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Abstract—The adoption of artificial intelligence (AI) in disaster
countermeasures is transforming emergency response, yet real-
world frontline deployment remains limited by unstable connec-
tivity, scarce computing resources, power constraints, and non-
expert users. This paper introduces a Federated Deep Double Q-
Network (DDQN) reinforcement learning model deployed on the
Extensible Front-line Augmented Communication Exchanger (X-
FACE), an edge-based portable device. The proposed model au-
tonomously maps disaster-affected zones, enabling agents to learn
efficient search policies and support first-responder decision-
making even in fully offline or resource-limited conditions.
By continuously optimizing search routes and task allocation,
the framework accelerates the detection and rescue of missing
survivors. Experimental results show that the proposed method
achieves high detection performance (AUDC up to 0.82), enables
early survivor discovery within roughly 3 hours, and recovers
more survivors in shorter missions, demonstrating practical
effectiveness for rapid and robust search and rescue operations.

Index Terms—Artificial Intelligent, DDQN, portable edge
server, disaster search and rescue,loT, wearable device, commu-
nication, coordination activities

I. INTRODUCTION

The frequency and severity of natural disasters have inten-
sified in recent years, and in most of these events, effective
communication plays a crucial role in facilitating timely and
coordinated search and rescue efforts. However, in many cases
of large-scale disasters, telecom services and Internet con-
nectivity are disrupted due to infrastructure damage or traffic
congestion. In addition, first responders (e.g., firefighters) face
significant challenges in carrying out their duties of searching,
rescuing and ensuring the safety of survivors in disaster-
affected areas.

To address these challenges we have proposed a Front-Line
Operation System (FLOS) [1], later renamed to the Extensible
Frontline Augmented Communication Exchanger (X-FACE,
referred to as X-FACE hereafter). X-FACE enables frontline
operators such as firefighters, medical personnel, and police
officers to efficiently collect and share information at disaster
sites. The system incorporates edge-based Al functions that
provide features such as speech recognition, intelligent image
processing, and automatic analysis, and extracting information
even under Internet disruption. To further improve disaster
response operations, particularly in search and rescue, and
to ensure that the challenges faced by first responders are

alleviated, an edge-based federated Double Deep Q-Network
(DDQN) [2] is introduced as an important component.

This paper introduces a novel disaster response architecture
that integrates a resource-efficient Federated Dueling Double
Deep Q-Network (Federated DDQN) deployed on the X-
FACE. The proposed framework empowers multiple edge-
based agents, such as first responder teams, drones, and robots,
to autonomously learn, adapt, and coordinate search actions
using local sensing and communication. The proposed Fed-
erated DDQN combine Federated aggregation, adaptive quan-
tization, and advanced reinforcement learning, to delivers an
operationally practical, scalable, and field-ready Al solution.
Unlike traditional centralized models, the proposed method
distributes intelligence across multiple agents, creating a col-
lective intelligence network that strengthens search and rescue
policy. The performance and advantages over conventional
search paradigms and edge model reduction techniques are
validated in realistic multi-agent search and rescue evaluation.
The goal of the proposed method is to facilitate improved
search and rescue operations with minimal constraints.

The rest of this paper is organized as follows. Section
II, presents the related works on the use of Al in disaster
response. Section III describes the proposed federated DDQN.
In Section IV, we describe the performance evaluation of the
proposed method, and Section V concludes the entire paper.

II. RELATED WORK

The research related to the use of Al in disaster response
operation has been gaining increasing focus in recent times.
Merkle et al. [3] focuses on utilizing drone-based data and
deep learning methods to automate situation assessment and
aid delivery in disaster relief efforts.

Samikwa et al. [4] presented a system that combines IoT,
Artificial Neural Networks (ANN), and edge computing for
short-term flood prediction. The proposed system used LSTM
to predict flood water levels ahead of time by monitoring
rainfall and water level sensor data in real-time. Stateczny
et al. [5] also introduced a novel deep hybrid model for
flood prediction that combines Convolutional Neural Network
(CNN) and Residual Network (ResNet) classifiers. It focuses
on flood detection using remote sensing satellite images and
incorporates preprocessing techniques like median filtering and



segmentation. Similar to this, Alsumayt et al. [6] introduced
a method for flood detection in Saudi Arabia using drones
equipped with a Flood Detection Secure System (FDSS). They
integrates deep active learning based classification models and
blockchain-based federated learning with partially homomor-
phic encryption (PHE).

