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Abstract—Deep neural networks (DNNs) have emerged as a
promising approach for mobile traffic prediction and capac-
ity forecasting in next-generation wireless networks, leveraging
newly developed architectures to capture spatiotemporal traf-
fic demand for network resource provisioning and allocation.
However, DNN-based traffic forecasting systems are vulnerable
to adversarial attacks in which adversaries inject traffic per-
turbations via compromised devices, leading to erroneous ca-
pacity forecasts and misallocation. Existing defense mechanisms
offer only empirical insights and lack formal guarantees, while
neural network verification research has primarily focused on
classification tasks, leaving regression problems such as mobile
traffic forecasting unexplored. We address this gap by proposing a
formal verification framework that formulates adversarial traffic
injection as hyperrectangle input properties, converts recent
deep learning traffic prediction models into a neural network
verifier-compatible format, and leverages NeuralSAT to provide
robustness proofs for which scenarios the system is robust against
adversarial traffic injection. Preliminary proof-of-concept on the
Telecom Italia Milan dataset demonstrates that our framework
can formally guarantee whether DeepCog, a deep learning
capacity provisioning model, is robust against adversarial traffic
injection, providing network operators with peace of mind when
deploying these models in production environments.

Index Terms—traffic prediction, DNN, formal verification

I. INTRODUCTION

Beyond 5G networks is currently facing the challenge of

a growing number of users and devices, but the physical

wireless resources are limited. Therefore, analyzing traffic and

accurately forecasting user demands is essential for developing

an intelligent network [1]. Network traffic prediction models

operate in the background, analyzing historical traffic demands

to forecast expected future needs, which can be leveraged

by downstream network management services and network

optimization tools [2], [3]. Machine learning and deep learning

models can leverage vast amounts of network measurement

data, exploiting temporal correlations in long historical mea-

surements and spatial dependencies among connected nodes

[4], [5], [6]. Given that network traffic exhibits complex rela-

tionships in both temporal and spatial dimensions, predicting

future traffic volumes is a suitable task for deep learning

models. These models require less domain knowledge and

manual engineering than statistical methods such as Auto-

Regressive Integrated Moving Average (ARIMA) [7].

However, the deployment of deep learning in network man-

agement raises fundamental security concerns, as deep neural

network (DNN)s are vulnerable to adversarial attacks [8]. Such

attacks involve introducing minor input modifications that can

cause DNNs to produce erroneous predictions. In the context

of network traffic prediction, adversaries may infiltrate smart-

phones or IoT devices within the network coverage area [9].

By orchestrating these compromised devices into a botnet,

attackers can strategically inject minimal traffic volumes to

corrupt the DNN’s forecasting capabilities. These adversarial

inputs are deliberately designed to evade anomaly detection

mechanisms and remain within data usage constraints, yet they

can substantially degrade the model’s prediction accuracy.

Consequently, there is increasing interest in explainable

deep learning approaches for critical applications such as

network optimization and management that demand high re-

liability. Existing research [9] has investigated the robustness

of DNN-based mobile traffic forecasting using explanable AI

(XAI) methods, seeking to identify which input features, such

as historical traffic demand from specific base stations, are

most susceptible to adversarial manipulation. These studies

use gradient-weighted class activation mapping (GCAM) and

LayeR-wise backPropagation (LRP) techniques to pinpoint

base stations that are particularly susceptible to traffic-injection

attacks. XAI approaches offer correlational insights to inform

adversarial training procedures for model retraining. Nonethe-

less, non-certifying defense mechanisms, such as adversarial

training, have been shown to be circumvented by more sophis-

ticated attack strategies [10]. To address this ongoing arms

race, there is growing momentum toward defense strategies

employing neural network verification (NNV) [11], [12], [13],

[14], [15], which offer provable guarantees that DNNs remain

resilient to attacks across all inputs within specified bounds.

NNV complement XAI and adversarial training approaches

by establishing the robustness of DNNs through rigorous

mathematical proofs.

Existing NNV research has largely concentrated on veri-

fying DNN-based systems within the Verification of Neural

Networks Competitions (VNN-COMPs) framework [16], with

limited exploration of DNN-based network management ap-

plications [8], [17]. The VNN-COMPs evaluation benchmarks

primarily focus on classification problems in domains such as

computer vision, natural language processing, and autonomous

aviation systems. To the best of our knowledge, verification

of DNNs for regression problems, including mobile network

traffic forecasting, remains largely unexplored.

