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Abstract— Multi-task learning (MTL) improves generalization
and computational efficiency by learning shared representations
across related tasks, yet imbalanced task learning often leads to
unstable optimization. Dynamic Weight Averaging (DWA)
addresses this challenge by reweighting tasks based on relative loss
changes; however, its fixed temperature limits adaptability as
learning dynamics evolves. To overcome this limitation, we
propose Adaptive Temperature Dynamic Weight Averaging
(ATDWA), a lightweight extension that adjusts the temperature
using the temporal standard deviation of each task’s loss, enabling
more responsive and stable task weighting. We integrate ATDWA
into a joint segmentation—classification framework with a
pretrained ResNet-34 backbone and evaluate it on the Breast
Ultrasound Images (BUSI) dataset. Compared with the original
SSC, ATDWA improves segmentation performance, increasing
Dice and IoU by 5.4986% and 1.4863%, respectively, while
segmentation accuracy decreases slightly by 0.5138%. For
classification, ATDWA further boosts accuracy, Recall, and
Precision by 5.8993%, 5.8993%, and 5.4230%, respectively.
Overall, these results indicate that ATDWA stabilizes multi-task
optimization and substantially enhances diagnostic performance
in breast ultrasound analysis.

Keywords— multi-task learning, task imbalance, adaptive
temperature, dynamic weight average, breast ultrasound images.

I INTRODUCTION

Multi-task learning (MTL) has emerged as a crucial
paradigm in deep learning, enabling a single model to learn

multiple related tasks simultaneously. The primary motivation
for using MTL is its ability to reduce overfitting and data
scarcity by leveraging shared representations across tasks,
resulting in better overall generalization [1, 2]. Furthermore,
MTL provides computational advantages, as a unified model
typically requires fewer resources and memory than training
separate models for each task [3].

However, most multi-task learning networks face a
fundamental challenge: training multiple tasks simultaneously is
difficult without striking an appropriate balance [4—-6]. When
one task dominates the optimization process, the remaining tasks
may receive insufficient learning signals, resulting in decreased
overall performance. Dynamic Weight Averaging (DWA) [4]
was introduced to address this issue by adjusting task weights
based on changes in relative loss, thereby providing a
lightweight mechanism for balancing task contributions during
training. However, because DWA uses a fixed temperature
hyperparameter, it is unable to adapt when task behaviours
change over time, limiting its responsiveness to instability in
task learning dynamics.

To address this limitation, we present Adaptive Temperature
Dynamic Weight Averaging (ATDWA), an extension of DWA
that incorporates temporal uncertainty into the weighting
mechanism. Instead of using a static temperature, ATDWA
dynamically adjusts the temperature based on the recent
volatility of each task’s loss, measured as the standard deviation
over a small epoch window. By averaging these task-specific
uncertainties, ATDWA estimates the overall instability of the



learning process and proportionally increases the temperature as
losses fluctuate. This adaptive strategy enables the weighting
mechanism to respond more effectively to unpredictable or
divergent task behaviours, resulting in more stable and context-
aware weight updates throughout training.

Notably, ATDWA is architecture-agnostic because it relies
only on general multi-task signals, namely task-wise losses and
their relative learning dynamics, making it a potentially general-
purpose task-weighting method. In this study, we evaluate
ATDWA for medical image analysis by integrating it into the
Simultaneous  Segmentation and Classification (SSC)
framework [7]. Since the original SSC encoder tends to overfit
and generalize poorly, we replace it with an ImageNet-
pretrained ResNet-34 (SSC-ResNet), which provides more
robust and discriminative features [11, 16], mitigates vanishing
gradients through residual learning [8-10], and improves
convergence speed and training stability [12, 21]. ResNet-34 is
also widely validated as an effective feature extractor for multi-
task learning and medical image analysis [14, 15].