Conversely, Abid et al. [7] reviewed recent studies on the
applications of artificial intelligence (AI) in disaster risk reduc-
tion, disaster preparedness, and disaster response. The review
offers a comprehensive overview of the current state and trends
of Al research in disaster management. Andreassen et al.
[8] discussed the challenges faced by emergency response
coordination in complex environments, such as the Arctic,
where limited resources, unpredictable conditions, and tech-
nical limitations hinder information sharing among response
units.

While efforts are being made to use Al in disaster counter-
measures, there are various challenges such as data reliability
and quality, Al integration and compatibility, and resource
allocation and accessibility. As part of our contribution, our
proposed method is implemented with these challenges in
mind and can help reduce some of these constraints. Fur-
thermore, our Federated DDQN differs from state-of-the-art
methods by introducing an innovative architecture that com-
bines a resource-efficient Dueling Double Deep Q-Network
(DDQN) with a Federated Deep Reinforcement Learning
(FDRL) framework, enabling hyperparameter optimization and
improving overall search and rescue performance.

III. PROPOSED FEDERATED DDQN FOR DISASTER
SEARCH AND RESCUE

In order to improve efficiency in search and rescue opera-
tions under disaster situations where communication and ICT
services are disrupted, it is important to have advanced ICT
tools and mechanisms that can support multi-responder mis-
sions, where efficient coordination is essential and decisions
must be made under partial observability. Therefore, in this
paper, we propose a Federated DDQN model deployed on X-
FACE (i.e., a portable system embedded with edge-based Al
functions).

To achieve this, in the aftermath of a large-scale disaster, a
first responder team (e.g., a team leader and four members) is
deployed to the affected area for a search and rescue mission.
The team leader carries X-FACE (i.e., a wearable device)
when searching for survivors in the disaster area. Each first
responder operates within the network coverage radius of the
X-FACE core.

Unlike traditional approaches, where there is no means of
knowing which locations have already been searched by each
first responder, X-FACE provides efficient search coordination.
This is made possible through its embedded Al functions. The
search area of each first responder is automatically analyzed
and shared with all team members via the X-FACE core. In
addition, X-FACE ensures that all voice-based communication
can be automatically transcribed into text using its speech-to-
text engine. This allows first responders to conduct hands-free

searches without the need to manually input information on
their devices, thereby improving the processing time required
to carry out their activities.

Each first responder’s device acts as an agent in a multi-
agent reinforcement learning system. These agents learn opti-
mal search patterns and strategies over time. The X-FACE core
(miniPC) serves as a coordinating hub, dynamically allocating
search areas to each agent based on the current location of each
responder, areas already searched, the probability distribution
of survivor locations (updated in real time), and individual
agent performance metrics.

Therefore the following subsections outline the complete
Federated DDQN pipeline, from local agent design to model
formation, federated aggregation, portability, and final training
and deployment.

A. Dueling DDQON for Local Edge Agents

Building on the coordination capabilities provided by X-
FACE, in this section we explain the underlying reinforcement
learning model that enables agents to learn and adapt search
strategies in real time. Each frontline device operates as a local
edge agent powered by a Federated DDQN.

In our proposed model, each first responder’s device func-
tions as an intelligent agent embedded within a cooperative
search and rescue mission. In this setting, we adopt a Dueling
Double Deep Q-Network (DDQN), which decomposes the
value estimation into separate streams: one for the value
function V (s) and another for the advantage function A(s, a).
Here, the term “streams” refers to the two internal neural
network branches that separately compute the state-value V'(s)
and the action-advantage A(s,a) before they are combined to
form the final Q-value. For state s and action a, the Q-value
is derived as in Equation 1, where § = {«, 3} represents
the set of trainable weights, with « corresponding to the
parameters of the advantage stream and [ corresponding to the
parameters of the value stream. The function V'(s; ) estimates
the value of being in state s, while A(s,a; ) estimates the
relative advantage of taking action a in state s. The subtraction
of the mean advantage term ﬁ > A(s,a’; ) ensures that
the advantage function is centered, preventing identifiability
issues between the value and advantage streams. Here, A
denotes the set of possible actions available to the agent in the
current situation, such as movement directions, communication
actions, or assisting survivors.

