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Abstract— Vehicular Edge Intelligence (VEI) enables Roadside
Units (RSUs) to locally process roadway images, train object-
recognition models, and trigger collision-warning functions. RSUs
placed in different road environments observe different scene
distributions, which leads to Non-Independent and Identically
Distributed (Non-IID) local datasets. As a result, each RSU tends to
overfit frequently observed classes while learning limited
representations for rare but safety-critical objects, and this
imbalance makes global convergence in distributed training
unstable. To overcome the limitations of pure local learning, RSU-
server collaborative training has been investigated as a more suitable
approach, and Split Federated Learning (SFL) provides a practical
architecture by combining split execution with parameter
aggregation. However, vehicular communication channels vary over
time in terms of bandwidth, distance, and interference, so a fixed cut
layer in SFL cannot balance activation transmission cost and client-
side feature expressiveness across RSUs. This paper proposes a
channel-driven Adaptive Split Federated Learning (ASFL) scheme
that selects the split layer dynamically according to real-time RSU-
server link quality and available bandwidth. RSUs with weak
channels are assigned shallower cuts, whereas RSUs with favorable
links use deeper cuts to exploit richer feature extraction.
Comparative experiments under different adaptive cut-selection
configurations demonstrate that the proposed ASFL framework
achieves improved model accuracy and reduced training latency by
effectively balancing computation and communication overheads.
These results indicate that network-aware adaptive partitioning is a
promising strategy for distributed learning in VEI settings.

Keywords—Adaptive  Split  Learning, Vehicular Edge
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I. INTRODUCTION

Intelligent Transportation Systems (ITS) integrate roadside
sensing, V2X connectivity, and edge—cloud computing to enable
real-time traffic monitoring and safety-critical decision
making[1]. However, as large deployments of cameras, RSUs,
and connected vehicles generate increasingly massive data
streams, centralized cloud processing alone cannot satisfy the
latency, bandwidth, and privacy requirements of modern
transportation services. To address these limitations, Vehicular
Edge Computing (VEC) places computation at RSUs close to
where data is produced, reducing backbone traffic and
improving response time[2]. Building on this paradigm, VEI
supports object detection, traffic-scene understanding, and
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hazard prediction directly at the edge, providing real-time
warnings and assisting vehicles in safety-critical decisions. By
shortening the perception—decision loop and reducing
dependence on remote cloud servers, VEI has become a core
enabler of next-generation ITS applications that demand low-
latency perception and reliable situational awareness across
diverse road environments.

In VEI systems, RSUs equipped with camera-based edge
devices operate as localized perception nodes that continuously
collect and process roadway imagery. These edge devices
execute real-time object-recognition pipelines that identify
surrounding vehicles and vulnerable road users, track their
trajectories, and estimate potential collision risks based on
spatial and temporal cues. The extracted features and semantic
information enable timely safety alerts, supporting vehicles in
avoiding hazardous situations and improving overall roadway
awareness[3]. By performing these tasks directly at the network
edge, RSUs reduce reliance on remote cloud servers and help
maintain low-latency responses essential for safety-critical ITS
applications.
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Fig 1. Non-IID data distributions between intersection and straight-
road RSUs in a VEI environment

As shown in Fig. 1, RSUs deployed in different road
environments observe traffic scenes with varying levels of
complexity. Intersection RSUs encounter diverse road users—
including pedestrians, bicycles, and vehicles approaching from
multiple directions—whereas straight-road RSUs primarily
observe uniform vehicle flows. These heterogeneous sensing
conditions lead to Non-Independent and Identically Distributed
(Non-IID) local datasets, causing each RSU to optimize its
model toward the object classes most frequently observed in its
environment. Such imbalance results in biased local updates and
limited generalization capability when relying solely on local
training. In safety-critical applications, this implies that an RSU
may fail to detect objects that rarely appear in its own scene,



despite their importance for overall system reliability[4]. These
limitations highlight the need for -collaborative training
frameworks that can aggregate knowledge across RSUs and
mitigate environment-specific learning biases.

