
DQN-based Resource Allocation and Offloading
(DQN-RAO) Algorithm for Multi-User Multi-Server

MEC Network
Hoa Tran-Dang

Dept. of IT convergence engineering
Kumoh National Institute of Technology

Gumi-si, South of Korea
{hoa.tran-dang}@kumoh.ac.kr

Dong-Seong Kim
Dept. of IT convergence engineering

Kumoh National Institute of Technology
Gumi-si, South of Korea

dskim@kumoh.ac.kr

Abstract—This paper proposes a DQN-based resource alloca-
tion and offloading (DQN-RAO) Algorithm designed to minimize
the average task delay in Multi-User Multi-Server Mobile Edge
Computing (MEC) networks. We address the inherent complexity
of the joint task-server assignment and resource allocation
problem through a two-phase decomposition. First, a Deep Q-
Network (DQN) learns the optimal global strategy for the dis-
crete task offloading assignment. Second, a convex optimization
model efficiently calculates the optimal CPU frequency allocation
for the determined assignment. Comparative simulation results
demonstrate that the DQN-RAO algorithm consistently achieves
the lowest average task delay, significantly surpassing both the
random offloading algorithm (ROA) and the greedy offloading
algorithm (GOA) across varying server capacities and task
complexities.

Index Terms—Mobile Edge Computing (MEC), Task Offload-
ing, Resource Optimization.

I. INTRODUCTION

Mobile Edge Computing (MEC) has emerged as a trans-
formative paradigm in modern wireless networks, enabling
resource-constrained wireless devices to offload computation-
intensive tasks to nearby edge servers in order to reduce
latency and energy consumption [1], [2]. With the rapid
proliferation of delay-sensitive applications such as augmented
reality, real-time video analytics, autonomous perception, and
smart city intelligence, MEC systems must increasingly ac-
commodate large numbers of users generating substantial
volumes of computation tasks. As the density of mobile users
continues to rise and tasks become more heterogeneous and
dynamic, the optimal coordination of task offloading and edge
server resource management has become a central design
challenge for next-generation MEC networks.

A considerable body of work has studied the multi-user
multi-server offloading problem using a range of algorith-
mic methodologies. Classical optimization-based approaches
typically pose the problem as a mixed-integer nonlinear pro-
gram (MINLP), coupling discrete task–server assignment de-
cisions with continuous CPU allocation variables. Techniques
based on convex relaxation, branch-and-bound search, dual
decomposition, and meta-heuristics provide strong theoretical

performance guarantees and can account for full offloading
requirements and MEC capacity constraints [3]–[5]. However,
these optimization methods often suffer from poor scalability
due to their exponential or high polynomial complexity, mak-
ing them unsuitable for highly dynamic or large-scale MEC
deployments where real-time decision-making is essential.

To improve adaptability under dynamic conditions, recent
research has increasingly explored deep reinforcement learning
(DRL) for MEC offloading and resource coordination [6].
Approaches built upon Deep Q-Networks (DQN), actor–critic
methods, and ensemble architectures have shown the ability
to learn effective policies without explicit system modeling,
achieving notable reductions in task delay in stochastic, time-
varying environments [7]. Despite these advantages, DRL
techniques typically incur substantial training cost, may exhibit
limited interpretability, and often struggle with convergence
as the discrete action space grows with the number of users
and servers [8]. This training instability, combined with the
heavy computational overhead of deep models, reduces their
practicality for real-time, delay-critical MEC systems.

Other algorithmic strategies have sought to balance com-
putational tractability and solution quality. Heuristic al-
gorithms—such as greedy and marginal-cost-based assign-
ments—offer simplicity and rapid execution [9], enabling
fast adaptation to changing conditions. However, their lack
of awareness of nonlinear MEC dynamics can lead to sub-
optimal decisions, particularly when server capacity con-
straints are tight. Game-theoretic frameworks introduce dis-
tributed decision-making principles and can regulate server
load through user competition, but decentralization may cause
convergence to inefficient equilibria due to limited global
coordination [10]. Hybrid learning approaches using LSTM
models or Markov decision processes have also been proposed
to manage multi-objective trade-offs between delay, energy,
and reliability. Nonetheless, these methods often overlook task
heterogeneity or become computationally prohibitive in large-
scale networks.