Q(s,a;0) = V(s; 5) + (A(S,a;a) - ﬁ ZA(s,a’;a)>

)

The design of our proposal enables sub-256 KB model

storage and energy-efficient execution, ensuring that the Fed-

erated DDQN remains practical for real-time disaster response
operations.

B. Model Formation for Search and Rescue

Based on the local DDQN architecture for edge agents
formed in III-A, this section describe how the model is



formed for search and rescue missions, detailing the state
representations, reward design, and action selection process.

Each agent periodically senses its local environ-
ment—mapping features such as survivor likelihood heatmaps,
map accessibility, teammate locations, and input from nearby
X-FACE units. The agent then selects actions to maximize
long-term mission reward, which is computed as a weighted
combination of survivor finds, time penalties, Dbattery
conservation, and communication success. The reward guides
the agent by assigning positive values to actions that lead to
survivor discovery and efficient coverage, and negative values
to actions that waste time or revisit explored areas, enabling
the DDQN to learn search behaviors that maximize long-term
mission success.

In order for the model to adopt a robust policy that can
be deployed towards disaster search and rescue, the policy
learning proceeds online, with the DDQN parameters updated
after each episode using the double-network target update
as shown in Equation 2. Here, o denotes the learning rate,
0~ represents the target network parameters, and ~ is the
discount factor controlling reward foresight. In addition, Qg
refers to the online Q-network, while (Qy— denotes the target
Q-network. These local updates are subsequently aggregated
across responders through X-FACE, forming the basis of the
Federated DDQN for coordinated search and rescue.

00+ [Tt + 7Q6*<5t+17 arg max Qg (41, a’))
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Figure 1 shows the operational flow of our Federated DDQN
model deployed on X-FACE. The area data from the disaster
grid is sensed and uploaded to the X-FACE core, where local
agents perform scans and receive coordinated assignments.
Each agent trains a local DDQN model, which is periodically
aggregated via a federated learning protocol. The updated
global policy is redistributed to agents, improving survivor
detection and route guidance. This cycle enables adaptive,
distributed learning under resource constraints, as validated
in our evaluation.
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Fig. 1. Federated DDQN architecture.

C. Federated DDQN Protocol

Since search and rescue missions demand cooperation with-
out dependence on centralized servers, it is necessary to

adopt federated deep reinforcement learning as part of our
proposed system. Each X-FACE periodically transmits its
updated (locally quantized) DDQN parameters 6; to a secure
FDRL aggregation node. The FDRL server updates the global
model as a reliability-weighted mean, as shown in Equation
3. Here, 6; denotes the locally trained DDQN parameters of
agent ¢, 0410pq1 Tepresents the aggregated global parameters, w;
is the reliability weight assigned to agent 7, and NV is the total
number of participating agents. The weights w; reflect real-
time communication success, battery level, and local episode
return, thereby promoting contributions from more reliable
and effective units. After aggregation, the improved global
parameters 005, are redistributed, and agents resume local
training with the updated model, ensuring adaptation to both
global and local trends.

eglobal = 7]\/7 3

This protocol allows every agent to benefit from collective
learning, even when direct peer-to-peer synchronization is
disrupted by intermittent wireless or environmental conditions.
Unlike conventional federated averaging or static parameter
sharing, the proposed Federated DDQN protocol integrates
operational reliability and real-time performance directly into
the aggregation process.

