multivariate time-series imputation model as
illustrated in Fig. 1. The model effectively leverages the
correlations among variables within a time series through an
attention mechanism, and integrates an additional MLP layer
to enhance nonlinearity in the Multi-Head Attention (MHA)
structure. Through this design, the model is constructed to
achieve lower reconstruction error compared to conventional
Cross-Attention architectures.

A. Encoder:
Attention

Context Extraction with Mask-Aware Self-

In the input time-series data X € RT*D, missing values are
zero-imputed, and a binary mask M € {0, 1}7*P is provided,
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Fig. 1: Overall Framework of the Proposed Model

where a value of 1 explicitly denotes that the timestamp ¢
belongs to the set of missing indices I (i.e., M; 4 = 1 if
t € I). The encoder combines these two pieces of information
to extract global contextual features. First, the input data and
the mask are concatenated along the channel dimension and
linearly projected to map them into a d,,oq¢-dimensional
space. Then, sinusoidal positional encoding (PE) is added to
incorporate ordering information.

H,,, = Linear(concat(X,M)) + PE (1)

The latent representation H;,, is processed by a Transformer
encoder with L layers, producing a contextual vector Z that
reflects the temporal relationships of the observed data.

Z = Encoder(H;,,) € RT*dmodet 2

The resulting Z serves as the Key and Value in the decoder’s
cross-attention.

B. Decoder Input: Coordinate-Based Query Formulation

Adopting the paradigm of INR, the decoder formulates the
imputation task as a coordinate-based prediction problem. It
utilizes the discrete position indices of the target timestamps
as query coordinates to reconstruct the corresponding values.
To perform selective reconstruction, the input query Q;, is
generated by extracting the sinusoidal positional encodings
corresponding exclusively to the missing timestamps (/).

Qin = PE(I) 3)

The resulting representation Q;,, encapsulates the discrete
positional information of the missing points, serving as the
Query input for the CINR-CA module.

C. Conditional INR via Cross-Attention

The proposed CINR-CA module, the core component of
our architecture, is integrated into the decoder to selectively
aggregate relevant contextual information from the Encoder
representation Z for imputation.

Unlike conventional self-attention mechanisms that compute
interactions across the entire sequence, CINR-CA restricts
the attention operation to the specific target timestamps. The
Query (Q), Key (K), and Value (V) are derived via standard
linear projections to maintain model efficiency:

Q=Qi:nWqg 4
K=ZWg )
V =ZWy (6)

Here, Wqg, Wk, and Wy denote the learnable weight
matrices. By utilizing the coordinate-based query Q;,, which
corresponds exclusively to the missing positions, the module
avoids redundant computations for observed data. This design
significantly reduces the computational overhead while effec-
tively capturing temporal dependencies from the global context
Z.

Finally, the reconstructed values are computed through the

Multi-Head Attention operation.
. QK'
Attention(Q, K, V) = softmax ( A 7
) T

D. Loss Function

To optimize the parameters of the proposed CINR-CA, we
utilize the Mean Squared Error (MSE) as the training objective
function. Consistent with our selective reconstruction strategy,
the loss is computed over the entire sequence, Given the
binary mask M € {0,1}7*P (where 1 denotes observed
and 0 denotes missing), the ground truth X, and the model
prediction X, the objective consists of two components: the
reconstruction loss (Lops) and the imputation loss (Lpiss)-
We utilize the Mean Squared Error (MSE) for both terms,
calculated only on the valid indices for each respective region:

~ 2
r Z@d Mt,d HXt,d - Xt’de
obs th Mtﬁd (
~ 2
Zt,d(l - Mt,d) HXttd - Xt,dH
Liss = 2 9)

Zt,d(l - Mt,d)

The final objective function is defined as a weighted sum of
these two terms, controlled by the balancing hyperparameters
a and 3:

L= OZ»Cobs + 5£miss

By adjusting o and 3, the model can balance the trade-off
between learning global temporal consistency from observed
data and minimizing prediction errors in the missing intervals

(10)



IV. EXPERIMENTS
A. Dataset and Missing Simulation

To ensure rigorous evaluation and reproducibility, we uti-
lized the ETTh1 [15] (Electricity Transformer Temperature
— Hourly Level 1) dataset, processed via the PyPOTS [16]
ecosystem, a comprehensive Python toolbox for data mining
on partially-observed time series. The dataset preparation and
missing value injection were executed using the preprocess_ett
function from the TSI-Bench [17] suite within PyPOTS [16].
Through this standardized pipeline, the data was restructured
into fixed-length sequences (1" = 100) with D = 7 features
and partitioned into training (102 samples), validation (36
samples), and test (35 samples) sets. For the missingness simu-
lation, we applied a point-wise missing mechanism consistent
with standard benchmarking protocols. Specifically, 10% of
the observed values were randomly masked (missing rate
= 0.1) across the dataset to serve as the ground truth for
evaluating the imputation performance of our proposed CINR-
CA.

B. Experimental Setup

In this experiment, we compared the proposed CINR-
CA with SAITS [11], a state-of-the-art self-attention-based
imputation model, to validate its effectiveness.

For a fair comparison, we adopted the training protocol
proposed in the SAITS framework [11]. Accordingly, both
models were trained using the MSE loss computed over the
entire input sequence, Specifically, for the proposed CINR-
CA, the balancing hyperparameters a and [ in the joint
objective function were both set to 1 Crucially, to quantify
the practical efficiency gains, we distinguished the operational
strategy between training and inference. During training, the
model utilized the full sequence length (7" = 100) to learn
global contexts. However, during the inference phase for
measuring MFLOPs and accuracy, we applied the proposed
selective reconstruction mechanism. Specifically, for a given
batch, a timestamp t was targeted for reconstruction only
if a missing value existed in at least one of the D = 7
channels. Consequently, in our test set evaluation, the model
reconstructed an average of 64 timestamps out of the full 100
time steps per sequence. The reported MFLOPs and accuracy
metrics were calculated based on this actual reduced workload.

