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Abstract— Vehicular Edge Intelligence (VEI) enables Roadside 

Units (RSUs) to locally process roadway images, train object-

recognition models, and trigger collision-warning functions. RSUs 

placed in different road environments observe different scene 

distributions, which leads to Non-Independent and Identically 

Distributed (Non-IID) local datasets. As a result, each RSU tends to 

overfit frequently observed classes while learning limited 

representations for rare but safety-critical objects, and this 

imbalance makes global convergence in distributed training 

unstable. To overcome the limitations of pure local learning, RSU–

server collaborative training has been investigated as a more suitable 

approach, and Split Federated Learning (SFL) provides a practical 

architecture by combining split execution with parameter 

aggregation. However, vehicular communication channels vary over 

time in terms of bandwidth, distance, and interference, so a fixed cut 

layer in SFL cannot balance activation transmission cost and client-

side feature expressiveness across RSUs. This paper proposes a 

channel-driven Adaptive Split Federated Learning (ASFL) scheme 

that selects the split layer dynamically according to real-time RSU–

server link quality and available bandwidth. RSUs with weak 

channels are assigned shallower cuts, whereas RSUs with favorable 

links use deeper cuts to exploit richer feature extraction. 

Comparative experiments under different adaptive cut-selection 

configurations demonstrate that the proposed ASFL framework 

achieves improved model accuracy and reduced training latency by 

effectively balancing computation and communication overheads. 

These results indicate that network-aware adaptive partitioning is a 

promising strategy for distributed learning in VEI settings. 

Keywords—Adaptive Split Learning, Vehicular Edge 

Intelligence, Non-IID, Channel-Driven Distributed Edge Learning 

I. INTRODUCTION  

Intelligent Transportation Systems (ITS) integrate roadside 
sensing, V2X connectivity, and edge–cloud computing to enable 
real-time traffic monitoring and safety-critical decision 
making[1]. However, as large deployments of cameras, RSUs, 
and connected vehicles generate increasingly massive data 
streams, centralized cloud processing alone cannot satisfy the 
latency, bandwidth, and privacy requirements of modern 
transportation services. To address these limitations, Vehicular 
Edge Computing (VEC) places computation at RSUs close to 
where data is produced, reducing backbone traffic and 
improving response time[2]. Building on this paradigm, VEI 
supports object detection, traffic-scene understanding, and 

hazard prediction directly at the edge, providing real-time 
warnings and assisting vehicles in safety-critical decisions. By 
shortening the perception–decision loop and reducing 
dependence on remote cloud servers, VEI has become a core 
enabler of next-generation ITS applications that demand low-
latency perception and reliable situational awareness across 
diverse road environments. 

In VEI systems, RSUs equipped with camera-based edge 
devices operate as localized perception nodes that continuously 
collect and process roadway imagery. These edge devices 
execute real-time object-recognition pipelines that identify 
surrounding vehicles and vulnerable road users, track their 
trajectories, and estimate potential collision risks based on 
spatial and temporal cues. The extracted features and semantic 
information enable timely safety alerts, supporting vehicles in 
avoiding hazardous situations and improving overall roadway 
awareness[3]. By performing these tasks directly at the network 
edge, RSUs reduce reliance on remote cloud servers and help 
maintain low-latency responses essential for safety-critical ITS 
applications. 

 

Fig 1. Non-IID data distributions between intersection and straight-

road RSUs in a VEI environment 

As shown in Fig. 1, RSUs deployed in different road 
environments observe traffic scenes with varying levels of 
complexity. Intersection RSUs encounter diverse road users—
including pedestrians, bicycles, and vehicles approaching from 
multiple directions—whereas straight-road RSUs primarily 
observe uniform vehicle flows. These heterogeneous sensing 
conditions lead to Non-Independent and Identically Distributed 
(Non-IID) local datasets, causing each RSU to optimize its 
model toward the object classes most frequently observed in its 
environment. Such imbalance results in biased local updates and 
limited generalization capability when relying solely on local 
training. In safety-critical applications, this implies that an RSU 
may fail to detect objects that rarely appear in its own scene, 



despite their importance for overall system reliability[4]. These 
limitations highlight the need for collaborative training 
frameworks that can aggregate knowledge across RSUs and 
mitigate environment-specific learning biases. 

