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Abstract—This paper investigates the expressive power of
shallow ReLU neural networks from a geometric and combina-
torial viewpoint. While the approximation capabilities of ReLLU
networks have been studied extensively, far less attention has been
paid to the geometric structure of the decision boundaries that
such networks induce. Focusing on networks with a single hidden
layer acting on the 2-dimensional Euclidean space, we analyze
how ReLU activations partition the input space into polyhedral
regions and how these regions combine to form piecewise-
linear decision boundaries. Using tools from the theory of affine
hyperplane arrangements, we provide a simple characterization
of the bending complexity of decision boundaries and relate it
directly to the chamber structure of the underlying arrangement.
This geometric perspective offers a transparent description of
the mechanisms by which even small ReLU networks generate
nonlinear separators, and serves as a foundation for future
investigations into deeper or higher-dimensional architectures.

Index Terms—ReLU, hyperplane arrangement, expressive
power, oriented matroid.

I. INTRODUCTION

Rectified Linear Unit (ReLU) neural networks have become
a central model in modern machine learning, owing to their
computational efficiency and strong empirical performance.
From a theoretical perspective, the expressive power of ReLU
networks has been studied extensively, with a particular fo-
cus on approximation properties, representation capacity, and
depth—width trade-offs. Various works have shown that ReLU
networks can approximate broad classes of functions and that
network depth plays a crucial role in enhancing expressive
efficiency.

In this paper, we revisit the expressive power of simple
ReLU networks from a geometric viewpoint. Whereas much
existing literature studies approximation accuracy or function
classes, our interest lies instead in the geometry of decision
boundaries induced by such networks. Because ReLLU net-
works are piecewise-linear, their decision boundaries consist
of linear segments joined at bending points. The position
and number of these bends encode essential aspects of the
network’s expressive power.

Research questions. Motivated by the geometric nature of
ReLU networks, we pose the following questions:
(1) What kinds of geometric decision regions (e.g., shapes of
label-1 sets) can be realized by ReLU networks of fixed
width and depth?

(il)) How many hidden units and layers are required to realize
a target decision region, or to approximate it to arbitrary
precision?

These questions are fundamental for understanding the
structural limitations and capabilities of neural networks. They
also complement classical approximation-theoretic results by
focusing on the geometry of classification boundaries rather
than the approximation of scalar-valued functions.

Our analysis begins with the simplest nontrivial case: ReLU
networks with a single hidden layer acting on R2. Despite
this seemingly restrictive setting, the network already exhibits
rich geometric behavior. The decision boundary is not a single
line but a piecewise-linear curve composed of multiple linear
segments connected at bending points. Understanding how
these bends arise and how many such bends can occur is a
key step toward answering the research questions above.

A central observation underlying our approach is that each
ReLU unit induces a hyperplane in the input space cor-
responding to its activation boundary (pre-activation value
zero). Consequently, the activation patterns of a shallow ReLU
network correspond to the chambers of an associated affine
hyperplane arrangement. Within each chamber, the network
computes an affine function, and the decision boundary is
obtained by stitching together the affine decision surfaces
across adjacent chambers.

This viewpoint connects the study of ReLU networks di-
rectly with the classical theory of hyperplane arrangements
and oriented matroids. In particular, our results show that the
number of bending points of a connected component of the
decision boundary is controlled by the number of chambers
intersected by that component. Thus, the geometric complexity
of the decision boundary is governed by combinatorial prop-
erties of the induced hyperplane arrangement.

Although the setting is intentionally minimal, it already
reveals the structural mechanism by which ReLU networks
generate nonlinear decision boundaries. Moreover, this per-
spective provides a principled way to reason about which
decision regions can or cannot be realized using networks of a
given size. We view this work as a first step toward a general
geometric framework for classifying the expressive power of
ReLU networks.



The remainder of the paper is organized as follows. Sec-
tion II reviews affine hyperplane arrangements and oriented
matroids. In Section III, we review some related works.
Section IV presents our main result on the bending complexity
of decision boundaries. Section V illustrates these ideas with
explicit examples. Section VI discusses extensions, limitations,
and open problems.

II. TERMS AND NOTATIONS

In this section, we introduce the terminology and notations
that will be used throughout the paper. Our exposition is inten-
tionally brief and focuses only on concepts that are directly
relevant to the geometric analysis of decision boundaries of
ReLU neural networks. In particular, we review affine hyper-
plane arrangements and oriented matroids from a geometric
viewpoint.

A. Affine Hyperplane Arrangements
An affine hyperplane in R? is a subset of the form

H={zcR|a"z+b=0}, (I1.1)

where a € R%\ {0} and b € R. A finite collection of affine
hyperplanes

A={H,... H,}, (IL.2)

is called an affine hyperplane arrangement.