Federated Learning (FL) allows RSUs to collaboratively
train a global model without sharing raw data, thereby
improving privacy and reducing backbone traffic[5]. However,
because each RSU must train the entire model locally, FL
imposes substantial computational load on resource-constrained
edge devices, resulting in long local training latency and
scalability limitations[6]. Split Learning (SL) addresses this
issue by dividing the model at a predefined cut layer so that
RSUs execute only the shallow portion and offload deeper layers
to the server. This reduces device-side computation, but SL
causes catastrophic forgetting due to its strict client-server
sequential execution. This refers to the phenomenon where the
model forgets data learned early in training[7]. To combine the
advantages of both approaches, Split Federated Learning (SFL)
integrates federated parameter aggregation with SL-style model
partitioning, enabling parallel training across RSUs while
reducing on-device computational burden. This hybrid
architecture improves scalability and provides a more practical
distributed learning framework for vehicular edge
environments.

Despite its advantages, SFL inherits a structural limitation
arising from the use of a fixed cut layer, which determines how
computation and communication are divided between RSUs and
the server. When the split position is shallow, RSUs offload
most of the computation but must transmit large activation maps,
increasing uplink overhead; conversely, deeper splits reduce
communication volume but impose heavier on-device
computation, creating an unfavorable trade-off that varies across
RSUs[8]. This limitation becomes particularly problematic in
vehicular environments, where communication quality
fluctuates due to varying bandwidth availability, RSU—-server
distance, interference, and rapid changes in wireless channel
conditions[9]. Under such dynamic conditions, a single static
partition cannot balance computational load and communication
cost for all RSUs, often leading to performance degradation and
unstable training behavior. These challenges indicate the need
for a more flexible learning framework capable of adapting the
split position to real-time network conditions.

To overcome the inflexibility of fixed-cut SFL under
fluctuating vehicular channels, this paper introduces a channel-
driven Adaptive Split Federated Learning (ASFL) framework
that adjusts the model partition dynamically for each RSU. The
key idea is to ensure that computation and communication are
balanced according to real-time link conditions, rather than
enforcing the same split position across heterogeneous RSUs.
By assuming comparable processing capability among RSUs
and focusing exclusively on network-driven adaptation, ASFL
avoids the limitations of approaches that rely on device-specific
computation delay. Through adaptive selection of the cut
layer—based on bandwidth availability, channel quality, and
RSU-server link distance—ASFL reduces transmission
overhead for RSUs experiencing weak channels while enabling
richer feature extraction when the channel is strong. This
flexibility addresses the instability and inefficiency inherent in

fixed-cut SFL and provides a more robust foundation for
collaborative training in dynamic vehicular environments.

The main contributions of this work are as follows:

¢+ We propose a channel-driven ASFL framework that aims to
dynamically adjust the model’s cut layer for each RSU
according to real-time network conditions.

¢+  We formulate the split-selection problem from a network-
centric perspective, highlighting how bandwidth, channel
quality, and RSU-server distance influence activation size,
computational load, and training stability.

¢+ We design an adaptive cut-selection mechanism intended to
balance communication overhead and client-side feature
expressiveness under fluctuating vehicular channel
conditions.

¢+ We aim to enhance the robustness of distributed learning in
heterogeneous VEI environments by enabling flexible
partitioning rather than relying on a single fixed split
position.

¢+  We construct a realistic VEI evaluation scenario reflecting
intersection and straight-road deployments to examine the
behavior of RSUs with differing sensing characteristics.

¢+ We perform comprehensive comparisons with FL, SL, SFL,
and fixed-cut baselines to demonstrate the potential
advantages of ASFL in terms of accuracy, convergence
behavior, and training latency.

The remainder of this paper is structured as follows. Section
IT reviews the related works. Section III describes the system
architecture and the RSU-server learning model. Section IV
presents the proposed ASFL framework and the channel-driven
split-selection method. Section V discusses the experimental
results and performance evaluation. Finally, Section VI
concludes this paper.