Federated Learning (FL) allows RSUs to collaboratively 
train a global model without sharing raw data, thereby 
improving privacy and reducing backbone traffic[5]. However, 
because each RSU must train the entire model locally, FL 
imposes substantial computational load on resource-constrained 
edge devices, resulting in long local training latency and 
scalability limitations[6]. Split Learning (SL) addresses this 
issue by dividing the model at a predefined cut layer so that 
RSUs execute only the shallow portion and offload deeper layers 
to the server. This reduces device-side computation, but SL 
causes catastrophic forgetting due to its strict client-server 
sequential execution. This refers to the phenomenon where the 
model forgets data learned early in training[7]. To combine the 
advantages of both approaches, Split Federated Learning (SFL) 
integrates federated parameter aggregation with SL-style model 
partitioning, enabling parallel training across RSUs while 
reducing on-device computational burden. This hybrid 
architecture improves scalability and provides a more practical 
distributed learning framework for vehicular edge 
environments. 

Despite its advantages, SFL inherits a structural limitation 
arising from the use of a fixed cut layer, which determines how 
computation and communication are divided between RSUs and 
the server. When the split position is shallow, RSUs offload 
most of the computation but must transmit large activation maps, 
increasing uplink overhead; conversely, deeper splits reduce 
communication volume but impose heavier on-device 
computation, creating an unfavorable trade-off that varies across 
RSUs[8]. This limitation becomes particularly problematic in 
vehicular environments, where communication quality 
fluctuates due to varying bandwidth availability, RSU–server 
distance, interference, and rapid changes in wireless channel 
conditions[9]. Under such dynamic conditions, a single static 
partition cannot balance computational load and communication 
cost for all RSUs, often leading to performance degradation and 
unstable training behavior. These challenges indicate the need 
for a more flexible learning framework capable of adapting the 
split position to real-time network conditions. 

To overcome the inflexibility of fixed-cut SFL under 
fluctuating vehicular channels, this paper introduces a channel-
driven Adaptive Split Federated Learning (ASFL) framework 
that adjusts the model partition dynamically for each RSU. The 
key idea is to ensure that computation and communication are 
balanced according to real-time link conditions, rather than 
enforcing the same split position across heterogeneous RSUs. 
By assuming comparable processing capability among RSUs 
and focusing exclusively on network-driven adaptation, ASFL 
avoids the limitations of approaches that rely on device-specific 
computation delay. Through adaptive selection of the cut 
layer—based on bandwidth availability, channel quality, and 
RSU–server link distance—ASFL reduces transmission 
overhead for RSUs experiencing weak channels while enabling 
richer feature extraction when the channel is strong. This 
flexibility addresses the instability and inefficiency inherent in 

fixed-cut SFL and provides a more robust foundation for 
collaborative training in dynamic vehicular environments. 

The main contributions of this work are as follows: 

 We propose a channel-driven ASFL framework that aims to 
dynamically adjust the model’s cut layer for each RSU 
according to real-time network conditions. 

 We formulate the split-selection problem from a network-
centric perspective, highlighting how bandwidth, channel 
quality, and RSU–server distance influence activation size, 
computational load, and training stability. 

 We design an adaptive cut-selection mechanism intended to 
balance communication overhead and client-side feature 
expressiveness under fluctuating vehicular channel 
conditions. 

 We aim to enhance the robustness of distributed learning in 
heterogeneous VEI environments by enabling flexible 
partitioning rather than relying on a single fixed split 
position. 

 We construct a realistic VEI evaluation scenario reflecting 
intersection and straight-road deployments to examine the 
behavior of RSUs with differing sensing characteristics. 

 We perform comprehensive comparisons with FL, SL, SFL, 
and fixed-cut baselines to demonstrate the potential 
advantages of ASFL in terms of accuracy, convergence 
behavior, and training latency. 