This work addresses this research gap by leveraging cutting-

edge formal verification methodologies for DNN-based traf-

fic forecasting systems. Our evaluation framework assesses

whether trained DNNs meet performance specifications under

diverse levels of adversarial perturbation. We begin by encod-
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Fig. 1: Overview of system model of deep-learning-based mobile traffic prediction under adversarial traffic injections.

ing various adversarial perturbation levels as hyper-rectangle

input constraints.

II. PRELIMINARIES

A. System Model

A DNN is trained to forecast network traffic volumes at

time step t using historical past traffic volumes from previous

time steps. Formally, for a network slice s, let δs(t) denote

the traffic snapshot at time t, which contains traffic demands

at all base stations for slice s. The DNN takes T historical

traffic snapshots {δs(t− T ), δs(t− T + 1), . . . , δs(t− 1)} as

input and produces a capacity forecast for time t. Let N(·; θ)
be the DNN function parameterized by θ, which maps the

sequence of historical snapshots to a capacity forecast cs(t).
This framework for mobile traffic prediction is particularly

beneficial for the management of next-generation wireless

networks, where accurate capacity forecasting enables efficient

resource allocation and network optimization.

DeepCog [18] is a popular DNN architecture specifically

designed for capacity forecasting in network slicing scenarios.

The architecture follows an encoder-decoder structure tailored

to capture spatiotemporal patterns in mobile network traffic.

The input to DeepCog consists of historical traffic snapshots

δs(t − 1), . . . , δs(t − T ) for network slice s, where each

snapshot δs(t) contains traffic demands at all base stations

at time t. These snapshots are transformed into a 3D tensor

(two spatial dimensions and one temporal dimension) that

preserves traffic spatial-temporal correlations, enabling the 3D

convolutional neural network to exploit them to accurately

forecast future demands.

The neural network architecture comprises two main com-

ponents: (i) an encoder with three 3D-CNN layers that extract

spatiotemporal features from the input tensor, and (ii) a

decoder with fully connected layers that generate capacity

forecasts. The output of DeepCog is a capacity forecast

cs(t) = {c1s(t), . . . , cMs (t)} for network slice s at time t, where

cjs(t) represents the forecasted capacity needed at datacenter

j ∈M to accommodate future traffic demands. DeepCog em-

ploys a custom loss function that explicitly balances the trade-

off between resource overprovisioning and underprovisioning

(service-level agreement (SLA) violations), rather than min-

imizing standard prediction errors like Mean Absolute Error

or Mean Squared Error. The loss function is parameterized by

α = β/γ, where β is the fixed cost of an SLA violation and γ
is the cost per unit of overprovisioned capacity. For a forecast

error x = cjs(t)−djs(t) at datacenter j, where djs(t) is the actual

demand, the loss function penalizes underestimation (SLA

violations) with cost α and overestimation (overprovisioning)

proportionally to the excess capacity. This design enables

operators to tune the balance between overprovisioning and

unserved demand to align with their economic priorities.

B. Threat Model

We consider an adversary who gains access to compromised

networked devices capable of injecting traffic into a mobile

network (Fig. 1). The attacker’s primary objective is to disrupt

normal network operations through denial-of-service attacks

or, at a minimum, degrade the quality of service. Examples

of such compromised devices include IoT devices and smart-

phones infected with malicious software.

The adversary possesses sufficient technical capabilities to

infiltrate and compromise a subset of network-connected de-

vices, thereby gaining the ability to associate with the network

infrastructure. After establishing network connectivity, the

attacker strategically injects traffic designed to cause service

disruptions by introducing carefully crafted perturbations to

the network load patterns. The feasibility of such attacks has

been demonstrated by real-world incidents, most notably the

Mirai botnet [19]. The adversary can compromise a fraction

of the total devices, and once compromised, traffic injection

becomes straightforward. The malware enabling these attacks

can be distributed through various vectors: embedded in user-

installed applications, distributed via official app stores, or

incentivized by offering users a way to sideload applications

from untrusted web sources. These distribution mechanisms

have been extensively documented in the security literature

[20], [21], [22].

We assume that the attacker does not necessarily possess

knowledge of the trained DNN architecture or parameters used

for traffic prediction. The injected traffic must remain minimal



to avoid detection, as the attacker is constrained by the need

to prevent users from noticing excessive data consumption.

