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Abstract—The rapid growth of wireless and mobile traffic
has heightened the importance of designing efficient Medium
Access Control (MAC) protocols capable of allocating limited
wireless resources in dense network environments. Recently,
deep reinforcement learning techniques—most notably Deep
Q-Networks (DQN)—have received significant attention as a
means to optimize MAC operations in highly dynamic envi-
ronments without relying on prior channel models. This paper
provides a systematic survey of DQN-based MAC protocol
designs, classifying existing studies into three domains: WLAN
& Wi-Fi, IoT & WSN, and heterogeneous wireless networks.

Index Terms—Reinforcement Learning, Deep Q-Network,
MAC Protocol, Wireless Networks

I. Introduction

With the continuous increase in the number of wireless
and mobile device users, the overall traffic in wireless
networks has also been growing rapidly [1]. As the number
of nodes attempting to access the network increases,
it becomes crucial to allocate limited wireless resources
efficiently. In dense network environments, issues such as
throughput degradation caused by packet collisions [2],
increased transmission delay [3], [4], and unfair channel
access leading to imbalanced transmission opportunities
[5] can arise, all of which significantly deteriorate network
performance. Therefore, the design of a MAC (Medium
Access Control) protocol capable of managing resources
efficiently and distributing them fairly in dynamic network
conditions is essential.

The goal of MAC protocols is to enhance overall network
performance by efficiently managing shared wireless re-
sources to achieve high throughput and low latency. Rein-
forcement learning (RL) is well suited to dynamic wireless
networks in which traffic patterns and user demands vary
over time, since an agent can improve its policy from
interactions without requiring an explicit model of the
environment.

This paper focuses on Deep Q-Networks (DQN), one
of the most widely used RL techniques, and surveys
existing studies that apply DQN to enhance MAC protocol
performance. We compare how different works formulate
and apply DQN to MAC decision-making and analyze the
strengths and limitations of each approach.

The remainder of this paper is organized as follows.
Section II introduces the fundamentals of reinforcement
learning and the core mechanisms of the DQN algorithm.
Section III provides a comparative survey of existing stud-
ies and summarizes how DQN has been utilized for MAC
protocol optimization in various wireless environments.
Section IV concludes the paper by discussing research
implications, open challenges, and future directions for
reinforcement learning–based MAC protocol design.

II. RL Algorithm
This section briefly summarizes the reinforcement learn-

ing notations and the core mechanisms of DQN that will
be used throughout the survey.

A. Reinforcement Learning
Reinforcement learning is a framework in which an

agent learns a policy that maximizes cumulative rewards
through interactions with an environment. [6] The dis-
counted cumulative reward at time t is defined as follows:

Gt =

∞∑
k=0

γkRt+k+1. (1)

Reinforcement learning problems are commonly modeled
as an MDP M = (S,A,P,R, γ), [7] where the objective is
to find the optimal policy π∗ that maximizes the expected
cumulative reward. [8]

π∗ = argmax
π

E [Gt | π] . (2)

Since the MAC layer experiences rapidly changing traffic,
channel, and collision conditions, RL is well suited because
it can update access policies based on observations and
rewards without requiring a prior model.

B. Deep Q-Network (DQN)
Q-learning relies on a Q-table, but its scalability is

limited in environments with large state spaces, such as
wireless networks. DQN uses a deep neural network to
approximate the optimal action-value function Q∗(s, a).
[9], [10]

Q(s, a; θ) ≈ Q∗(s, a). (3)



To stabilize learning, DQN stores transitions in an ex-
perience replay buffer D and updates the network using
randomly sampled experiences.

(s, a, r, s′) ∼ Uniform(D). (4)

In addition, DQN uses a target network with parameters
θ− to compute the target value as follows:

y = r + γmax
a′

Q(s′, a′; θ−). (5)

DQN is trained by minimizing the mean squared error
between the target y and the predicted value Q(s, a; θ):

L(θ) = E(s,a,r,s′)∼D

[
(y −Q(s, a; θ))

2
]
. (6)

With its ability to approximate value functions in high-
dimensional state spaces and adapt online, DQN can be
applied to MAC decision-making problems such as back-
off/CW adjustment and transmission timing selection.

III. Survey of DQN-Based MAC Protocol Designs
The performance of MAC protocols in wireless net-

works is highly dependent on factors such as network
topology, traffic characteristics, and resource constraints.
In recent years, deep reinforcement learning (DRL) tech-
niques have been actively explored to alleviate channel
contention, reduce collisions, and improve overall resource
efficiency across diverse wireless environments. In this pa-
per, existing studies are categorized into three domains—
WLAN & Wi-Fi, IoT & WSN, and heterogeneous wireless
networks—and we examine how DRL approaches, par-
ticularly Deep Q-Networks (DQN), address MAC-layer
challenges in each domain.