The remainder of this paper is structured as follows. Section 
II reviews the related works. Section III describes the system 
architecture and the RSU–server learning model. Section IV 
presents the proposed ASFL framework and the channel-driven 
split-selection method. Section V discusses the experimental 
results and performance evaluation. Finally, Section VI 
concludes this paper. 

II. RELATED WORKS 

A. Dynamic Split Learning with Resource-Aware Partitioning 

Early work on adaptive split learning explored resource-
aware partitioning, where the cut layer is selected based on a 
client’s computational capability, memory availability, or 
processing delay. AdaptSFL represents a representative 
approach in this category, assigning shallower splits to weaker 
devices and deeper splits to more capable ones to mitigate 
straggler effects and balance training workload across 
heterogeneous clients[10]. By adjusting the split position 
according to device capacity, these methods improve training 
fairness and reduce round-level delays within federated or 
collaborative learning systems. 

However, resource-driven strategies implicitly assume that 
computation is the dominant source of latency and thus do not 
account for fluctuations in communication performance. This 
becomes a critical limitation in vehicular edge environments, 
where RSUs often exhibit similar computational capability but 
operate under highly diverse wireless conditions caused by 
varying bandwidth, link distance, and interference. Because 
resource-aware schemes such as AdaptSFL select partitions 
without considering channel states, they remain inadequate for 



VEI systems in which communication variability dominates 
end-to-end training delay. This limitation motivates approaches 
that rely on network-driven cut-selection, which forms the 
foundation of the ASFL method proposed in this study. 

B. Communication-Aware Split Learning in Wireless Edge 

Networks 

A second line of research focuses on communication-aware 
split learning, where the split position is chosen based on uplink 
latency, activation size, or estimated communication burden. 
EPSL is a notable example that jointly optimizes subchannel 
allocation, transmission power, and cut-layer selection to reduce 
per-round training delay in wireless edge networks[11]. By 
coordinating the communication resources and selecting split 
points that minimize activation-transfer overhead, such methods 
demonstrate improved responsiveness under constrained or 
congested wireless environments. 

Despite their contributions, existing communication-focused 
approaches intertwine computation and communication 
optimization, making it difficult to isolate the effect of channel 
variability alone. Moreover, frameworks such as EPSL assume 
quasi-static or predictable channel conditions to enable large-
scale optimization, an assumption that does not hold in dynamic 
vehicular environments where RSU–server link quality 
fluctuates rapidly. These schemes also do not explicitly address 
how Non-IID data imbalance across RSUs interacts with 
fluctuating communication conditions, reducing their robustness 
in VEI deployments. These limitations highlight the need for a 
lightweight, channel-driven split-selection mechanism, which is 
the key objective of the ASFL framework proposed in this work. 

III. ARCHITECTURE OVERVIEW 

 

Fig 2. System Model 

The overall learning architecture is illustrated in Fig 2, where 
multiple RSU-mounted edge devices collaborate with a 
centralized VEC server through a split neural network structure. 
Each edge device executes the front portion of the model and 
transmits its resulting smashed data to the server, while the 
server completes the remaining layers and returns gradients for 
local parameter updates. This RSU–server co-learning 
mechanism enables low-latency perception at the edge while 
leveraging the server’s computational capacity for deeper 
feature extraction and global aggregation. The architecture 
explicitly accommodates heterogeneous RSU communication 
conditions, allowing the split position to be adjusted 
dynamically according to channel quality in the proposed ASFL 
framework. The remainder of this section describes the system 
model, communication assumptions, and operational workflow 
that form the foundation of the proposed ASFL methodology. 

A. System Model 

We consider a vehicular edge intelligence (VEI) system 
composed of four RSU-mounted edge devices and a centralized 
VEC server that collaboratively train a deep neural network 
under a split learning paradigm. Each RSU is equipped with a 
camera that continuously captures road-scene images within its 
coverage area and executes the front portion of a shared 
convolutional backbone. The server is responsible for 
processing the remaining layers, aggregating updates across 
RSUs, and maintaining the global model state. 

