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Abstract—This study proposes a deep-learning-based restora-
tion method that suppresses ghost targets generated by hardware
nonlinearity in a phase-modulated continuous-wave (PMCW)
radar system. In a PMCW radar system that uses m-sequences,
nonlinearity produces cross-terms from signal components with
different delays, and the cyclic-shift property of the m-sequence
causes these cross-terms to appear as ghost targets in the
range–Doppler (RD) map. To address this problem, we propose a
restoration method based on a two-dimensional residual network
architecture. The proposed method suppresses ghost targets in
an RD map caused by hardware nonlinearity, so that the output
RD map contains only the actual targets. The performance of the
method is evaluated under various signal-to-noise ratio (SNR)
levels, and the results show that the method provides consistent
restoration performance. The peak signal-to-noise ratio and the
signal-to-clutter ratio increase by approximately 14.9 dB and
2.5 dB, respectively, at an SNR of 10 dB. These improvements
confirm that the proposed method effectively suppresses ghost
targets.

Index Terms—deep neural network, ghost target suppression,
nonlinearity, phase-modulated continuous-wave radar.

I. INTRODUCTION

In next-generation radar applications, the demand for high
sensing accuracy is rapidly increasing due to the need for
reliable target detection and environmental perception [1].
Phase-modulated continuous-wave (PMCW) radar systems
support high sensing accuracy using phase-coded waveforms
and signal processing based on correlation operations [2].
In particular, PMCW radar systems commonly use binary
sequences such as almost perfect sequences (APS), Legendre
sequences, and m-sequences, which provide low sidelobes in
correlation outputs. This property leads to improved target
detection performance. However, APS can be generated only
for specific sequence lengths [3]. Legendre sequences also
have restricted applicability because their sequence length
must be a prime number [4]. In comparison, m-sequences can
generate long sequences easily through a linear feedback shift
register [5]. For this reason, m-sequences are widely used in
PMCW radar systems.

A practical PMCW radar system contains several analog
components such as a power amplifier, a mixer, and an analog
filter, which have nonlinear characteristics [6]. This nonlinear-

ity distorts the range–Doppler (RD) map, and the distortion
pattern depends on the type of binary sequence used in the
PMCW radar system. With APS and Legendre sequences,
the RD map mainly suffers from increased sidelobes in the
presence of hardware nonlinearity [7]. Meanwhile, when an
m-sequence is used, ghost targets appear in the RD map, and
these ghost targets degrade target-detection performance [8].
To address this issue, a method based on code diversity has
been proposed [9]. This approach transmits different sequences
across consecutive repetitions so that ghost targets appear
at different locations in each repetition. As a result, these
ghost targets are attenuated during Doppler processing by
applying a discrete Fourier transform (DFT) along the slow-
time dimension. However, to maintain the periodicity of the
transmitted signal, code diversity requires additional transmis-
sions before switching to a new sequence, which increases
system overhead.

In this study, we propose a deep-learning-based method
for PMCW radar systems using m-sequences to suppresses
ghost targets in RD maps caused by nonlinearity. In contrast
to conventional approaches, the proposed method operates at
a post-processing stage and does not require modifications to
the transmitted sequence or waveform structure. As a result,
the proposed method can be directly applied to PMCW radar
systems that use m-sequences. The network is trained with RD
maps that contain ghost targets as inputs and the corresponding
ideal RD maps without ghost targets as ground-truth. Through
this training process, the network learns to reconstruct a
clean RD map from a distorted one. This enables the model
to suppress nonlinear artifacts effectively and preserve the
information of actual targets. As a result, the proposed method
produces RD maps that are more suitable for accurate target
detection.

II. PMCW RADAR SYSTEM AND NONLINEARITY

A. PMCW Signal Model

In a PMCW radar system, the transmitted signal is generated
by modulating the phase of the carrier according to a binary
chip sequence using binary phase shift keying modulation. The
phase corresponding to each chip is defined as ϕ[n] ∈ {0, π}.



The transmitter sends the same sequence Ns times within one
frame. The baseband transmit signal can be expressed as

s(t) =

Ns−1∑
m=0

N−1∑
n=0

exp(jϕ[n]) p(t− nTc −mTs), (1)

where n is the fast-time index, m is the slow-time index,
and p(t) is a unit rectangular pulse that is equal to 1 for
0 ≤ t < Tc and equal to 0 otherwise. The chip duration and
the sequence duration are denoted by Tc and Ts, respectively,
where Ts = NTc. The transmit signal is obtained by upcon-
verting the baseband signal to the carrier frequency fc and is
expressed as

x(t) = s(t)ej2πfct. (2)