II. RELATED WORKS

A. Dynamic Split Learning with Resource-Aware Partitioning

Early work on adaptive split learning explored resource-
aware partitioning, where the cut layer is selected based on a
client’s computational capability, memory availability, or
processing delay. AdaptSFL represents a representative
approach in this category, assigning shallower splits to weaker
devices and deeper splits to more capable ones to mitigate
straggler effects and balance training workload across
heterogeneous clients[10]. By adjusting the split position
according to device capacity, these methods improve training
fairness and reduce round-level delays within federated or
collaborative learning systems.

However, resource-driven strategies implicitly assume that
computation is the dominant source of latency and thus do not
account for fluctuations in communication performance. This
becomes a critical limitation in vehicular edge environments,
where RSUs often exhibit similar computational capability but
operate under highly diverse wireless conditions caused by
varying bandwidth, link distance, and interference. Because
resource-aware schemes such as AdaptSFL select partitions
without considering channel states, they remain inadequate for



VEI systems in which communication variability dominates
end-to-end training delay. This limitation motivates approaches
that rely on network-driven cut-selection, which forms the
foundation of the ASFL method proposed in this study.

B. Communication-Aware Split Learning in Wireless Edge
Networks

A second line of research focuses on communication-aware
split learning, where the split position is chosen based on uplink
latency, activation size, or estimated communication burden.
EPSL is a notable example that jointly optimizes subchannel
allocation, transmission power, and cut-layer selection to reduce
per-round training delay in wireless edge networks[11]. By
coordinating the communication resources and selecting split
points that minimize activation-transfer overhead, such methods
demonstrate improved responsiveness under constrained or
congested wireless environments.

Despite their contributions, existing communication-focused
approaches intertwine computation and communication
optimization, making it difficult to isolate the effect of channel
variability alone. Moreover, frameworks such as EPSL assume
quasi-static or predictable channel conditions to enable large-
scale optimization, an assumption that does not hold in dynamic
vehicular environments where RSU-server link quality
fluctuates rapidly. These schemes also do not explicitly address
how Non-IID data imbalance across RSUs interacts with
fluctuating communication conditions, reducing their robustness
in VEI deployments. These limitations highlight the need for a
lightweight, channel-driven split-selection mechanism, which is
the key objective of the ASFL framework proposed in this work.

III. ARCHITECTURE OVERVIEW

Fig 2. System Model

The overall learning architecture is illustrated in Fig 2, where
multiple RSU-mounted edge devices collaborate with a
centralized VEC server through a split neural network structure.
Each edge device executes the front portion of the model and
transmits its resulting smashed data to the server, while the
server completes the remaining layers and returns gradients for
local parameter updates. This RSU-server co-learning
mechanism enables low-latency perception at the edge while
leveraging the server’s computational capacity for deeper
feature extraction and global aggregation. The architecture
explicitly accommodates heterogeneous RSU communication
conditions, allowing the split position to be adjusted
dynamically according to channel quality in the proposed ASFL
framework. The remainder of this section describes the system
model, communication assumptions, and operational workflow
that form the foundation of the proposed ASFL methodology.

A. System Model

We consider a vehicular edge intelligence (VEI) system
composed of four RSU-mounted edge devices and a centralized
VEC server that collaboratively train a deep neural network
under a split learning paradigm. Each RSU is equipped with a
camera that continuously captures road-scene images within its
coverage area and executes the front portion of a shared
convolutional backbone. The server is responsible for
processing the remaining layers, aggregating updates across
RSUs, and maintaining the global model state.

The end-to-end network is based on a ResNet-18
architecture and is decomposed into an RSU-side subnetwork
and a server-side subnetwork. This decomposition enables
computation to be distributed across RSUs and the server while
avoiding the exchange of raw visual data. The overall model is
defined as

FOsW) = fory(frsu(x; WRSY); WSRY) €Y)

where WRSUand WSRVdenote the parameters of the RSU-
side and server-side subnetworks, respectively.

To support adaptive model partitioning, the RSU-side
subnetwork provides five candidate split positions, denoted as
L =0,1,2,3,4, corresponding to boundaries between major
residual blocks of the ResNet-18 backbone. Smaller values of
Lassign only shallow layers to the RSU, resulting in compact
intermediate representations and lower communication
overhead, whereas larger values of Lplace deeper layers at the
RSU, producing more expressive but larger activation tensors.