The end-to-end network is based on a ResNet-18 
architecture and is decomposed into an RSU-side subnetwork 
and a server-side subnetwork. This decomposition enables 
computation to be distributed across RSUs and the server while 
avoiding the exchange of raw visual data. The overall model is 
defined as 

���;�� � ��	
��	����;�	���;  ��	
� �1� 
where �	��and ��	
denote the parameters of the RSU-

side and server-side subnetworks, respectively. 

To support adaptive model partitioning, the RSU-side 
subnetwork provides five candidate split positions, denoted as 

 � 0,1,2,3,4 , corresponding to boundaries between major 
residual blocks of the ResNet-18 backbone. Smaller values of 

assign only shallow layers to the RSU, resulting in compact 
intermediate representations and lower communication 
overhead, whereas larger values of 
place deeper layers at the 
RSU, producing more expressive but larger activation tensors. 

For a given input image �, RSU �performs partial forward 
propagation up to the selected split layer 
 , yielding an 
intermediate activation 

ℎ�,� � �	����� ��� �2� 
This activation, referred to as smashed data, is transmitted to 

the server, which completes the remaining forward pass, 
computes the training loss ℒ� , and derives the corresponding 
gradient. 

Due to the hierarchical structure of ResNet-18, the size of 
the smashed data varies depending on the selected cut layer. As 
the cut depth increases, the spatial resolution of feature maps is 
progressively reduced while the number of channels increases, 
resulting in different activation sizes across split positions. 
Consequently, the communication overhead between RSUs and 
the server is directly affected by the chosen cut layer through the 
size of the transmitted smashed data. 

∇��,�	�� �
∂ℒ�
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The gradient is then returned to the RSU for local parameter 
updates. 

All RSUs are assumed to possess comparable computational 
capabilities, such that performance heterogeneity in the 
considered system arises primarily from communication-related 
factors rather than device-side processing power. This modeling 
choice is intentionally adopted to isolate the impact of network 
variability on the split selection process and to focus on 



communication-driven adaptation in infrastructure-powered 
RSU environments. By controlling computational 
heterogeneity, the proposed framework can explicitly analyze 
how time-varying network conditions influence distributed 
learning behavior, which forms the basis for the adaptive split 
selection strategy described in subsequent sections. 

B. Communication Model 

The communication model characterizes the data 
transmission process between RSU-mounted edge devices and 
the centralized VEC server during split federated learning. Since 
RSUs and the server are connected through wireless backhaul 
links, the end-to-end training latency is strongly influenced by 
channel conditions such as available bandwidth, propagation 
distance, and interference. In the considered system, 
communication delay arises primarily from the transmission of 
smashed data from RSUs to the server and the delivery of 
gradient information in the reverse direction. 

Let ��  denote the available uplink bandwidth between RSU 
�and the server. When RSU �selects split position 
, the size of 

the corresponding smashed activation ℎ�,�depends on the depth 

of the RSU-side subnetwork. The uplink transmission latency is 
therefore modeled as 

�����
� �
∣ ℎ�,� ∣
�� �4� 

where ∣ ℎ�,� ∣ represents the data volume of the smashed 

activation. 

Similarly, after completing the server-side backward pass, 
the gradient associated with the RSU-side parameters is 
transmitted back to RSU �. The downlink latency is given by 

��� !"�
� �
∣ ∇��,�	�� ∣

�� �5� 

where ∣ ∇��,�	�� ∣denotes the size of the returned gradient 

information. Because gradient size varies marginally across split 
positions compared to smashed data, uplink latency dominates 
the overall communication cost. 

The total communication latency experienced by RSU �in a 
single training round is thus expressed as 

��$ %%�
� � �����
� + ��� !"�
� �6� 
Due to time-varying wireless conditions, the effective 

bandwidth ��may fluctuate across RSUs and training rounds. As 
a result, a fixed split position cannot consistently balance 
communication efficiency and feature representation quality. 
This observation motivates a dynamic split selection strategy 
that adapts the partition point 
in response to real-time channel 
conditions, which is formally introduced in the proposed ASFL 
framework. 