D. Federated DDQN Model Portability

To achieve the portability of our proposed Federated DDQN,
we adopt Adaptive Action-Set Quantization (AASQ) to com-
press the model and enable smooth execution in resource-
constrained environments. Typical quantization applies uni-
form (e.g., 8-bit) compression to all network weights, which
can penalize accuracy for actions or features that are criti-
cal under local mission constraints. Our AASQ mechanism
introduces a dynamic, action-aware scheme that selectively
allocates precision to network branches associated with high-
variance, and important actions. Formally, after each learning
round, the bitwidth b; for layer j is set as in Equation 4:

bmin) : U(Qj )p (4)

Here, 0(Q’) is the normalized standard deviation of Q-
values at the output neurons of layer j, computed over a sliding
observation window during search and rescue operations. The
parameters b,,;, and b,,,, define the adaptive bitwidth range
(e.g., 4-8 bits), while p modulates sensitivity. For branches
tied to critical and uncertain actions (high o(Q?)), the mech-
anism preserves higher precision; for stable, routine actions,
it reduces bitwidth, minimizing model footprint and memory
operations. By analyzing reward and action-value variance in
real time, AASQ customizes quantization to the operational
context rather than applying a one-size-fits-all policy.

bj - bmzn + (bmax -

E. Training and Deployment

Training of the proposed model begins with each agent’s
DDQN using simulated, stochastic disaster scenarios, followed



TABLE I
SIMULATION PARAMETERS
Parameter Value
Disaster area sizes 400m x 400m up to 1km x 1km

20m

20 x 20, 30 x 30, 40 x 40

10 x 10, 15 x 15, 25 x 25, 35 x 35
4-8 (scenario-dependent)

15-35 (scenario-dependent)

Grid cell size
Training grid sizes
Evaluation grid sizes
Number of agents
Number of survivors

Detection probability 0.6-0.85

Scan requirement 2-4 scans

Scan range 2-3 grid cells (Manhattan distance)
Obstacle ratio 0.2-0.3

Search time (evaluation) 6-24 hours

Agent movement speed 1.0m/s

Replay buffer size 10° transitions

Batch size 128

Learning rate 0.0005

Discount factor (vy) 0.95

Model aggregation interval | Every 1000 agent steps

by federated learning rounds in which compressed parameter
updates is shared with X-FACE for aggregation. The AASQ
is applied after every local update round, ensuring parameters
are stored and communicated efficiently. The final quantized
federated model is then deployed to X-FACE cores, enabling
real-time inference and robust responder coordination.

The proposed model hyperparameters are selected to reflect
edge deployment realities. For example, the learning rate is
set to = 0.0005, the discount factor to v = 0.95, and the
replay buffer includes 10° transitions, with a batch size of 64
and a synchronization interval of every 1000 agent steps. For
quantization, the bitwidth bounds are set to b,,;, = 4 and
bmaz = 8, with the adaptation parameter p = 0.5, ensuring a
balance between efficiency and expressivity for the deployed
models.

IV. PERFORMANCE EVALUATION

In this section, the performance evaluation of the proposed
federated DDQN for disaster search and rescue was conducted
through a structured model training and evaluation process
implemented in Python programming. The model training
scenarios were designed to expose agents to varying grid sizes,
survivor densities, obstacle ratios, and detection probabilities,
that reflects realistic search conditions and agents limitations
(here agents are physical first responders/drone/sensors), while
the evaluation scenarios are designed to extend these condi-
tions to longer search times and stricter scan requirements.
Each scenario was designed to simulate a disaster-affected
area, where missing survivors are initially placed using a
uniform random distribution across a defined grid. The grid
represents a physical area which were discretized into grids
of different sizes.

Each first responder is modeled as a mobile agent with
access to the X-FACE core, operating under a random walk
mobility model with a strict non-revisit constraint. Agents
avoid previously visited cells and those visited by other team
members, promoting spatial coverage and reducing redun-
dancy. The movement speed was set to 1.0 m/s, and agents

perform active scans for survivors within their scan range.
The scanning process incorporates probabilistic detection and
multi-scan confirmation, reflecting real-world limitations in
thermal imaging and acoustic sensing. Survivors are only
confirmed after a required number of scans, and detection
probabilities vary across scenarios to simulate sensor degra-
dation and environmental interference.