Despite these advances, existing approaches still face fun-
damental limitations. Optimization-based methods guarantee



optimality but scale poorly; heuristic and game-theoretic ap-
proaches are fast but may fail under complex constraints;
DRL strategies are adaptive but costly to train and difficult
to stabilize. As a result, no current solution simultaneously
achieves scalability, interpretability, computational efficiency,
and robust delay performance in capacity-constrained MEC
environments. This longstanding trade-off underscores the
need for a new framework that combines analytical rigor with
practical real-time efficiency.

Motivated by these challenges, this paper proposes a
DQN-based Resource Allocation and Offloading (DQN-RAO)
framework for multi-user multi-server MEC networks. The key
idea is to decompose the otherwise intractable joint offloading
and resource allocation problem into two coordinated phases.
In the first phase, a Deep Q-Network is employed to learn
task–server assignment decisions that satisfy server-capacity
constraints and adapt to dynamic wireless environments. In the
second phase, given the learned task assignments, the optimal
CPU allocation across tasks is determined analytically using
convex optimization. This decomposition not only reduces the
complexity of the DRL component—by isolating the decision
space to server assignment only—but also preserves optimality
in resource allocation through closed-form or determinis-
tic solutions. The proposed DQN-RAO framework therefore
achieves a balance between learning-based adaptability and
analytical efficiency, enabling real-time task offloading under
realistic MEC constraints.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a multi-user multi-server mobile edge com-
puting (MEC) network, as illustrated in Fig. 1, comprising
M wireless devices (WDs) and N edge servers (ESs), where
typically N < M . The WDs are indexed by m ∈ {1, . . . ,M}
and the ESs by n ∈ {1, . . . , N}. Time is slotted, and in
each slot every WD generates a single computation task that
must be fully offloaded to one ES for execution, with no task
partitioning or hybrid local–edge processing allowed.

Fig. 1. Architecture of multi-user multi-server MEC network.

Each computation task is characterized by two heteroge-
neous parameters. The input data size Sm (in bits) represents
the payload that WD m must transmit to its serving ES.
The computational complexity Cm (in CPU cycles) specifies

the execution workload required to complete the task once
received at the server. These parameters vary across devices
due to the diversity of application workloads in practical MEC
systems.

Task offloading occurs over an uplink multiple-access chan-
nel with total bandwidth B shared among the WDs. The
wireless channel between WD m and ES n is represented
by the channel gain hmn, which accounts for path loss,
shadowing, and fading effects. Each WD transmits with a fixed
power Pm during the offloading phase. On the computation
side, ES n is equipped with a processing capability represented
by the maximum CPU frequency Fn (in cycles per second),
which must be allocated among its associated tasks. To capture
practical processing, memory, and connection-management
constraints, each ES can concurrently support at most Mmax

n

tasks within a given slot.
Two sets of decision variables determine the offloading and

resource allocation outcomes. The binary association variable
xmn indicates whether WD m offloads its task to ES n, where
xmn = 1 when ES n is selected and xmn = 0 otherwise. Since
full offloading is enforced, each WD must select exactly one
ES. The continuous variable fmn denotes the CPU frequency
allocated by ES n to the task of WD m. By definition, fmn >
0 only when xmn = 1, ensuring that computation resources
are provided exclusively to offloaded tasks.

B. Delay Model

1) Uplink Rate (bits/s):

Rmn(t) = B log2

(
1 +

Pmhmn(t)

σ2

)
(1)

where B is the system bandwidth, Pm is the transmit power
of WD m, hmn is the channel gain and σ2 is the noise power.