An arrangement A decomposes R? into a finite number
of connected open regions, referred to as chambers. Each
chamber is a convex polyhedron, and the union of all cham-
bers, together with their lower-dimensional faces, provides a
polyhedral cell decomposition of the ambient space. In the
planar case d = 2, which is the primary focus of this paper,
chambers are polygonal regions bounded by line segments.

Affine hyperplane arrangements arise naturally in the study
of ReLU neural networks. Each ReLU unit is associated with
a pre-activation function of the form a 'z + b, and the corre-
sponding hyperplane a'x + b = 0 separates the input space
into regions where the activation is either active or inactive. As
a result, the collection of all pre-activation hyperplanes induces
an arrangement whose chambers characterize the activation
patterns of the network.

Within each chamber of the arrangement, the RelLU neural
network reduces to an affine function, since the activation
status of every ReLU unit is fixed. Consequently, the decision
boundary of the network intersects each chamber along an
affine subspace of codimension one, typically a line segment
in R2.

For a comprehensive treatment of affine hyperplane arrange-
ments and their combinatorial and geometric properties, we
refer to the classical monograph by Orlik and Terao [1].

B. Oriented Matroids

Oriented matroids provide a combinatorial framework for
encoding the structure of affine hyperplane arrangements.
Given an arrangement

A={Hy,....,H,}, H;y={z|a]xz+b =0}, (IL3)

one associates to each point x € R? a sign vector

sign 4(z) = (sign(aj @ + b1),...,sign(a, z + b,))
€ {+7 07 _}n.

The collection of all such sign vectors forms the set of cov-
ectors of the oriented matroid associated with the arrangement.
Covectors with no zero entries correspond to chambers, while
covectors with at least one zero entry correspond to lower-
dimensional faces lying on one or more hyperplanes.

A systematic and authoritative exposition of oriented ma-
troids and their deep connections to affine hyperplane arrange-
ments is given in the monograph by Bjorner et al. [2].

From this perspective, the combinatorial data of the oriented
matroid captures how hyperplanes intersect and how the
arrangement partitions the ambient space, independently of the
specific geometric realization. This abstraction is particularly
useful when analyzing piecewise-linear structures, such as
those arising from ReLU activations, where the geometry is
determined by sign patterns of affine functions.

In the context of ReLU neural networks, the activation
pattern of the hidden units at an input point = naturally
defines a covector of the associated oriented matroid. The
decision boundary, given by the zero set of the network
output, corresponds to a collection of faces where additional
linear constraints are satisfied. This viewpoint allows us to
relate geometric properties of decision boundaries, such as
bending points, to purely combinatorial features of hyperplane
arrangements and their oriented matroids.

The relevance of hyperplane arrangements to neural net-
works has also been highlighted in studies on linear region
complexity and expressivity of ReLU networks; see, e.g.,
Raghu et al. [3].

(IL4)

III. RELATED WORK

The expressive power of neural networks has been studied
from various perspectives for several decades.

A classical result by Leshno et al. [4] established the
universal approximation property of feedforward neural net-
works with non-polynomial activation functions, including the
ReLU activation. Earlier foundational contributions include
the seminal works of Cybenko [5] and Funahashi [6], [7],
as well as studies on the capability of shallow perceptron ar-
chitectures [8]. Since then, numerous works have investigated
the approximation capabilities of ReLU neural networks, with
particular emphasis on depth—width trade-offs and representa-
tion efficiency. For a general early overview of neural network
models and learning mechanisms, see the introductory article
by Lippmann [9].

More recently, several studies have focused on the geometric
and combinatorial properties of ReLU networks. It is well
known that ReLU activations induce piecewise-linear func-
tions, and that the input space is partitioned into polyhedral
regions on which the network behaves affinely. This obser-
vation has motivated analyses based on region counting and
linear region complexity, as well as connections to hyperplane
arrangements and polyhedral geometry.



From a modern approximation-theoretic viewpoint, neu-
ral networks can be understood as nonlinear approximation
schemes whose expressive power is closely tied to composi-
tional structure and sparsity; see, for example, the survey by
DeVore, Hanin, and Petrova [10]. Related work has analyzed
the role of compositional depth in enhancing nonlinear ap-
proximation efficiency [11], as well as connections between
deep residual networks and nonlinear control systems [12].

A fundamental line of theoretical work on ReLU neural
networks concerns the combinatorial complexity induced by
their piecewise-linear activations. Because each ReLU unit
introduces a linear threshold, a feedforward ReLU network
partitions the input space into finitely many polyhedral regions,
commonly referred to as response regions. On each such
region, the network realizes an affine map.