For a given input image x, RSU iperforms partial forward
propagation up to the selected split layer L, yielding an
intermediate activation

_ @)
i = frsu(x) (2)
This activation, referred to as smashed data, is transmitted to
the server, which completes the remaining forward pass,

computes the training loss £;, and derives the corresponding
gradient.

Due to the hierarchical structure of ResNet-18, the size of
the smashed data varies depending on the selected cut layer. As
the cut depth increases, the spatial resolution of feature maps is
progressively reduced while the number of channels increases,
resulting in different activation sizes across split positions.
Consequently, the communication overhead between RSUs and
the server is directly affected by the chosen cut layer through the
size of the transmitted smashed data.
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The gradient is then returned to the RSU for local parameter
updates.

All RSUs are assumed to possess comparable computational
capabilities, such that performance heterogeneity in the
considered system arises primarily from communication-related
factors rather than device-side processing power. This modeling
choice is intentionally adopted to isolate the impact of network
variability on the split selection process and to focus on



communication-driven adaptation in infrastructure-powered
RSU  environments. By  controlling  computational
heterogeneity, the proposed framework can explicitly analyze
how time-varying network conditions influence distributed
learning behavior, which forms the basis for the adaptive split
selection strategy described in subsequent sections.

B. Communication Model

The communication model characterizes the data
transmission process between RSU-mounted edge devices and
the centralized VEC server during split federated learning. Since
RSUs and the server are connected through wireless backhaul
links, the end-to-end training latency is strongly influenced by
channel conditions such as available bandwidth, propagation
distance, and interference. In the considered system,
communication delay arises primarily from the transmission of
smashed data from RSUs to the server and the delivery of
gradient information in the reverse direction.

Let B; denote the available uplink bandwidth between RSU
iand the server. When RSU iselects split position L, the size of
the corresponding smashed activation h; ; depends on the depth
of the RSU-side subnetwork. The uplink transmission latency is
therefore modeled as

[ hip
B;

where | h;; |represents the data volume of the smashed
activation.

TP (L) = @)

Similarly, after completing the server-side backward pass,
the gradient associated with the RSU-side parameters is
transmitted back to RSU i. The downlink latency is given by

| IWRSY |

Tidown (L) — 5
i

(5)

where | VWSSV |denotes the size of the returned gradient
information. Because gradient size varies marginally across split
positions compared to smashed data, uplink latency dominates
the overall communication cost.

The total communication latency experienced by RSU iin a
single training round is thus expressed as

TEomm (L) = T'P(L) + TA°Wn(L) (6)

Due to time-varying wireless conditions, the effective
bandwidth B;may fluctuate across RSUs and training rounds. As
a result, a fixed split position cannot consistently balance
communication efficiency and feature representation quality.
This observation motivates a dynamic split selection strategy
that adapts the partition point Lin response to real-time channel
conditions, which is formally introduced in the proposed ASFL
framework.

C. Split Federated Learning Workflow

The training process follows the Split Federated Learning
(SplitFedV 1) paradigm, in which multiple RSUs collaboratively
train a shared model under the coordination of a centralized
server. Training proceeds in synchronized rounds, and all RSUs
participate in each round using their locally collected data.

At the beginning of round t, the VEC server broadcasts the
current global model parameters Wtto all RSUs. Each RSU
initializes its local RSU-side subnetwork with WRSU¢ and
performs forward propagation up to its selected split layer
Lusing local input samples. The resulting smashed activation
h; ,is then transmitted to the server.

Upon receiving smashed data from participating RSUs, the
server instantiates the corresponding server-side subnetworks
and completes the forward and backward passes independently
for each RSU. The server computes the local training loss £fand
derives the gradients with respect to the RSU-side parameters.
These gradients are subsequently transmitted back to each RSU,
enabling local backward propagation and parameter updates.