Additionally, mobile data plans typically impose usage limits

and incur costs, further constraining the volume of traffic

that can be injected without raising suspicion. The attacker

injects a limited amount of data to perturb the historical traffic

measurements that serve as input to the traffic prediction

model. These manipulated historical data points may fall

outside the distribution of clean training data, causing the DNN

to produce inaccurate future traffic predictions. The resulting

prediction errors lead to either over- or under-provisioning of

network resources, which, in turn, causes resource misallo-

cation, service degradation, service disruptions, and network

instability. When prediction errors persist over time, they

can establish a continuous feedback loop with the resource

allocation algorithm, amplifying long-term misallocation.

C. NNV - An Overview

The NNV problem concerns determining whether a given

property φ holds for a DNN N . Properties are typically

expressed as implications of the form φin =⇒ φout, where

φin specifies constraints on the inputs of N and φout specifies

constraints on the outputs of N . This formulation enables

encoding safety and security requirements for DNNs [23].

A DNN verifier searches for a counterexample input that

satisfies the input property φin but causes the output to violate

φout. If no such counterexample can be found, the property

is unsatisfiable (UNSAT), indicating that the DNN is proven

robust; otherwise, the property is satisfiable (SAT).

NNV methods can be broadly categorized into two classes:

(1) probabilistic guarantees and (2) deterministic guaran-

tees. Probabilistic approaches, such as randomized smooth-

ing [12], provide high-probability certificates that a DNN

remains robust to L2-norm perturbations within a specified

radius. In contrast, deterministic methods offer absolute guar-

antees of safety against any Lp-norm-constrained perturba-

tions. Deterministic NNV techniques fall into three main cat-

egories: (1) constraint-based approaches [14], (2) abstraction-

based approaches [11], [13], and (3) hybrid approaches [15].

Constraint-based methods can be computationally expensive,

with solution time increasing significantly as the DNN size

grows [14]. Abstraction-based methods address scalability by

employing abstract domains such as polytopes (e.g., Deep-

Poly [11] and CROWN [13]) to enable verification of larger

networks, though at the expense of some accuracy. The

core principle of abstraction-based verification is to construct

polyhedral over-approximations using linear inequalities that

tightly bound the possible outputs of non-linear activation

functions, such as rectified linear unit (ReLU). NeuralSAT

[15], [24] integrates constraint-based and abstraction-based

techniques to improve scalability.

III. PROPOSED VERIFICATION FRAMEWORK

A. Local Robustness Properties Formulation

Following the threat model described in Section II, we

assume that an attacker can inject additional traffic into the

network through compromised devices in their botnet. The

adversary’s objective is to introduce carefully crafted pertur-

bations to the historical traffic data fed into the DNN, thereby

causing erroneous capacity forecasts that lead to resource

misallocation and service degradation.

To formally verify the robustness of the considered DNN-

based traffic forecasting scheme, we define input specifications

φin := [ηL, ηU ] to encode permitted adversarial traffic injec-

tion levels. Specifically, ηL and ηU are vectors having the

same dimensionality as the input traffic snapshot δs(t), where

each component represents the lower and upper bounds on

the additional traffic that can be injected at each base station.

The adversary seeks to generate an adversarial traffic snap-

shot δ′s(t) within a constrained neighborhood of the original

traffic δs(t) such that the DNN output becomes erroneous.

This adversarial input is constructed by adding a bounded

perturbation δ′s(t) = δs(t) + η to the original traffic snapshot

δs(t), where η ∈ [ηL, ηU ] represents the adversarial noise

corresponding to the additional traffic injected by the botnet.

The input property φin thus constrains the perturbed traffic

to lie within the hyperrectangle [ηL, ηU ] = [δs(t), δs(t) + η],
ensuring that the verification covers all possible adversarial

traffic injection scenarios within the specified bounds.