The primary goal of this study is to create and validate an
adaptive loss-weighting strategy that improves optimization
stability in simultaneous tumor segmentation and classification.
The proposed method introduces Adaptive Temperature
Dynamic Weight Averaging ATDWA, which dynamically
regulates task importance based on temporal loss uncertainty,
enabling more balanced learning. This mechanism reduces task
dominance, increases convergence stability, and improves
overall performance in multi-task medical imaging. The primary
findings of this study are summarised as follows:

e The proposed ATDWA introduces an adaptive
temperature mechanism based on the temporal
variability of task losses, enabling more uncertainty-
aware and responsive task weighting in multi-task
learning.

e The integration of ATDWA into the SSC-ResNet
framework  improves both  segmentation and
classification performance for breast ultrasound imaging,
surpassing the original SSC [7] and all SSC-ResNet
variants, with and without adaptive weighting.

The remainder of this paper is structured as follows. Section
I provides a detailed literature review on multi-task learning in
medical imaging and task-weighting strategies. Section III
presents the methodology, including details of the proposed
ATDWA and SSC-ResNet framework. Section IV describes the
experimental setup and reports the results. Finally, Section V
concludes the paper by highlighting the main contributions,
discussing limitations, and outlining directions for future
research.

II.  RELATED WORKS

Multi-task learning (MTL) has been widely adopted in
medical image analysis for tasks such as segmentation and
classification. It has been shown to enhance diagnostic
robustness by jointly leveraging pixel- and image-level
information  across modalities, including ultrasound,
mammography, dermoscopy, and CT imaging [7, 17, 18]. While
MTL frameworks often outperform single-task models, jointly

optimizing heterogeneous tasks remains challenging due to task
imbalance, where dominant tasks suppress the learning of
others, leading to unstable convergence and inconsistent
performance, particularly in complex anatomical settings [4-6].

To address task imbalance, several adaptive loss-weighting
strategies for multi-task learning have been proposed. These
methods dynamically adjust task contributions during training to
ensure that optimization is stable and that no single task
dominates the shared representation. Uncertainty-based
weighting [5] adjusts task importance according to
homoscedastic uncertainty by scaling each task loss, thereby
reducing the influence of tasks with higher predictive
uncertainty during optimization. However, its effectiveness is
heavily reliant on accurate uncertainty estimation, which may
not always reflect actual task learning progress. GradNorm [6]
aims to maintain balanced learning speeds by equating gradient
magnitudes across tasks; however, this method incurs significant
computational overhead due to repeated gradient manipulations.
Although these methods improve static weighting schemes, they
are still unable to adapt smoothly to rapid or irregular
fluctuations in task difficulty while training.

Dynamic Weight Averaging (DWA) [4] offers a lightweight
alternative by adjusting task weights based on relative loss
changes across epochs, without requiring gradient normalization
or explicit uncertainty modeling. By emphasizing tasks whose
losses decrease more slowly, DWA helps mitigate the learning
speed imbalance. However, its reliance on a constant
temperature parameter limits adaptability, as fixed sensitivity
may lead to under- or overcompensation when task dynamics
vary across training stages.

To overcome this limitation, we propose Adaptive
Temperature Dynamic Weight Averaging (ATDWA), which
extends DWA by dynamically adjusting the temperature
according to the temporal variability of task losses. When recent
loss fluctuations are high, ATDWA increases the temperature to
smooth weight updates and reduce instability. As training
becomes more stable, the temperature decreases, enabling more
responsive adjustments to meaningful differences in task
learning progress.

This adaptive weighting mechanism better aligns with
evolving task dynamics and maintains balanced optimization
throughout training. Integrated into the SSC-ResNet framework,
ATDWA consistently outperforms the original SSC, SSC-
ResNet without adaptive weighting, and SSC-ResNet with
existing strategies such as GradNorm and standard DWA. These
results demonstrate that ATDWA provides a stable and effective
solution for addressing task imbalance in medical multi-task
learning.

III. METHODOLOGY

A. Overall Architecture of Adaptive Weighting Framework

The model is developed within the SSC framework [7],
which comprises a shared encoder and two task-specific heads
for segmentation and classification. In this implementation, we
replaces the original SSC encoder with a pretrained ResNet-34
backbone to enhance feature extraction while preserving the
overall structure and training pipeline of the original framework.