2) Transmission Delay:

T tx
mn =

Sm
Rmn

(2)

3) Computation Delay at Edge Server:

T comp
mn =

Cm
fmn

. (3)

4) Total Delay:

Tmn = T tx
mn + T comp

mn (4)

The average delay across all WDs is

Dfull =
1

M

M∑
m=1

N∑
n=1

xmnTmn. (5)



C. Optimal Full-Offloading Optimization Problem

The optimal full-offloading problem is formulated as:

minimize
{xmn,fmn}

Dfull =
1

M

M∑
m=1

N∑
n=1

xmn

(
Sm
Rmn

+
Cm
fmn

)
(6)

subject to
N∑
n=1

xmn = 1, ∀m, (7)

M∑
m=1

fmn ≤ Fn, (8)

M∑
m=1

xmn ≤Mmax, (9)

xmn ∈ {0, 1}, fmn ≥ 0, ∀m,n. (10)

Problem (6)–(10) is a mixed-integer nonlinear program
(MINLP), since it involves both binary variables and nonlinear
delay terms. The optimal full-offloading problem is chal-
lenging due to its mixed-integer nonlinear nature, with both
combinatorial assignment variables and nonlinear coupling in
resource allocation. The exponential growth of feasible as-
signments makes direct optimization intractable as system size
increases. Nonlinear delay functions tightly couple scheduling
with resource allocation, meaning that assigning a device to a
server affects not just delay, but the feasible CPU distribution
for all tasks. These factors together render standard exact
solvers slow and limit the practicality of many heuristic
and learning-based approaches for real-time, large-scale edge
computing systems.

III. DQN-RAO ALGORITHM DESIGN

To overcome the computational intractability of the mixed-
integer nonlinear optimization problem in (6)–(10), we pro-
pose a decomposition-based solution DQN-RAO as illustrated
in Fig.2.

Fig. 2. The illustration of DQN-RAO Algorithm

The key idea is to separate the binary offloading decision
from the continuous CPU allocation. In the first phase, a
DQN is trained to determine an efficient server-selection
matrix X = [xmn] under dynamic wireless and computational
conditions. In the second phase, given X, the optimal CPU
frequency allocation F = [fmn] is computed by solving

a convex minimization problem. This two-stage procedure
allows scalable and near-optimal operation in large multi-user
multi-server MEC networks.

A. Phase I: DQN-Based Offloading Decision Learning

The process of assigning tasks to edge servers is formulated
as a Markov Decision Process (MDP). At decision step t, the
system state is defined as

st =
(
{hmn(t)}m,n, {Sm}m, {Cm}m, {Mmax

n − un(t)}n
)
,

(11)
where un(t) is the number of tasks already assigned to ES n
before making decision t.

The action at step t is the selected server index for the
current device:

at ∈ {1, . . . , N}, (12)

which determines the assignment xmat = 1.
The reward is defined to favor low latency while discour-

aging overload of any ES:

rt = −
(
T tx
mat +

Cm
Fat/(uat(t) + 1)

)
−λ·1

[
uat(t) + 1 > Mmax

at

]
,

(13)
where λ is a large penalty coefficient.

A Deep Q-Network parameterized by θ is trained to ap-
proximate the optimal action-value function

Qθ(st, at) ≈ E

[
T∑
τ=t

γτ−trτ | st, at

]
, (14)

where γ is the discount factor. The learned policy selects

a∗t = argmax
a

Qθ(st, a). (15)

After M steps, a complete server association matrix X is
obtained.

B. Phase II: Optimal CPU Frequency Allocation

Given the offloading decisions X, the computation resource
allocation reduces to a convex optimization problem. For each
ES n, define the set of assigned devices

Mn = {m : xmn = 1}. (16)

For ES n, the local CPU allocation problem is

minimize
{fmn}

∑
m∈Mn

Cm
fmn

(17)

subject to
∑

m∈Mn

fmn ≤ Fn, (18)

fmn > 0, ∀m ∈Mn. (19)

Using KKT conditions, the optimal CPU frequency alloca-
tion at ES n is:

f∗mn = Fn

√
Cm∑

j∈Mn

√
Cj
, ∀m ∈Mn. (20)