Pascanu et al. [13] provided one of the earliest systematic
analyses of this phenomenon, deriving upper and lower bounds
on the number of response regions as a function of network
depth and width. Their results demonstrate that network depth
plays a crucial role in exponentially increasing the number of
linear regions, thereby offering a quantitative explanation for
the expressive efficiency of deep architectures.

Subsequent works have refined these bounds and further
clarified the relationship between network architecture and re-
gion counts, often through connections to hyperplane arrange-
ments and combinatorial geometry. While this line of research
primarily focuses on counting response regions, it leaves
open more detailed questions concerning the geometric and
topological structure of individual regions and their unions,
such as convexity, connectivity, and the global organization of
decision boundaries.

These works interpret ReLU networks as generating semial-
gebraic sets and investigate structural properties arising from
such representations. Although our focus is different, both ap-
proaches highlight the fundamental role played by piecewise-
linear and combinatorial structures induced by ReLU activa-
tions.

However, despite these advances, comparatively few works
have examined how the geometry of decision boundaries
themselves can be characterized in a precise and explicit man-
ner. In particular, the extent to which the decision boundary
of a target population can be represented by a ReLU neural
network, and how its geometric complexity depends on the
induced polyhedral structure, remains less understood.

The present work contributes to this line of research by
providing a geometric and combinatorial description of de-
cision boundaries for shallow ReLU neural networks in low
dimensions. By explicitly relating bending points of decision
boundaries to chambers of an associated affine hyperplane
arrangement, we offer a transparent framework for understand-
ing the piecewise-linear structure induced by ReLU activa-
tions.

IV. MAIN RESULT

In this section, we present our main result on the bending
complexity of decision boundaries arising from shallow ReLU

networks in two dimensions.

Theorem IV.1 (Bending complexity of shallow ReLU decision
boundaries). Let f : R2 — R be the decision function of a
ReLU neural network with a single hidden layer of width two
and a linear readout. Write the pre-activation as z = Wz+b €
R?, and assume rank(W) = 2 so that the induced hyperplanes

Hy:={z =0}, Hy:={z =0}, (IV.1)

form a rank=2 affine hyperplane arrangement in R2. Then the
decision boundary

{z € R?*| f(z) =0}, (IV.2)

is a piecewise-linear curve such that each connected compo-
nent is contained in at most three chambers of the arrangement

induced by {H., Ha}.

Consequently, any connected component of the decision
boundary has at most two bending points.
A. Proof of Theorem IV.1

Since rank(W) = 2, the affine map

z2=Wz+b:R? - R?, (IV.3)
is a bijection. The decision boundary in the x—space,
{z e R?| f(z) =0}, (IV.4)

is therefore the affine preimage of the curve I' in the z-space.
An affine bijection preserves piecewise-linearity as well as
the number of bending points of each connected component.
Hence it suffices to analyze the geometry of I' in the z—plane.

By expanding the definition of the ReLU, we can write the
decision function in z-coordinates as

y(z) = wio(2z1) + wao(22) + ¢

w121 +woeze +c¢, 21 >0, 20 >0,

_ weZo + ¢, 21 <0, 290 >0, IV 5)
wi21 + ¢, 21 >0, 22 <0, '
¢, sl S 0, Z9 S 0.

Thus, on each open quadrant the restriction of y is an
affine function of (21, 2z2). Consequently, the intersection of the
decision boundary T' = {y(z) = 0} with each open quadrant
is either empty or a single line segment. Any bending point of
T" can occur only when I' crosses one of the coordinate axes
z1 = 0 or z2 = 0, where the affine expression of y changes.

We next show that I" intersects each coordinate axis at most
once.

Claim. The curve I intersects the axes {z; = 0} and {z3 = 0}
at most once each.

Proof of the claim. Suppose that ¢ < 0 holds. We treat the
zo—axis; the argument for the z;—axis is analogous.

On the z,-axis, we have z; = 0, hence
y(0,22) = w10(0) + wao(22) + ¢ = wao(22) +c. (IV.6)

For zo > 0 (the upper half-axis), this is the affine function
wazo + ¢, which has at most one zero. For zo < 0 (the lower



half-axis), we have o(z2) = 0, so y(0,22) = ¢ < 0 and
thus there is no zero at all. Therefore I can intersect the
Zo—axis in at most one point. We can consider the case of
¢ > 0 in a similar manner. The same reasoning with z; and
zo interchanged shows that I intersects the z;—axis in at most
one point. O

Combining these observations, we obtain the desired bound
on the number of bending points. Each connected component
of I' is contained in a union of quadrants and may cross from
one quadrant to another only by crossing one of the axes. Thus,
I" never enters at least one quadrant and intersects each axis at
most once, and a connected component can visit at most three
quadrants. Moreover, every time the component passes from
one quadrant to another, the local defining affine function of y
changes, and the decision boundary acquires a bending point.