B. Output Properties

Recall that for a forecast error x = cjs(t) − djs(t) at

datacenter j, where cjs(t) is the forecasted capacity and djs(t)
is the actual demand, DeepCog’s loss function 	′(x) is defined

as:

	′(x) =

⎧⎪⎨
⎪⎩

α− ε · x if x ≤ 0

α− 1
εx if 0 < x ≤ εα

x− αε if x > εα

(1)

where α = β/γ is the ratio of SLA violation cost β to

overprovisioning cost per unit γ, and ε is a small constant that

enables gradient-based training. To complement the robustness

property, we construct two output properties that constrain the

predicted capacity relative to actual demand:

1) Overprovisioning Bound: The predicted capacity should

not exceed (1 + ζ) times the actual demand to avoid

wasting resources:

φover : cjs(t) ≤ (1 + ζ) · djs(t) (2)

2) Underprovisioning Bound: The predicted capacity

should not fall below (1 − ζ) times the actual demand

to prevent SLA violations:

φunder : cjs(t) ≥ (1− ζ) · djs(t) (3)

Together, these properties enforce:

(1− ζ) · djs(t) ≤ cjs(t) ≤ (1 + ζ) · djs(t) (4)

This dual-property approach provides a practical guarantee:

avoiding excessive overprovisioning while ensuring sufficient

capacity to meet user SLAs.



C. Verifier

To solve the verification problem formulated with input

property φin and output property φout, we adopt state-of-

the-art neural network verifier NeuralSAT [15], [25] as a

black-box tool. NeuralSAT is a top-performing verifier from

the latest VNN-COMPs [16] that employs GPU-based linear

relaxations and branch-and-bound techniques to efficiently

verify DNN properties.

We convert our verification problem into the standard VNN-

COMPs format, which consists of three components: (1) the

DeepCog DNN model in ONNX format, (2) input properties

φin specified in VNNLIB format that encode the adversarial

traffic injection bounds [δs(t)+ηL, δ
s(t)+ηU ], and (3) output

properties φout in VNNLIB format that encode the loss func-

tion threshold constraint L(cs(t), ds(t)) ≤ ζ · L(cs0(t), ds(t)).
The conversion of DeepCog’s piecewise linear loss function

into linear and ReLU layers, as described in the previous

subsection, ensures compatibility with NeuralSAT’s veri-

fication engine. Since 3D convolution is not supported, we

reimplement it as two consecutive 2D convolutional layers.

This does not reduce the forecast accuracy, while allowing the

exported model to be compatible with NeuralSAT.

For each verification instance, NeuralSAT returns one

of three possible outcomes: SAT, UNSAT, or timeout. A

SAT result indicates that the verification problem is satisfiable,

meaning there exists at least one adversarial input within the

specified bounds [ηL, ηU ] that causes the DeepCog model

to violate the output property φout, e.g., the loss function

exceeds the threshold ζ. This result demonstrates a concrete

vulnerability: adversarial traffic injection can degrade capacity

forecasting performance beyond the acceptable threshold. An

UNSAT result indicates that the verification problem is un-

satisfiable, meaning no adversarial input within the specified

bounds can violate the output property. This result provides

a formal mathematical guarantee that the DeepCog model is

robust against all possible adversarial traffic injection scenarios

within the given input constraints. A timeout result indi-

cates that the verification instance exceeds the computational

time limit, meaning the verifier cannot determine within the

allocated resources whether the property holds.

The soundness of NeuralSAT’s verification procedure

ensures that when it returns UNSAT, the result is math-

ematically sound, meaning no adversary can successfully

attack the DeepCog model under the specified input and

output conditions. This soundness guarantee is fundamental

to our verification framework: if NeuralSAT certifies that

a DeepCog model is robust (returns UNSAT), then the claim

is guaranteed to be true, providing network operators with

confidence when deploying the verified model for resource

provisioning in production environments. This formal assur-

ance goes beyond empirical testing methods, which can only

demonstrate the existence of vulnerabilities through specific

adversarial examples but cannot prove their absence across

the entire continuous input space.

IV. EVALUATION RESULTS

A. Evaluation Setups

1) Dataset: We evaluate our verification framework using

the Telecom Italia Milan dataset, which is a publicly available

mobile traffic dataset widely used in the literature [18]. The

dataset contains mobile traffic data collected in 2014 from

Milan, Italy, covering 1,728 base stations and aggregated into

a grid of approximately 10,000 square cells using Voronoi tes-

sellation techniques. The data includes SMS, voice calls, and

Internet activities recorded at 10-minute granularity. Following

standard practice in mobile traffic prediction research, we use

Internet activities as a proxy for mobile traffic volume. This

dataset provides a spatial-temporal pattern of internet usage,

making it well-suited for training and evaluating DeepCog-

based traffic forecasting models.