Algorithm 1: DQN-RAO Algorithm
1: Initialize DQN parameters θ, replay memory M
2: for each episode do
3: Observe initial system state s1
4: for t = 1 to M do
5: Select action at using ε-greedy:

at =

{
random action, with prob. ε,
argmaxaQθ(st, a), otherwise

6: Assign WD m to ES at: xmat = 1
7: Compute reward rt
8: Observe next state st+1

9: Store transition (st, at, rt, st+1) in M
10: Sample minibatch from M
11: Update θ via gradient descent:

L(θ) =
(
rt + γmax

a′
Qθ(st+1, a

′)−Qθ(st, at)
)2

12: end for
13: Obtain complete assignment matrix X
14: for each ES n do
15: Solve convex CPU allocation for f∗mn:

f∗mn = Fn

√
Cm∑

j∈Mn

√
Cj

16: end for
17: Evaluate overall delay Dfull

18: end for

Once f∗mn is computed for all m and n, the total delay is
obtained from

Tmn = T tx
mn +

Cm
f∗mn

, (21)

and the averaged total delay Dfull is computed accordingly.
The integrated DQN-RAO solution is summarized in Algo-

rithm 1.

IV. NUMERICAL SIMULATION RESULTS AND EVALUATION

A. Simulation Environment

The simulation models a representative MEC network with
M = 9 wireless devices (WDs) and N = 3 edge servers
(ESs), where each server can serve at most Mmax = 3 devices
concurrently. The computation tasks are heterogeneous: input
data size Sm ∼ U [200, 500] kb and CPU cycles Cm ∼ U [5×
108, 2 × 109], covering lightweight to computation-intensive
workloads. The uplink bandwidth is B = 1 MHz, and each
WD transmits with power Pm = 0.1 W. Channel gains
hmn ∼ U [0.5, 2.0] capture path loss and fading, and noise
power is σ2 = 10−9 W/Hz. Edge servers have heterogeneous
CPU frequencies Fn ∼ U [5× 109, 9× 109] cycles/s.

The DQN in the first phase of DQN-RAO is implemented as
a fully connected feed-forward network. The key configuration
parameters are summarized in Table I.

TABLE I
DQN CONFIGURATION FOR OFFLOADING DECISION LEARNING

Parameter Value
Hidden layers 2 (128, 64 neurons)
Activation function ReLU
Output layer N Q-values (servers)
Replay memory size 105 transitions
Minibatch size 64
Optimizer Adam, LR = 1× 10−3

Discount factor γ 0.95
Exploration strategy ε-greedy, ε decay 1.0→ 0.05 over 2000 episodes
Target network update Every 100 steps
Training episodes 4000

B. Comparative Algorithms

To evaluate the performance of the proposed DQN-RAO
algorithm, we compare it against two common MEC baselines.
The random offloading algorithm (ROA) dictates that each
WD selects an edge server uniformly at random, repeating the
process until a server below the maximum capacity (Mmax)
is found. In contrast, the greedy offloading algorithm (GOA)
mandates that each WD chooses the edge server that provides
the highest instantaneous channel gain (or uplink data rate,
Rmn), entirely disregarding the server’s current computational
load or available capacity.

C. Simulation Results and Evaluations

1) Training Loss: Figure 3 illustrates the trends of the DQN
training loss over 500 episodes for the specified batch sizes.

Fig. 3. Training loss of DQN with different batch sizes

The loss curves for smaller batch sizes (32 and 64) are
more volatile (more jagged) due to the higher variance in the
gradient estimation based on fewer samples per update. The
loss curves for larger batch sizes (128 and 256) are smoother,
indicating a more stable and accurate gradient estimation.