ResNet-34 is selected because it has been extensively validated
as an effective feature extractor in multi-task learning and
medical image analysis [14, 15]. The shared backbone produces
a unified feature representation for a given input image, which
is simultaneously consumed by both prediction heads. During
training, each task yields a task-specific loss that is passed to the
Adaptive Temperature Dynamic Weight Averaging (ATDWA)
module. ATDWA quantifies the temporal variability of each
loss to derive dynamic task weights, which are then combined to
form a single total loss. This total loss is used to update all model
parameters via backpropagation. Integrating ATDWA into the
SSC architecture preserves the benefits of shared representation
learning while promoting more stable and adaptively balanced
optimization across tasks. Fig. 1 illustrates the overall structure
of the proposed multi-task framework.
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Figure 1. Overall Architecture

B. Adaptive Temperature Dynamic Weight Average (Our
Proposed Technique)

The original DWA [4] employs a fixed temperature, which
constrains its responsiveness to evolving task difficulty and
inter-task divergence. In contrast, ATDWA augments DWA
with a dynamic, uncertainty-aware temperature while retaining
the same per-epoch weight update rule.

1) Loss Ratio
Let the set of tasks be denoted by T = {1, ..., K}. For each
task k, let L, (t) represent its loss at epoch t. The ratio loss
17 (t) is computed as:

Li(t-1) (1)

ne(t) = Li(t—2)+€

with € = 1078 added for numerical stability.

ATDWA uses the same formulation as standard DWA [4]
for computing the loss ratios 13 (t). However, the subsequent
formulas in (2) — (5) are proposed in this work.

2) Task-wise Temporal Uncertainty
Instead of computing uncertainty across tasks, ATDWA
estimates temporal uncertainty for each task individually. For
every task k, uncertainty is measured using the standard
deviation of its loss values over the most recent window of three
epochs (the window length can be set manually):

w, (t) = StdDev(Ly (), Ly (t — 1), L, (t=2)) ()

Higher values of u; (t) indicate that the task is fluctuating more
strongly over time, signaling instability in its optimization
trajectory.

To obtain a single uncertainty value that reflects the overall
network stability, we compute the average across tasks:

() = ¢ Ty we(0) (3)

3) Adaptive Temperature Scaling
The temperature at epoch t is updated using the average
temporal uncertainty:

T(t) = To(1 +yu(®) “4)

The base temperature T, is set to 2 by following the standard
DWA formulation, where a temperature of 2 has been
empirically shown to provide optimal and stable performance
across a wide range of network architectures [6].

The sensitivity parameter y is set to 0.8, determined through a
grid search over the range of 0.1 to 0.9 with a step size of 0.1.
The selected value yields the lowest standard deviation across
all folds, indicating improved robustness to data variation.

When losses fluctuate strongly, %(t) increases, leading to a
higher temperature and more stable weighting. When losses are
relatively stable, the temperature remains close to its base value,
allowing more decisive adjustments in task weights.

4) Adaptive Weight Update
Using the ratios 13, (t)and the adaptive temperature T (t), the
weight for each task is computed as:

olk8) 5

wi(6) = = — ey
Ef=1e"p<ﬁ)

The multiplication by K ensures that the weights sum to K,
matching the normalization form used in our implementation.

These weights are then applied to the corresponding task
losses to compute the weighted total loss, which is subsequently
used for backpropagation.

IV. RESULTS AND DISCUSSION

A. Experimental Settings

The Breast Ultrasound Images (BUSI) dataset [23] used in
this study contains 647 images, including 210 malignant cases.
The dataset was split into 80% for training and 20% for testing.
Figure 2 shows representative examples of the dataset. We
adopted five-fold cross-validation on the training set, where each
fold reserved 20% of the training data for validation. After
applying data augmentation to the training split, the effective
training set increased to approximately 2,900 images, while the
validation set contained about 100 images per fold and the held-
out test set remained at 129 images. This protocol helps mitigate
overfitting and provides a more reliable estimate of model
performance. For consistent input formatting, all images were
resized to 256%256 pixels, and data augmentation was applied to
increase input variability [19, 20]. Augmentations applied with
a probability of 1.0 included grid distortion, random rotations of
up to 45°, optical distortion, horizontal and vertical flips, and
elastic transformations. These augmentations substantially



TABLE II.