The radio frequency (RF) signal reflected from a single
target can be expressed as

yRF(t) = βx(t− τ)ej2πfdt, (3)

where β is the complex reflection coefficient of the target, fd
is the Doppler frequency, and τ is the round-trip delay. When
the distance and the velocity of the target are R and v, the
Doppler frequency and the round-trip delay are given by

fd =
2v

λ
(4)

and

τ =
2(R+ vt)

c
, (5)

where λ is the wavelength and c is the speed of light. The
receiver multiplies the received signal by a local oscillator
(LO) signal e−j2πfct to perform down-conversion. The output
of the mixer is filtered by a lowpass filter (LPF) to remove
high-frequency components, and the resulting baseband signal
can be expressed as

y(t) = yRF(t)e
−j2πfct. (6)

When the sampling frequency of the analog-to-digital con-
verter (ADC) is 1

Tc
, the discrete-time received signal can be

expressed as
y[n,m] = y(nTc +mTs). (7)

The overall block diagram of the PMCW radar system is
shown in Fig. 1.

The range profile is obtained by correlating the received
signal reflected from the target with cyclically shifted versions
of the transmit sequence, as given by

C[k,m] =

N−1∑
n=0

x∗[mod(n− k,N)] y[n,m]. (8)

where k, (·)∗, and mod(a,N) denote the delay index, the
complex conjugate, and the modulo operation that returns
the remainder of a divided by N , respectively. The range of
the target is obtained from the delay index that maximizes
the correlation output. Velocity estimation is performed by

Fig. 1. Overall block diagram of the PMCW radar system.

applying the DFT along the slow-time axis, and the RD map
for Doppler bin l can be expressed as

D[k, l] =

M−1∑
m=0

C[k,m] exp

(
−2πj

ml

M

)
. (9)

B. Hardware Nonlinearity in PMCW Radar Systems

The transmit and receive process of a PMCW radar system
includes several analog components such as a power amplifier
(PA), a mixer, a low-noise amplifier (LNA), and an LPF [10].
These components do not exhibit ideal linear behavior, and
such nonlinearity introduces distortion into the radar signal. In
this study, we use a simple polynomial model to represent the
generalized nonlinearity of the hardware. The input signal of
the nonlinear model is denoted by r(t), and the corresponding
output of the model is given by

u(t) = a1r(t) + a2|r(t)|2 + a3|r(t)|3, (10)

where a1, a2, and a3 are complex coefficients that represent
the linear and nonlinear characteristics of the system. The
first term represents the output of an ideal linear system. The
second and third terms correspond to nonlinear components of
the polynomial model and generate distortion in the received
signal. When signal components with different delays pass
through a nonlinear system, products among the delayed signal
components are generated, including cross-terms. These cross-
terms appear as distortion in the RD map.

III. IMPACT OF NONLINEARITY IN PMCW RADAR
SYSTEMS

The impact of nonlinearity in a PMCW radar system de-
pends on the type of binary sequence used. For APS and
Legendre sequences, the cross-terms induced by nonlinearity
appear without regularity [7]. In this case, nonlinearity appears
as increased sidelobes in the RD map. For m-sequences, the
product of two delayed versions of the sequence results in
another cyclically shifted sequence [5]. If we denote the m-
sequence by b[n] ∈ {−1,+1}, this property can be expressed
as

b[n] b[n− τ ] = b[n− τ ′]. (11)



Therefore, when the received signal passes through a nonlinear
system, signal components with different cyclic shifts are gen-
erated. These components appear as ghost targets at different
ranges after the correlation process.

When a single target is present and the LPF does not
introduce delayed replicas, the LPF output can be expressed as
yLPF(t) = y(t). In this case, the nonlinear system operates on
a single delay component and does not generate coupling terms
between different delays. When the nonlinearity introduced
by the second-order term is considered, the output includes
a term |y(t)|2. This term does not contain delay information
and therefore does not produce ghost targets. In a practical
PMCW radar system, however, the residual response of the
LPF may create multiple delayed replicas of a single target. Let
us assume that the signal filtered by the LPF can be expressed
as

yLPF(t) = h0y(t) + h1y(t− 1) + h2y(t− 2). (12)

When this signal passes through a nonlinear system, the
second-order term becomes

|yLPF(t)|2 = h2
0|y(t)|2 + h2

1|y(t− 1)|2 + h2
2|y(t− 2)|2

+ 2h0h1y(t)y(t− 1) + 2h0h2y(t)y(t− 2)

+ 2h1h2y(t− 1)y(t− 2). (13)

The expression includes terms with a single delay component,
such as h2

0|y(t)|2 and h2
1|y(t − 1)|2, and these terms do

not generate ghost targets. In contrast, cross-terms such as
2h0h1y(t)y(t−1) represent the product of signal components
that have different delays, and these cross-terms result in
ghost targets. When the RD map is obtained from a signal
that has passed through the second-order nonlinear term, this
component does not retain any Doppler information. Fig. 2
shows RD maps obtained from received signals generated with
nonlinear terms of different orders and different numbers of
targets. In Fig. 2 (a), when only the nonlinearity introduced by
the second-order term is present, ghost targets appear at the
zero-Doppler bin. In contrast, the third-order term multiplies
the original signal again, and the Doppler information is
preserved. As a result, the ghost targets appear at different
ranges, and their velocities are identical to those of the actual
target, as shown in Fig. 2 (b).