2) Averaged delay vs server CPU frequency: In the sce-
nario of simulation, we consider the homogeneous servers.
We change the maximum CPU frequency of servers in range
[5e9,10e9]. The simulation results as shown in Fig. 4 confirms
the substantial superiority of the DQN-RAO algorithm, which
consistently achieves the minimum average task delay across
the full edge server frequency range (5 GHz to 9 GHz). At the



lowest capacity (5 GHz), DQN-RAO yields a delay (≈ 0.60
s) that is over 14% lower than GOA (≈ 0.70 s) and over
29% lower than ROA (≈ 0.85 s). While all algorithms benefit
from increased CPU frequency, the performance margin of
DQN-RAO is maintained. This persistent gap validates that
the DQN-RAO agent successfully learns an intelligent, co-
ordinated policy, effectively navigating the trade-off between
transmission quality and computational load balancing for sig-
nificant efficiency improvements over myopic and randomized
strategies in the MEC environment.

Fig. 4. The Averaged Delay of Algorithms

3) Averaged Delay vs. Task Complexity: In this scenario,
where heterogeneous servers are considered, the task com-
plexity is varied in the range [500, 1000] CPU cycles per bit.
Figure 5 illustrates the averaged task delay as task complexity
increases. As expected, increasing task complexity increases

Fig. 5. The Averaged Delay of Algorithms

the average delay for all algorithms. The proposed DQN-RAO
consistently yields the lowest overall delay, rising from ≈ 0.44
s to ≈ 0.54 s. ROA demonstrates the highest delay (≈ 0.55
s to ≈ 0.78 s) and is the most sensitive to complexity
changes, showing the steepest delay increase (≈ 0.23 s). Both
GOA and DQN-RAO are less sensitive due to their intelligent
channel selection capabilities. The substantial performance gap
maintained by DQN-RAO across the entire complexity range

underscores its superior efficacy in achieving optimal load dis-
tribution and resource allocation for demanding applications.

V. CONCLUSION

This paper proposed the DQN-RAO algorithm to minimize
the average task delay in multi-user multi-server MEC net-
works. The complex joint offloading and resource allocation
problem was effectively handled using a two-phase decompo-
sition: a DQN learned the optimal discrete offloading policy,
followed by convex optimization for efficient CPU frequency
allocation. Simulation results demonstrated that DQN-RAO
consistently achieved the lowest average task delay, signifi-
cantly surpassing both GOA and ROA algorithms across vary-
ing maximum server CPU frequencies and task complexity
levels.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Science
and ICT (MSIT), Korea, under the Innovative Human Re-
source Development for Local Intellectualization program, su-
pervised by the Institute for Information and Communications
Technology Planning and Evaluation (IITP) (IITP-2025-RS-
2020-II201612 (25%), IITP-2025-RS-2024-00438430 (25%))
and Korea Research Fellowship Program through the National
Research Foundation of Korea (NRF) funded by the Ministry
of Science and ICT (2018R1A6A1A03024003 (25%), RS-
2023-00249687 (25%)).

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Communications Surveys and
Tutorials, vol. 19, no. 3, pp. 1628–1656.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys and Tutorials, vol. 19, no. 4, pp. 2322–2358.

[3] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, October 2016.

[4] K. Wang, S. F. Akhtar, and F. A. Al-Zahrani, “An efficient algorithm
for resource allocation in mobile edge computing based on convex
optimization and karush–kuhn–tucker method,” Complexity, vol. 2023,
pp. 1–15.

[5] L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, “Multi-server
multi-user multi-task computation offloading for mobile edge computing
networks,” Sensors, vol. 19, no. 6, p. 1446.

[6] H. Tran-Dang, S. Bhardwaj, T. Rahim, A. Musaddiq, and D.-S. Kim,
“Reinforcement learning based resource management for fog computing
environment: Literature review, challenges, and open issues,” Journal of
Communications and Networks, pp. 1–16.

[7] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168.

[8] Y. Qin, J. Chen, L. Jin, R. Yao, and Z. Gong, “Task offloading
optimization in mobile edge computing based on a deep reinforcement
learning algorithm using density clustering and ensemble learning,”
Scientific Reports, vol. 15, no. 1.

[9] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” vol. 19, no. 11, pp. 2581–2593.

[10] T. T. Vu, N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Offloading energy efficiency with delay constraint for cooperative mo-
bile edge computing networks,” in 2018 IEEE Global Communications
Conference (GLOBECOM), pp. 1–6.