Finally, the comparative analysis focuses on two key metrics
representing efficiency and accuracy:

o Inference MFLOPs (Mega Floating Point Operations):
Used to quantify the computational complexity. This
reflects the reduced cost derived from the average of 64
reconstructed timestamps.

o Test MAE: Used to evaluate the reconstruction accuracy
at the missing positions.

C. Comparative Analysis

Table I presents the quantitative comparison between the
proposed CINR-CA and the baseline model, SAITS [11], on
the ETThI [15] dataset. The experiment was conducted under

TABLE I: Comparison of Inference Efficiency (MFLOPs) and
Accuracy between SAITS and CINR-CA on ETTh1 (miss_rate
= 0.1, point missing)

Model | MFLOPs | MAE
2.0 0.2003(0.012)
SAITS 51 0.1549(0.009)
0.94 0.2067(0.008
ours (Proposed) | ¢, 0.164620.004;

MAE vs. MFLOPs on ETTh1 (SAITS vs. Ours)
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Fig. 2: Performance-Efficiency Trade-off on ETThl (SAITS
vs. Ours)

two different model capacity settings (small and large) to
evaluate scalability.

Computational Efficiency The most significant advantage
of CINR-CA is its computational efficiency during inference
phase. As shown in the table, our model achieves a substantial
reduction in inference MFLOPs compared to SAITS [11],
as visualized in the efficiency-performance trade-off plot in
Fig. 2. In the smaller setting, CINR-CA reduces computational
cost by approximately 53% (2.0 — 0.94 MFLOPs), and in the
larger setting, by roughly 45% (5.1 — 2.81 MFLOPs). This
efficiency stems from our selective reconstruction strategy,
which queries only the missing timestamps, whereas SAITS
[11] reconstructs the entire sequence including observed val-
ues.

Imputation Accuracy In terms of accuracy, CINR-CA
demonstrates performance highly competitive with the state-
of-the-art. While SAITS [11] achieves marginally lower MAE
(0.1549 vs. 0.1646 in the large setting), the performance
gap is minimal considering the nearly two-fold reduction
in computational resources. This result indicates that CINR-
CA effectively optimizes the trade-off between accuracy and
efficiency, making it a more practical solution for resource-
constrained environments.

V. DISCUSSION

The proposed CINR-CA framework demonstrates that high
computational efficiency and competitive imputation accuracy



can coexist in time-series reconstruction. Despite operating
with significantly fewer inference MFLOPs than SAITS [11],
our method attains accuracy comparable to the state-of-the-art
on the ETTh1 [15] dataset. This result indicates that querying
exclusively the missing coordinates enables the model to
strategically focus its computational effort on the regions most
critical for reconstruction, thereby optimizing the resource
allocation.

A primary factor of these efficiency gains is the selective
reconstruction strategy, inspired by INR. Unlike existing ap-
proaches that reconstruct the full sequence, CINR-CA gen-
erates queries solely for missing timestamps and processes
encoder representations accordingly. This design minimizes
redundant computation on observed data, allowing the decoder
to allocate greater attention to the missing segments. Con-
sequently, the model effectively optimizes the conventional
trade-off between efficiency and accuracy, a trend clearly
observable in the Pareto frontier shown in Fig. 2.

Nevertheless, the proposed framework has several limita-
tions that could be addressed in future research. First, while
our focus was on demonstrating efficiency, we observed that
merely scaling up model parameters to maximize absolute per-
formance yielded diminishing returns, with accuracy plateau-
ing at certain levels (e.g., around 0.16 MAE). This suggests
that a systematic hyperparameter optimization is required
to identify the optimal configuration that fully exploits the
model’s capacity beyond simple scaling. Second, our current
experiments were confined to fixed-length windows within
regular grid settings on a single dataset. Given that our
coordinate-based mechanism intrinsically handles continuous
time, it holds significant potential for irregularly sampled time-
series. Future work will aim to extend this framework to
irregular domains and validate its generalization capability
across a broader range of multivariate datasets and varying
missing rates, including block-missing patterns.

VI. CONCLUSION

In this paper, we proposed CINR-CA, a novel frame-
work designed for highly efficient time-series imputation. By
adopting a coordinate-based query mechanism inspired by
INR [12], our model shifts the paradigm from full-sequence
reconstruction to selective reconstruction, targeting exclusively
the missing timestamps.

Experimental results on the ETThl [15] dataset demon-
strate that CINR-CA significantly outperforms the state-of-
the-art model, SAITS [11], in terms of computational effi-
ciency—reducing inference MFLOPs by up to 53% while
maintaining competitive reconstruction accuracy. This study
successfully optimizes the trade-off between model capacity
and efficiency, offering a practical solution for resource-
constrained environments where low latency is critical.

Future work will focus on two key directions to further ad-
vance this framework. First, we aim to extend the coordinate-
based mechanism to handle irregularly sampled time-series,
capitalizing on its inherent flexibility. Second, we plan to
generalize our findings by evaluating the model on diverse

multivariate time-series datasets and extending the coordinate-
based mechanism to handle complex scenarios, such as irreg-
ularly sampled data and variable missing patterns.
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