(a) (b)

Fig. 2. RD maps in a single-target scenario: (a) with nonlinearity induced
by the second-order term and (b) with nonlinearity induced by the third-order
term.

When more than one target exists, the received signal
contains the reflections from the targets as well as delayed
replicas generated by the filter response. When this signal
passes through the nonlinear system, products among these
delayed components are formed, resulting in more cross-terms
than in the single-target case. These cross-terms appear as
ghost targets at various Doppler bins in the resulting RD map
due to the property of m-sequences, and their locations do not
correspond to those of the actual targets.

IV. PROPOSED METHOD

In this study, we propose a deep-learning-based restoration
method for PMCW radar systems using m-sequences. The
proposed method takes as input an RD map generated under
nonlinear conditions, which contains both actual targets and
ghost targets, and restores the RD map by suppressing ghost
targets. The network is trained using corresponding ideal RD
maps generated under the same target configuration but with-
out nonlinear distortion. When nonlinear distortion is present,
ghost targets appear at distinct range bins determined by the
cyclic-shift property of the m-sequence. Since these patterns of
ghost-target appearance are consistently observed in the RD
maps and are closely related to the order of the nonlinear
terms, the proposed model learns to effectively distinguish
ghost targets from actual targets.

To this end, we adopt a two-dimensional (2D) residual net-
work (ResNet) architecture. Because each RD map is complex-
valued, the network receives a two-channel input consisting
of the real and imaginary parts of the RD map. The network
is designed to reconstruct a two-channel RD map with the
same spatial resolution as the input. This design preserves the
residual learning structure of ResNet and enables the model
to learn spatial patterns that distinguish ghost targets from
actual targets. The first layer consists of a 7×7 convolutional
(Conv) layer followed by group normalization (GN) and a
rectified linear unit (ReLU), increasing the number of channels
from 2 to 16. The network then consists of four stages, and
each stage contains two bottleneck blocks. Each bottleneck
block consists of a 1×1 Conv layer, a 3×3 Conv layer, and
a 1×1 Conv layer, and these three layers perform channel
reduction, spatial feature extraction, and channel expansion,
respectively. We apply GN so that the model can learn stably
under various signal-to-noise ratio (SNR) conditions, and we
use ReLU as the activation function. When the number of
input and output channels differs, a shortcut consisting of a
1×1 Conv layer and GN is used. This shortcut forms a residual
connection that enables the essential features of the RD map to
propagate through deep layers without degradation. Each stage
uses internal bottleneck channels of 16, 32, 64, and 128. At
the final 1×1 Conv layer, the number of channels is expanded
by a factor of four, resulting in output channel sizes of 64,
128, 256, and 512. All stages use a stride of one so that
the spatial resolution of the RD map is preserved throughout
the entire network. This design allows the model to learn the
spatial structure of ghost targets without any loss of resolution.
Finally, a 3×3 Conv layer reduces the number of channels to



2, and the network produces a restored two-channel RD map.
Fig. 3 shows the complete architecture of the ResNet-based
network.

V. PERFORMANCE EVALUATION

A. Simulation Setup

The performance of the proposed method was evaluated
using RD maps generated based on the simulation parameters
listed in Table I. Using the same simulation settings, a total
of 500 RD maps were generated for each SNR level. Among
them, 80% of the RD maps were used for training and the
remaining 20% were used for testing. The SNR level was
varied to evaluate the restoration performance of the proposed
method under different noise conditions. The coefficients

Fig. 3. Structure of the proposed 2D ResNet.

TABLE I
SIMULATION PARAMETERS USED IN THE PMCW RADAR SYSTEM

Parameter Value
Center frequency, fc 77 GHz

Speed of light, c 3× 108 m/s
Bandwidth, B 0.5 GHz

Number of chips, N 511
Number of pulses Ns 256

Range of the target 10 m ∼ 140 m
Velocity of the target −150 m/s ∼ +150 m/s

SNR 0 dB, 5 dB, 10 dB, 15 dB, 20 dB
Filter coefficients, g1, g2, g3 0 ∼ 1

Linear coefficient, a1 1
Nonlinear coefficients, a2, a3 0.1 ∼ 0.5

(g0, g1, g2) describing the LPF response were selected from
the range [0, 1] and arranged in descending order such that
g0 > g1 > g2. The coefficients were then scaled so that their
sum equals one. During network training, the mean squared
error (MSE) was used as the loss function, and the network
was trained using the adaptive moment estimation optimizer
for 100 epochs.