Hyperparameters for training were selected to reflect practi-
cal edge settings. The federated model aggregation every 1000
agent steps. The evaluation phase was conducted using both
CPU and GPU systems, with scenario files specifying search
durations in hours, detection probabilities, scan requirements,
and obstacle ratios. The summary of the key parameters used
in both training and evaluation is shown in Table 1.

A. Model training results

To determine the usability of the proposed model in im-
proving disaster search and rescue operation, first we train the
model using a multi-grid approach. Figure 2 shows the model
training metrics.

1) Training Loss:

The training loss profile of the proposed federated DDQN is
shown in Fig. 2(a). As shown in the results, the loss fluctuated
significantly during the early stages of training, particularly
between update steps 1000 and 4000. This instability is
expected due to the initial exploration phase, where agents
interact with diverse scenarios and the replay buffer is still
being populated. The sharp spikes in loss during this phase
reflect the high variance in Q-value targets, especially when
agents encounter rare survivor configurations or high obstacle
densities.

After update step 4000, a noticeable decline in loss values
was observed, indicating that the model began to stabilize
and converge. The reduction in loss suggests that the Q-
network was able to approximate the expected returns more
consistently across episodes. The final segment of the curve
shows a smoother trajectory, confirming that the federated
updates and target network synchronization were effective in
reducing gradient noise and improving convergence.

2) Temporal Difference (TD) Error:

Furthermore, we measure the TD error, which measures the
discrepancy between predicted Q-values and target returns,
as shown in Fig. 2(b). The curve reveals a dynamic learning
process, with TD error rising steadily during the initial updates
and peaking around step 3000. This increase corresponds to
the agent encountering more complex survivor placements
and obstacle configurations, particularly in the larger grid
scenarios. The elevated TD error during this phase reflects the
challenge of generalizing across multiple environments with
varying scan requirements and detection probabilities.

Following the peak, the TD error began to decline, indicat-
ing that the agent was able to reduce prediction inconsistencies
and improve its value estimation. These fluctuations are not
detrimental; rather, they highlight the system’s ability to adapt
to diverse conditions without overfitting to a single environ-
ment. The overall trend confirms that the agent was learning
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Fig. 2. Model training.

to align its Q-values with actual returns, a critical aspect of
stable policy improvement.

3) Gradient Norm:

We consider the gradient norm behavior, which is used
to manage and balanced magnitude of parameter updates
and the stability of the optimization process during model
training. As shown in Fig. 2(c), the gradient norm remained
close to the clipping threshold of 10 for a substantial portion
of the training, particularly between update steps 1000 and
4000. This indicates that the model was undergoing aggressive
updates, likely due to high TD error and volatile Q-value
estimates during early training.

The frequent spikes to the maximum value suggest that the
agent was encountering steep gradients, which were clipped
to prevent instability. This behavior is consistent with the use
of federated aggregation and scenario cycling, where abrupt
changes in environment dynamics can lead to sharp shifts
in the loss landscape. The reduced gradient activity in the
later stages confirms that the agent was refining its policy
with smaller, more precise updates, a sign of convergence and
improved generalization.

4) Survivors Found and Coverage Ratio:

Lastly, the task-level performance of the agent was evaluated
using the number of survivors found per episode and the
coverage ratio, as shown in Fig. 3. The dual-axis plot presents
both metrics over 100 training episodes, providing a clear view
of the agent’s search effectiveness and spatial exploration.

The results confirm that initially, the number of survivors
found per episode showed a rising trend, indicating that the
agent was learning to prioritize survivor detection. How-
ever, beyond episode 40, a gradual decline was observed.
This reduction may be attributed to the agent’s shift toward
exploitation, where it favors known high-reward paths and
reduces exploratory spread. The coverage ratio followed a sim-
ilar trajectory, with early episodes showing broad exploration
and later episodes exhibiting more focused movement. This
behavior is consistent with the epsilon decay schedule and
the influence of revisit penalties and proximity shaping in the
reward function. Despite the decline, the agent maintained a
reasonable balance between detection and coverage, suggest-
ing that it was able to adapt its strategy based on scenario
complexity.
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Fig. 3. Survivors found vs search coverage.