After completing local updates, each RSU sends its updated
RSU-side parameters Vl/iRSU"t+1 to the server. The server
aggregates the received parameters using a weighted averaging
scheme consistent with federated learning, given by

K
n .
RSU,t+1 _— ] RSU,t+1
WERE = Z YK n; W )
j=1"

where n;denotes the number of training samples held by
RSU i. The aggregated parameters form the updated global
model, which is redistributed to all RSUs at the start of the next
training round.

i=1

The architecture described in this section establishes a split
federated learning framework in which RSU-mounted edge
devices and a centralized VEC server collaboratively train a
shared model under heterogeneous communication conditions.
While this structure enables distributed learning without
exchanging raw data, it does not by itself address the
performance degradation caused by fluctuating network quality
when a fixed split layer is applied. To overcome this limitation,
the following section formalizes a network-aware adaptation
requirement and introduces an ASFL scheme that dynamically
determines the split layer according to RSU-server channel
conditions. This adaptive design aims to stabilize training and
improve efficiency in vehicular edge environments with highly
variable communication links.

To capture the communication cost associated with each
split position, we model the uplink delay between RSU iand the
server as a function of the selected cut layer. Let § =
{0,1,2,3,4}denote the predefined set of candidate cut layers, and
let S(L)represent the size (in bits) of the smashed activations
produced at cut layer L € §. Given the instantaneous uplink
bandwidth B; available to RSU i , the corresponding
transmission delay is expressed as

IV. PROPOSED SCHEME

In a split learning framework, the cut layer determines both
the distribution of computational workload between RSUs and
the server and the size of intermediate activations transmitted
over the wireless backhaul. Assigning a deeper cut enables
richer feature extraction at the RSU, which can be beneficial for
learning under heterogeneous data distributions, but it also
generates larger activation tensors that significantly increase
uplink transmission cost. In contrast, a shallower cut reduces



communication overhead by producing compact activations,
while constraining the representational capacity of the RSU-side
model. This trade-off becomes particularly critical in vehicular
edge environments, where RSU-server channel conditions
fluctuate over time and differ across deployment locations.
Under such conditions, employing a fixed cut layer cannot
consistently balance communication efficiency and learning
effectiveness, motivating the need for a dynamic, network-
aware split selection strategy.

S(L)
B;
This formulation reflects the fact that deeper cuts, which
place more layers at the RSU, generate larger activations and

thus incur longer transmission delays when bandwidth is
limited.

TH(L) = ®)

Based on this model, the proposed method selects the cut
layer for each RSU by minimizing the transmission delay under
current channel conditions. For RSU i, the split layer is
determined by

* : tx
Li =argmin_ T;(L) 9
so that RSUs experiencing poor channel quality are assigned
shallower cuts with smaller activation sizes, whereas RSUs with
favorable channels can adopt deeper cuts to preserve richer
feature representations. Because all RSUs are assumed to have
comparable computational capabilities, this decision rule
focuses adaptation solely on network variability rather than
device-side processing differences.

Once each RSU has selected its cut layer and completed split
forward and backward propagation with the server, RSU-side
parameters are updated locally and then aggregated at the server
following the SplitFedV1 protocol. Let Wi(t)denote the RSU-
side model parameters of RSU iafter local updates in round ¢,
and let n;be the number of training samples used at RSU i. The
server computes the updated global RSU-side model as

WD — Z
P!

This aggregation rule preserves the standard convergence
behavior of split federated learning while allowing each RSU to
employ a different cut layer according to its instantaneous
channel state. As a result, the proposed adaptive scheme reduces
unnecessary communication overhead for bandwidth-limited
RSUs and improves the overall stability and efficiency of
training under heterogeneous and time-varying vehicular
network conditions.

w,® (10)

j=1"y

Algorithm 1 Channel-Driven Adaptive Cut Selection

Require: Available uplink bandwidth B; of RSU i, candidate cut set S =
{0,1,2,3,4}, activation size function S(L)

lected cut layer L} for RSU 4

1: Initialize T < 00

2: At the beginning of each training round:

3: for each L € § do

4 Estimate transmission delay T5 (L) « S{2)

5

E if T¥*(L) < Timin then

6 Tinin + T(L)

T L}« L

8: end if

9: end for

10: Select cut layer L} for split forward propagation

11: Transmit smashed data generated at layer L} to the server
12: return L}

V. EXPERIMENTATION & RESULTS

A. Simulation Environment

Table. 1. Simulation Parameters

Parameter Description
Number of RSUs 4 RSU-mounted Edge Devices
Edge Server Centralized VEC Server
Learning Framework Proposed ASFL, Different cut selection ASFL
Training Model ResNet-18
Training Rounds 200 rounds

Local Batch Size 32
BDD100k(vehicle), Citypersons(pedestrian)

Dataset

Table I presents the simulation parameters employed in this
study. Four RSU-mounted edge devices collaboratively train a
ResNet-18 model with a centralized VEC server under the
proposed ASFL framework and its variants incorporating
different cut-selection strategies. The training process is
executed for 200 rounds with a fixed local batch size of 32, using
vehicle perception data from the BDDI100K dataset and
pedestrian perception data from the CityPersons dataset.

B. Experimental Results

Local training accuracy per RSU (vehicle)

_vehicie
_vehicie
_vehicie
_vehicle

Fig 3. Local Training accuracy for each object

Fig. 3 illustrates the progression of local training accuracy
for vehicle and pedestrian perception across the four RSUs. All
RSUs show steady improvement and ultimately converge
despite environmental differences. RSU 1 and 4, located in areas
with minimal pedestrian, start with lower pedestrian-detection
accuracy but gradually improve and approach the performance
of RSU2 and RSU3, indicating that the collaborative learning
process mitigates location-driven data imbalance.

Detection accuracy for different ASFL cut candidates

7 100 125
Round

Average training latency: ASFL cut candidates

° > 50 7s 100 125 150 175 200
Round

Average communication latency: ASFL cut candidates

— ASFLGcuts)
— ASFL (5 cuts, proposed)

Fig 4. Accuracy and latency comparison with different cut layers



Fig. 4 compares the accuracy and latency characteristics of
the ASFL framework under three different cut configurations.
The 5-cut setting achieves the highest detection accuracy,
indicating a more balanced partitioning of computation between
RSUs and the VEC server. In contrast, the 3-cut and 9-cut
settings show slower accuracy improvement due to their
disproportionate local computation or communication demands.
The training-latency results further highlight the efficiency of
the proposed 5-cut approach, which converges to a substantially
lower latency than the other two configurations. A similar trend
is observed in communication latency, where the 5-cut scheme
consistently maintains the smallest overhead. These results
demonstrate that an appropriately chosen cut position can
improve both model performance and resource utilization within
the RSU-VEC collaborative learning environment.

Overall, the evaluation results demonstrate that the proposed
ASFL framework provides consistent performance gains across
heterogeneous RSU environments. The 5-cut configuration, in
particular, achieves a more favorable balance between detection
accuracy and delay, confirming the effectiveness of adaptive
computation—communication  partitioning in RSU-VEC
collaborative learning. Furthermore, the convergence behavior
observed across all RSUs, including those with limited
pedestrian exposure, indicates that the framework effectively
mitigates data imbalance and promotes stable model refinement.
These findings collectively validate the robustness of the
proposed approach and establish its suitability for deployment
in practical multi-RSU edge intelligence systems.

VI. CONCLUSION

This paper presented a channel-driven ASFL framework for
RSU-VEC collaborative perception, addressing the limitations
of fixed split configurations under heterogeneous vehicular
communication environments. By dynamically selecting the
split layer based on RSU—server link conditions, the proposed
approach effectively balances communication overhead and
feature expressiveness, leading to improved detection accuracy
and reduced training latency across RSUs with diverse sensing
characteristics. Experimental results demonstrated that adaptive
cut selection enables stable convergence even under non-1ID
data distributions, highlighting the benefit of network-aware
partitioning in vehicular edge intelligence systems. While this
work intentionally focuses on isolating the impact of network
variability by assuming comparable computational capabilities
among infrastructure-powered RSUs, future work will extend
the proposed framework to jointly consider dynamic
computational latency and communication conditions, enabling
more comprehensive optimization under realistic, time-varying
RSU workloads.
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