Hence, a connected component of I' can have at most two
such transitions between quadrants, and therefore at most two
bending points. Since the decision boundary in the x—space
is the affine preimage of I', the same bound holds for its
connected components. This completes the proof of Theo-
rem IV.1. O

V. SIMPLE EXPERIMENTS

In this section, we illustrate our theoretical results using
a simple numerical example. We consider a ReLU neural
network with a single hidden layer of width two and a linear
readout. The network is defined on R? by

y(z) = o(21(z)) + o (22(2)) =3, (V.1

where

z1(x) =2z + 22+ 3, z22(x)=z1+222+1. (V.2)

The affine hyperplanes z; = 0 and z; = 0 partition the input
space into four chambers, corresponding to the sign patterns

(+7+)a (+7_)7 (_’+)’ (_a_)'

Within each chamber, the ReLU activations are fixed, and
the network output reduces to an affine function. The cor-
respondence between chambers, local expressions of y, and
the associated boundary pieces is summarized in Table I.

TABLE I
LOCAL AFFINE REPRESENTATIONS OF THE NETWORK OUTPUT ON EACH
CHAMBER. THE DECISION BOUNDARY y = 0 EXISTS ONLY IN CHAMBERS
WHERE A NONCONSTANT AFFINE EXPRESSION IS OBTAINED.

Chamber (sign(z1),sign(z2)) Local form of y ~ Boundary piece

(++) z1+22—3 Line segment
(+-) 21 —3 Line segment
(=) z2—3 Line segment
(= =) Constant —3 None

As a consequence, the decision boundary intersects exactly
three chambers and is composed of three connected linear
segments. Therefore, the boundary has two bending points, in
accordance with the theory developed in the previous sections.

The resulting decision boundary is visualized in Fig. 1,
where the piecewise linear structure and the two bending
points can be clearly observed.

Decision boundary of a 1-hidden-layer RelLU net (width=2)

—2

-4

Fig. 1. Figure X: Decision boundary of a ReLU neural network with a single
hidden layer of width two. The boundary consists of three linear segments
connected by two bending points, occurring at transitions between chambers
of the induced hyperplane arrangement.

Similarly to the width-two case, the width-three example in
Figure 2 illustrates that each linear segment of the decision
boundary corresponds to a fixed sign pattern of the pre-
activations (z1, 22, z3), while each bending point arises when
the input crosses one of the hyperplanes {z; = 0} that bound
the chambers of the induced hyperplane arrangement.

VI. DISCUSSION AND CONCLUSION

The analysis presented in this paper focuses on shallow
ReLU neural networks in low dimensions, where the geometry
of decision boundaries can be described explicitly. In more
general settings, however, a deeper understanding requires a
more systematic use of tools from the theory of hyperplane
arrangements.

In particular, the combinatorial complexity of decision
boundaries is closely related to the chamber structure induced
by the pre-activation hyperplanes. For higher width or higher-
dimensional input spaces, explicitly counting the number of
chambers becomes nontrivial. In such cases, classical results
from hyperplane arrangement theory, including those based
on characteristic polynomials, may provide useful bounds on
the number of possible chambers and, consequently, on the
maximal complexity of decision boundaries.

Another important direction is the extension to deeper
networks. Each additional hidden layer effectively refines
the partition of the input space, leading to a hierarchical
structure of polyhedral decompositions. Understanding how
these refinements interact across layers, and how they affect



Example decision boundary with 3-node hidden ReLU layer [4]
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Fig. 2. Decision boundary of a ReLU neural network with a single hidden
layer of width three. The decision boundary is a piecewise-linear curve
composed of three linear segments joined at four bending points, which
occur exactly at the transitions between different chambers of the underlying
hyperplane arrangement in the hidden pre-activation space.

the geometry and topology of decision boundaries, remains an
open and challenging problem.

Finally, although our experiments are restricted to low-
dimensional examples, the underlying combinatorial perspec-
tive suggests that qualitative features of ReLU decision bound-
aries—such as bending points, connected components, and
overall piecewise-linear complexity—are governed by struc-
tural properties of the induced hyperplane arrangements rather
than by specific numerical parameters. We believe that further
exploration along these lines may provide a fruitful bridge
between classical combinatorial geometry and modern neural
network theory.

VII. USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT for language polishing of author-written
text. All results were reviewed, run, and validated by the
author. All scientific ideas, model designs, proofs, and claims
are the authors’ work; the LLM is not an author.
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