B. Model evaluation

In order to confirm the effectiveness of our proposed
federated DDQN model, we evaluate its performance when
deployed in a search and rescue operation. For this, we used
four different scenarios: A, B, C, and D, with search durations
of 6, 12, 18, and 24 hours respectively. We measured the Area
Under the Detection Curve (AUDC) to assess the model’s
overall detection performance, and compared the evaluation
results to the AUDC achieved during training. Additionally,
we measured the time to first discovery, which indicates how
quickly agents using the trained model can locate missing
survivors during a disaster search and rescue. Lastly, we
measured the total number of survivors found at the end of
each mission.

1) AUDC per Scenario:

Figure 4(a) shows the AUDC values across the four evalu-
ation scenarios. The results show how well the trained model
generalizes under varying search durations. Scenario B (12h)
achieved the highest AUDC of approximately 0.82, followed
closely by Scenario A (6h) with a mean AUDC of 0.78.
These results suggest that the model performs best under
moderate search durations where agents have sufficient time
to explore without excessive drift or redundancy. Scenario D
(24h) recorded a mean AUDC of around 0.72, indicating a
slight drop in detection consistency over extended missions.
On the other hand, Scenario C (18h) had the lowest AUDC of
approximately 0.65, with a wide confidence interval, reflecting
high variability in agent performance across runs. This drop
may be attributed to increased search space complexity and
diminishing returns in survivor detection as time progresses.

When comparing the evaluation results to the overall train-
ing performance, the model shows consistent generalization
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Fig. 4. Model evaluation

as shown in Fig. 4(a). The results confirms that the training
AUDC was approximately 0.75, which aligns closely with the
evaluation values in Scenarios A and B. Scenario B exceeded
the training performance, while Scenario A matched it. This
comparison confirms that the model retains its detection ability
when deployed, especially in scenarios that resemble the
training conditions. The slight under performance in longer
scenarios suggests that the model may benefit from additional
training exposure to extended search durations or more diverse
survivor distributions.

2) Time to First Discovery: Figure 4(b) highlights the time
to first discovery metric which shows how quickly agents
using the trained model can locate survivors. According to the
results, in Scenario A, agents found the first survivor within
approximately 3.0 hours, which is consistent with Scenario
B, also averaging around 3.0 hours (reported times reflect
simulation time, not real-world wall-clock time.) Scenario C
recorded a higher mean of 4.0 hours, while Scenario D reached
4.5 hours. The narrow confidence intervals in Scenarios A
and B indicate stable early detection, whereas the wider
intervals in Scenarios C and D reflect inconsistent agent paths
and delayed convergence. These results show that the model
enables prompt detection in shorter missions but may require
reinforcement strategies to enable more faster detection in
extended operations.

3) Overall Survivors Found: Lastly, the number of sur-
vivors found at the end of each evaluation run provides a direct
measure of search effectiveness. As shown in 4(c), Scenario A
achieved the highest average with approximately 8 survivors
found, followed by Scenario B with around 5. Furthermore,
Scenario C recorded the lowest count at 3, and Scenario D
slightly improved to 4. The decreasing trend from Scenario A
to C reflects the challenge of maintaining search efficiency
as mission time increases. The slight recovery in Scenario
D may be due to agents eventually covering more ground,
but the overall count remains below optimal. These results
confirm that the trained model is most effective in shorter
missions where survivor density and agent coordination are
more favorable.

V. CONCLUSION

In this paper, we proposed a Federated DDQN for edge-
based disaster response to improve search and rescue opera-
tions and ensure that missing survivors are located in a timely
manner. Specifically, we adopt a Dueling Double Deep Q-
Network (DDQN) that enables each first responder’s device to

act as an intelligent agent capable of learning optimal search
patterns and strategies over time.

Our performance evaluation confirms that the trained model
is most effective in shorter missions where survivor density
and agent coordination are more favorable, and confirms
strong detection capability in short and moderate missions.

In future work, we will extend the system through model
fine-tuning, exposure to larger grid environments, and quantum
aggregation to further shorten learning cycles and enhance
robustness. Additionally, we will conduct extensive evaluation
of X-FACE in disaster response using system-level simulations
under diverse wireless network conditions.
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