C. Split Federated Learning Workflow 

The training process follows the Split Federated Learning 
(SplitFedV1) paradigm, in which multiple RSUs collaboratively 
train a shared model under the coordination of a centralized 
server. Training proceeds in synchronized rounds, and all RSUs 
participate in each round using their locally collected data. 

At the beginning of round (, the VEC server broadcasts the 
current global model parameters �) to all RSUs. Each RSU 

initializes its local RSU-side subnetwork with �	��,) and 
performs forward propagation up to its selected split layer 

using local input samples. The resulting smashed activation 

ℎ�,�) is then transmitted to the server. 

Upon receiving smashed data from participating RSUs, the 
server instantiates the corresponding server-side subnetworks 
and completes the forward and backward passes independently 

for each RSU. The server computes the local training loss ℒ�)and 
derives the gradients with respect to the RSU-side parameters. 
These gradients are subsequently transmitted back to each RSU, 
enabling local backward propagation and parameter updates. 

After completing local updates, each RSU sends its updated 

RSU-side parameters ��
	��,)*+

to the server. The server 

aggregates the received parameters using a weighted averaging 
scheme consistent with federated learning, given by 

�,-.,)*+ �/ 01
∑ 01314+
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where 0�denotes the number of training samples held by 
RSU � . The aggregated parameters form the updated global 
model, which is redistributed to all RSUs at the start of the next 
training round. 

The architecture described in this section establishes a split 
federated learning framework in which RSU-mounted edge 
devices and a centralized VEC server collaboratively train a 
shared model under heterogeneous communication conditions. 
While this structure enables distributed learning without 
exchanging raw data, it does not by itself address the 
performance degradation caused by fluctuating network quality 
when a fixed split layer is applied. To overcome this limitation, 
the following section formalizes a network-aware adaptation 
requirement and introduces an ASFL scheme that dynamically 
determines the split layer according to RSU–server channel 
conditions. This adaptive design aims to stabilize training and 
improve efficiency in vehicular edge environments with highly 
variable communication links. 

To capture the communication cost associated with each 
split position, we model the uplink delay between RSU �and the 
server as a function of the selected cut layer. Let 6 �
{0,1,2,3,4}denote the predefined set of candidate cut layers, and 
let 9�
�represent the size (in bits) of the smashed activations 
produced at cut layer 
 ∈ 6 . Given the instantaneous uplink 
bandwidth �� available to RSU � , the corresponding 
transmission delay is expressed as 

IV. PROPOSED SCHEME 

In a split learning framework, the cut layer determines both 
the distribution of computational workload between RSUs and 
the server and the size of intermediate activations transmitted 
over the wireless backhaul. Assigning a deeper cut enables 
richer feature extraction at the RSU, which can be beneficial for 
learning under heterogeneous data distributions, but it also 
generates larger activation tensors that significantly increase 
uplink transmission cost. In contrast, a shallower cut reduces 



communication overhead by producing compact activations, 
while constraining the representational capacity of the RSU-side 
model. This trade-off becomes particularly critical in vehicular 
edge environments, where RSU–server channel conditions 
fluctuate over time and differ across deployment locations. 
Under such conditions, employing a fixed cut layer cannot 
consistently balance communication efficiency and learning 
effectiveness, motivating the need for a dynamic, network-
aware split selection strategy. 

��;<�
� �
9�
�
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This formulation reflects the fact that deeper cuts, which 
place more layers at the RSU, generate larger activations and 
thus incur longer transmission delays when bandwidth is 
limited. 

Based on this model, the proposed method selects the cut 
layer for each RSU by minimizing the transmission delay under 
current channel conditions. For RSU � , the split layer is 
determined by 


�∗ � argmin�∈6 ��;<�
� �9� 
so that RSUs experiencing poor channel quality are assigned 

shallower cuts with smaller activation sizes, whereas RSUs with 
favorable channels can adopt deeper cuts to preserve richer 
feature representations. Because all RSUs are assumed to have 
comparable computational capabilities, this decision rule 
focuses adaptation solely on network variability rather than 
device-side processing differences. 