A. WLAN & Wi-Fi
IEEE 802.11-based WLAN and Wi-Fi systems rely on a

CSMA/CA contention mechanism, and consequently suf-
fer from performance degradation due to backoff dynam-
ics, hidden-node effects, and channel congestion. These
issues typically manifest as:

• A rapid increase in collision probability as network
density grows, resulting in notable throughput degra-
dation.

• Limited adaptability to rapidly changing wireless
environments and traffic conditions due to the use
of fixed backoff parameters.

To mitigate these limitations, recent work in
WLAN/Wi-Fi systems has focused on reinforcement
learning–based MAC optimization, wherein CSMA/CA
parameters are dynamically adjusted in response to en-
vironmental conditions.

In [11], the gateway collects information such as per-
node traffic load, channel utilization, and congestion
levels, and employs a DQN agent to determine key MAC
parameters including the contention window (CW) and
the use of RTS/CTS. This centralized approach incorpo-
rates application-layer QoE requirements (e.g., adaptive

bitrate streaming) into MAC decision-making, and exper-
imental results demonstrate significant improvements in
throughput and QoE stability compared to conventional
CSMA/CA.

The study in [12] proposes DeepMAC, a framework
that decomposes MAC operations into functional building
blocks (e.g., ACK, carrier sensing, retransmission) and
uses DQN to select the optimal combination of these
blocks based on current network conditions. Under low
traffic load, for example, DeepMAC selectively disables
ACK and carrier sensing functions to reduce protocol over-
head, achieving higher throughput. This work is distinctive
in that it restructures MAC functionality itself through
learning-based optimization.

In [13], the authors develop a QoS-aware MAC mecha-
nism for IEEE 802.11ax OFDMA uplink scenarios, where
DQN is used to dynamically adjust the CW according
to user traffic priority (high-priority vs. low-priority).
Experimental results show that, in complex OFDMA
multi-user settings, the DQN-based approach achieves
higher throughput and lower latency than both Q-learning
and baseline schemes.

The work in [14] introduces a distributed DRL-based
MAC framework in which each station independently
trains its own DQN agent, while the access point (AP)
aggregates local models through federated learning (FL) to
ensure network-wide fairness. This collaborative learning
approach avoids the need for raw data sharing and
achieves approximately 20% throughput improvement over
traditional DCF, while also enhancing fairness in channel
access.

Overall, these studies indicate that DQN-based ap-
proaches can overcome key limitations of CSMA/CA by
enabling adaptive CW tuning, RTS/CTS control, MAC
functional block selection, and distributed backoff opti-
mization, leading to improvements in throughput, delay,
and fairness.

B. IoT & WSN
In IoT and WSN environments, MAC protocols face

stringent constraints such as ultra-low-power operation,
dense node deployment, multi-hop communication struc-
tures, and high collision rates. These challenges make
it difficult for conventional CSMA/CA-based schemes
to ensure reliable link performance. Moreover, IoT sen-
sors, backscatter tags, and energy-harvesting devices of-
ten operate under severe energy limitations and exhibit
highly irregular traffic patterns, necessitating reinforce-
ment learning–based approaches that can dynamically
adjust MAC parameters or optimize access strategies.

Against this backdrop, numerous studies have proposed
RL- and DQN-based MAC optimization techniques tai-
lored to the unique characteristics of IoT and WSN
systems.

In [15], the authors introduce a DQN-based framework
that jointly optimizes directional beam selection and MAC



access decisions in IoT environments employing directional
communications. The state representation includes sur-
rounding interference levels, link quality metrics, and the
orientations of candidate beams, while the action space
consists of transmission direction and access decisions.
The reward function is designed to reflect both success-
ful transmission probability and interference avoidance
capability. Compared with Q-learning, the proposed ap-
proach achieves higher throughput and more stable link
performance, demonstrating one of the early attempts to
address structural challenges of dense IoT networks—such
as directional collision and blockage—through learning-
based adaptation.

The study in [16] proposes an RL-based multi-parameter
optimization method to address CSMA/CA performance
degradation in dense multi-hop WSNs. The sink node
gathers network state information at each superframe
and employs a centralized DQN agent to jointly optimize
several MAC parameters, including CW, MaxBE, and
MaxCSMABackoffs. Experimental results show that the
approach improves throughput by 10–14% while reducing
packet loss rate and end-to-end latency, particularly in
high-density WSN environments. This study is regarded
as a representative example that frames IoT/WSN MAC
control as a multi-dimensional decision-making problem
rather than a single-parameter tuning task.