2) DNN Hyperparameters, input/output properties: A

DeepCog model is trained using an Adam optimizer with a

learning rate of 3e−4 over 50 epochs, employing Rectified

Linear Unit (ReLU) as the activation function for all layers.

We use a standard 80:20 training-testing split, where each

sample represents a traffic-demand within a 10-minute interval.

For the prediction methodology, we select a representative

area AMilan ∈ GMilan of 5 × 5 cells similar to [9]. Within

this area, we train small models on 5 × 5 grids, where each

model forecasts the capacity/traffic of the central cell only.

The DeepCog predictor employs a parameter α that represents

the amount of overprovisioned capacity units that determine a

penalty equivalent to one SLA violation. A larger α implies

higher SLA violation fees for the operator, thus influencing

the balance between overprovisioning and SLA violations.

For the Milan dataset, we set α = 2 as suggested in [18]

to prioritize avoiding SLA violations while allowing minimal

overprovisioning.

3) Evaluation Metrics: For each verification instance,

NeuralSAT returns one of three possible outcomes: SAT,

UNSAT, or timeout. The primary performance metric is

the number of instances that return SAT (vulnerability found),

UNSAT (formal robustness guarantee), or timeout (unknown

within the time limit). These are commonly used to compare

the performance of different verification methods [16], [25]

and provides a standardized evaluation framework for assess-

ing the robustness of DNN-based traffic forecasting models.

B. Robustness Analysis under Adversarial Traffic Injection

Tab. I and Tab. II present the verification results for adver-

sarial traffic injection scenarios, where input traffic volumes

are perturbed by varying percentages. Each cell reports the

proportion of instances yielding SAT, UNSAT, or TIMEOUT
for a given tolerance parameter ζ and injection level η. A

SAT outcome indicates that the verifier identified at least

one adversarial input causing the model to violate the output

property (i.e., forecast error exceeding ζ). Conversely, UNSAT
certifies robustness under all perturbations within the specified

bounds, while TIMEOUT denotes inconclusive verification

within the allotted time.



Percentage of injected traffic

+1% +5% +10% +15% +20%

ζ = 1% 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0
ζ = 5% 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0
ζ = 10% 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0

TABLE I: Fraction of UNSAT, SAT, TIMEOUT for under-

estimation of user demand

Percentage of injected traffic

+1% +5% +10% +15% +20%

ζ = 1% 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0
ζ = 5% 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 0.0/0.0/1.0 0.0/1.0/0.0
ζ = 10% 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 0.0/0.0/1.0

TABLE II: Fraction of UNSAT, SAT, TIMEOUT for overes-

timation of user demand

• Underestimation scenario (Tab. I): Across all injection

levels and underestimation tolerances, the verifier consis-

tently returns SAT. Although we set α to guide DeepCog

to reduce underestimation, the model was still vulnerable

on all properties. This demonstrates that adversary can

easily induce capacity underestimation beyond acceptable

thresholds, exposing the model to potential denial-of-

service or quality-of-service degradation attacks.

• Overestimation scenario (Tab. II): In contrast, the model

exhibits strong robustness against overestimation. For

small injection levels (+1%, +5%, +10%), NeuralSAT
frequently returns UNSAT, confirming the model’s ability

to avoid excessive overprovisioning and resource waste.

However, this property is less critical in practice, as

service providers typically tolerate minor overprovision-

ing. At higher injection levels (+15% and +20%), the

results shift toward SAT or TIMEOUT, indicating that

extreme perturbations can compromise robustness and

require significant overprovisioning.

Overall, these findings reveal an asymmetric robustness

profile: the model is provably resilient to overestimation

under moderate perturbations but remains highly vulnerable

to underestimation attacks.

V. CONCLUSION

We presented a formal verification framework for deep

learning–based mobile traffic prediction, enabling provable

robustness against adversarial traffic injection. By encoding

input perturbations and defining output properties that enforce

resource allocation bounds, our approach leverages NeuralSAT

to provide sound robustness guarantees. Evaluation on the

Telecom Italia Milan dataset reveals an asymmetric robustness

profile: the model is resilient to overestimation under moderate

perturbations but highly vulnerable to underestimation attacks.

Future work will extend evaluations across a wider range of

datasets and models to generalize our findings and improve

robustness in diverse network scenarios.
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