Once each RSU has selected its cut layer and completed split 
forward and backward propagation with the server, RSU-side 
parameters are updated locally and then aggregated at the server 

following the SplitFedV1 protocol. Let ��
�)�

denote the RSU-

side model parameters of RSU �after local updates in round (, 
and let 0�be the number of training samples used at RSU �. The 
server computes the updated global RSU-side model as 
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This aggregation rule preserves the standard convergence 
behavior of split federated learning while allowing each RSU to 
employ a different cut layer according to its instantaneous 
channel state. As a result, the proposed adaptive scheme reduces 
unnecessary communication overhead for bandwidth-limited 
RSUs and improves the overall stability and efficiency of 
training under heterogeneous and time-varying vehicular 
network conditions. 

 

V. EXPERIMENTATION & RESULTS  

A. Simulation Environment 

Table. 1. Simulation Parameters 

 

Table I presents the simulation parameters employed in this 
study. Four RSU-mounted edge devices collaboratively train a 
ResNet-18 model with a centralized VEC server under the 
proposed ASFL framework and its variants incorporating 
different cut-selection strategies. The training process is 
executed for 200 rounds with a fixed local batch size of 32, using 
vehicle perception data from the BDD100K dataset and 
pedestrian perception data from the CityPersons dataset. 

B. Experimental Results 

 

Fig 3. Local Training accuracy for each object 

Fig. 3 illustrates the progression of local training accuracy 
for vehicle and pedestrian perception across the four RSUs. All 
RSUs show steady improvement and ultimately converge 
despite environmental differences. RSU 1 and 4, located in areas 
with minimal pedestrian, start with lower pedestrian-detection 
accuracy but gradually improve and approach the performance 
of RSU2 and RSU3, indicating that the collaborative learning 
process mitigates location-driven data imbalance. 

 

Fig 4. Accuracy and latency comparison with different cut layers 



Fig. 4 compares the accuracy and latency characteristics of 
the ASFL framework under three different cut configurations. 
The 5-cut setting achieves the highest detection accuracy, 
indicating a more balanced partitioning of computation between 
RSUs and the VEC server. In contrast, the 3-cut and 9-cut 
settings show slower accuracy improvement due to their 
disproportionate local computation or communication demands. 
The training-latency results further highlight the efficiency of 
the proposed 5-cut approach, which converges to a substantially 
lower latency than the other two configurations. A similar trend 
is observed in communication latency, where the 5-cut scheme 
consistently maintains the smallest overhead. These results 
demonstrate that an appropriately chosen cut position can 
improve both model performance and resource utilization within 
the RSU–VEC collaborative learning environment. 

Overall, the evaluation results demonstrate that the proposed 
ASFL framework provides consistent performance gains across 
heterogeneous RSU environments. The 5-cut configuration, in 
particular, achieves a more favorable balance between detection 
accuracy and delay, confirming the effectiveness of adaptive 
computation–communication partitioning in RSU–VEC 
collaborative learning. Furthermore, the convergence behavior 
observed across all RSUs, including those with limited 
pedestrian exposure, indicates that the framework effectively 
mitigates data imbalance and promotes stable model refinement. 
These findings collectively validate the robustness of the 
proposed approach and establish its suitability for deployment 
in practical multi-RSU edge intelligence systems. 

VI. CONCLUSION 

This paper presented a channel-driven ASFL framework for 
RSU–VEC collaborative perception, addressing the limitations 
of fixed split configurations under heterogeneous vehicular 
communication environments. By dynamically selecting the 
split layer based on RSU–server link conditions, the proposed 
approach effectively balances communication overhead and 
feature expressiveness, leading to improved detection accuracy 
and reduced training latency across RSUs with diverse sensing 
characteristics. Experimental results demonstrated that adaptive 
cut selection enables stable convergence even under non-IID 
data distributions, highlighting the benefit of network-aware 
partitioning in vehicular edge intelligence systems. While this 
work intentionally focuses on isolating the impact of network 
variability by assuming comparable computational capabilities 
among infrastructure-powered RSUs, future work will extend 
the proposed framework to jointly consider dynamic 
computational latency and communication conditions, enabling 
more comprehensive optimization under realistic, time-varying 
RSU workloads. 
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