In [17], a distributed DRL-MAC mechanism is pro-
posed to intelligently manage the reservation procedure
of backscatter IoT devices operating over Wi-Fi infras-
tructure. Each backscatter tag employs an LSTM-based
Double DQN to predict channel occupancy patterns, while
the Wi-Fi AP uses DRL to minimize reservation collisions
between tags. The framework considers both the ultra-
low-power constraints and the irregular traffic behavior
inherent to backscatter communication. Experimental re-
sults confirm reductions in tag-to-tag collisions, improved
link stability, and minimized interference with mainstream
Wi-Fi traffic. This work is significant as it addresses
asynchronous access challenges common in IoT/WSN
systems through learning-based control.

Research on RL- and DQN-based MAC optimization
in IoT and WSN environments generally aims to (i)
enable intelligent MAC decisions under energy and traffic
constraints, (ii) optimize key MAC parameters (e.g.,
backoff/CW/reservation), and (iii) mitigate CSMA/CA
limitations in dense, multi-hop, or directional settings.

C. Heterogeneous Wireless Networks

In heterogeneous wireless networks (HetNets), dif-
ferent MAC protocols—such as TDMA, ALOHA, and
CSMA/CA—share the same channel, leading to frequent
collisions and unpredictable interference patterns. Tradi-
tional rule-based MAC schemes lack the ability to infer or
adapt to the behavioral patterns of coexisting protocols.
Therefore, model-free approaches that rely solely on ob-

servable channel dynamics and learn effective coexistence
strategies using DQN are particularly appealing.

The work in [18] proposes CS-DLMA, a Reward-
Backpropagation DQN (RB-DQN) approach designed to
mitigate repeated collisions in environments where Wi-Fi,
TDMA, and ALOHA coexist. The state representation
consists of sequential observations of channel activity
(Idle/Busy/Collision), the action is defined as transmit or
wait, and the reward reflects both successful transmissions
and collision penalties. RB-DQN improves upon standard
DQN by propagating rewards backward across prior ac-
tions, thereby addressing delayed credit assignment in n-
step learning. Experimental results show that RB-DQN
significantly outperforms traditional CSMA in terms of
higher sum throughput and lower collision rates and
achieves performance close to that of model-aware optimal
strategies.

In [19], the authors propose a DLMA framework based
on a ResNet-enhanced Deep Q-Network to jointly consider
sum throughput and α-fairness objectives in heterogeneous
networks. The residual block architecture enables the
agent to better model nonlinear MAC interactions, while
the state representation includes slot-level histories and
traffic patterns. Experimental analysis shows that ResNet-
DQN converges more rapidly than vanilla DQN and Q-
learning, and achieves performance nearly equivalent to
model-aware optimal policies when coexisting with TDMA
and q-ALOHA.

The study in [20] extends single-channel DQN-MAC
approaches to multi-channel heterogeneous environments
by introducing MC-DLMA. The state is defined using
occupancy patterns (Idle/Busy/Collision) across multiple
channels, and the action space involves selecting one of
several candidate channels for transmission. Simulation
results demonstrate that MC-DLMA outperforms Whittle
index–based and random access schemes, highlighting the
capability of DQN to address high-dimensional channel
selection problems in practical HetNet scenarios.

Collectively, these studies demonstrate that DQN and
its variants can learn coexistence strategies without pro-
tocol models, providing fast convergence (RB-DQN),
stronger function approximation (ResNet-DQN), and scal-
ability to multi-channel settings (MC-DLMA).

IV. Conclusion

This paper presented a comprehensive survey of existing
studies that leverage Deep Q-Networks (DQN) to enhance
MAC protocol performance in wireless networks. We first
summarized the fundamental principles of reinforcement
learning and the core mechanisms of DQN, and then
categorized prior DQN-based MAC research into three do-
mains: WLAN & Wi-Fi, IoT & WSN, and Heterogeneous
Wireless Networks.

In WLAN/Wi-Fi, DQN-based schemes improve con-
tention control via adaptive CW tuning, RTS/CTS



decisions, MAC functional block selection, and feder-
ated/distributed learning, leading to gains in throughput,
latency, and fairness. In IoT/WSN, DQN/DRL methods
address ultra-low-power constraints and irregular traffic
by optimizing multiple MAC parameters and incorporat-
ing directional/backscatter characteristics, improving en-
ergy efficiency and link reliability. In HetNets, DQN vari-
ants (RB-DQN, ResNet-DQN, and multi-channel DQN)
enable near-optimal coexistence among TDMA, ALOHA,
and CSMA/CA without model knowledge.

Despite these advancements, many studies still rely on
simplified simulations and often assume full observability
or single-agent formulations. Future research should in-
vestigate more realistic large-scale deployments, partial
observability, multi-agent learning, and multi-objective
optimization that jointly considers throughput, latency,
fairness, and energy efficiency. Prototype or testbed-based
validation will also be important to bridge the gap between
simulation and real-world deployment.
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