Fig. 4 shows the restoration results of the proposed
method in a two-target scenario. The targets are located at
(49.87 m, −137.44 m/s) and (42.10 m, −287.48 m/s).
Fig. 4 (a) shows the input RD map generated under nonlinear
distortion, and Fig. 4 (b) shows the corresponding ground-
truth RD map obtained from an ideal system. Fig. 4 (c) shows
the restored RD map produced by the proposed ResNet. In
Fig. 4 (c), the ghost targets observed in the input are effec-
tively suppressed, while the peaks corresponding to the actual
targets are preserved. These results confirm that the proposed
method effectively suppresses various ghost targets caused by
nonlinearity while preserving the actual target information.

B. Performance Analysis

The performance of the proposed method was evaluated
using the peak signal-to-noise ratio (PSNR) and the signal-
to-clutter ratio (SCR). The input PSNR, denoted as PSNRin,
measures the similarity between the input RD map and the
ground-truth RD map. It is defined as

PSNRin = 10 log10

(
D2

max

MSE(Din, Dgt)

)
. (14)

Here, Dmax denotes the maximum value of the ground-truth
RD map, i.e., Dmax = max(Dgt). The term MSE(Din, Dgt)
represents the MSE between the input RD map Din and
the ground-truth RD map Dgt. Similarly, the output PSNR,
denoted as PSNRout, measures the similarity between the
restored RD map and the ground-truth RD map. It is defined
as

PSNRout = 10 log10

(
D2

max

MSE(Dout, Dgt)

)
, (15)

After applying the proposed method, the PSNR is signif-
icantly improved, with PSNRout ranging from 53.01 dB to
64.14 dB across all SNR levels. These results demonstrate
that the restored RD maps achieve a high similarity to the



(a) (b) (c)

Fig. 4. Ghost-target suppression results on RD maps: (a) an input RD map containing ghost targets, (b) a ground-truth RD map obtained from an ideal
system, and (c) a restored RD map produced by the proposed method.

ground-truth RD maps. As a representative example, at an
input SNR of 10 dB, the proposed method improves the
PSNR from 46.50 dB to 61.37 dB, corresponding to a gain
of 14.87 dB. This improvement indicates that the proposed
method effectively suppresses ghost components caused by
nonlinearity. where Dout denotes the restored RD map. All RD
maps were normalized by Dmax prior to PSNR computation.
Fig. 5 (a) presents the PSNR results for different input SNR
levels. The input RD maps show PSNRin values ranging from
39.84 dB to 47.20 dB.

Another evaluation metric, SCR reflects how effectively
ghost components are suppressed and is defined as

SCR = 10 log10

(
Ptarget

Pclutter

)
, (16)

where Ptarget and Pclutter denote the power of the target
region and the background region, respectively. Because the
number and locations of ghost targets depend on the number
of actual targets and the order of the nonlinear terms, SCR is
an appropriate evaluation metric that can be computed without
explicitly separating ghost targets from the background. Fig. 5
(b) shows the SCR improvement for different input SNR
levels, and the improvement ranges from 2.39 dB at an SNR of
0 dB to 2.60 dB at an SNR of 20 dB. These results indicate
that ghost targets are suppressed across all SNR levels. For
an input SNR of 10 dB, the SCR improvement is 2.50 dB,

(a) (b)

Fig. 5. Performance improvement under different SNR levels: (a) PSNR
improvement and (b) SCR improvement.

confirming that the proposed method effectively reduces ghost
targets.

VI. CONCLUSION

This study proposed a restoration method to address the
ghost target problem caused by nonlinearity in a PMCW radar
system. The proposed method used a 2D ResNet architecture
that received an RD map containing ghost targets and restored
the map while preserving only the actual targets. The network
was designed to learn the spatial patterns of ghost targets that
repeatedly appeared due to nonlinearity. The performance of
the proposed method was evaluated using an RD map dataset
with different numbers of targets and various SNR levels. At
an SNR of 10 dB, the PSNR increased from 46.5 dB for
the input RD map to 61.4 dB after applying the proposed
method, corresponding to an improvement of approximately
14.9 dB. The SCR increased by 2.50 dB, confirming that the
proposed method effectively suppressed ghost targets. These
results demonstrate that the proposed method provides stable
RD map restoration in the presence of hardware nonlinearity.
Consequently, the proposed method enhances the reliability of
range and velocity estimation in PMCW radar systems.
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