COMPARISON ON TESTING SET RESULTS BETWEEN ABLATION MODELS

Model Segmentation Classification
Acc Dice loU AUC Recall Precision Acc Fl-score Recall Precision
SSC-ResNet 0.9576 0.7414 0.6502 0.8887 0.7970 0.7538 0.8961 0.8960 0.8961 0.8981
SSC-ResNet-GradNorm [6] 0.9570 0.7144 0.6291 0.8677 0.7498 0.7508 0.9271 0.9271 0.9271 0.9284
SSC-ResNet-DWA [4] 0.9598 0.7420 0.6565 0.8815 0.7789 0.7659 0.9039 0.9033 0.9039 0.9080
SSC-ResNet-ATDWA (Ours) 0.9589 0.7561 0.6711 0.8843 0.7837 0.7816 0.9178 0.9178 0.9178 0.9207

expanded diversity in the input space [19, 20], enabling the
model to learn more robust and consistent representations.

Figure 2. Samples of BUSI Dataset [23]

Model training was conducted using the Adam optimizer
with a learning rate of 1 x 10*. A dropout rate of 0.3 was applied
throughout the network to improve generalization. To mitigate
training stagnation, the learning rate was reduced when the
validation loss plateaued. Early stopping with a patience of 15
epochs was applied and monitored using the mean validation
loss across the segmentation and classification tasks to maintain
balanced optimization. A batch size of 16 was used for all
methods, except for GradNorm [6], which required a reduced
batch size of 8 due to its increased memory consumption for
gradient-based weighting. Standard DWA [4] was implemented
with a fixed temperature of T = 2, consistent with its original
formulation.

We conduct a comparative study against prior studies and
perform an ablation analysis involving multiple architectural and
weighting configurations: SSC-ResNet, SSC-ResNet with
GradNorm (SSC-ResNet-GradNorm), SSC-ResNet with DWA
(SSC-ResNet-DWA), and the proposed SSC-ResNet with
ATDWA (SSC-ResNet-ATDWA). To comprehensively assess
performance, both segmentation and classification tasks are
evaluated on the test set using widely adopted metrics in medical
image analysis. Segmentation performance is evaluated using
the Dice coefficient, loU, segmentation accuracy (Acc), Recall,
Precision, and AUC. Classification performance is evaluated
using accuracy (Acc), Fl-score, Recall, and Precision. All
metrics adhere to their standard definitions, without task-
specific modifications, ensuring a fair comparison across
weighting strategies and consistency with prior literature. In
addition to accuracy, we measure training memory usage and
runtime of SSC-ResNet with and without adaptive weighting
methods to evaluate their computational efficiency. Memory
consumption is measured using PyTorch CUDA memory
allocation statistics, and runtime is measured using PyTorch
timing utilities [24].

B. Comparison with Previous Studies

Table 1 shows that the proposed SSC-ResNet-ATDWA
achieves better overall performance than prior SSC-based work,
including the baseline SSC [7]. Compared with SSC [7], our

*Numbers in bold indicate the highest value

method yields substantial gains in segmentation metrics: the
Dice and IoU scores increase by 5.4986% and 1.4863%,
respectively, while the segmentation accuracy (Acc) decreases
slightly by 0.5138%. Simultaneously, classification accuracy
(Acc) and Recall improve by 5.8993%, accompanied by a
5.4230% increase in Precision. These results suggest that
combining a pretrained ResNet-34 encoder with the ATDWA
adaptive weighting mechanism improves both feature learning
and task balancing, enabling our model to outperform prior
methods while maintaining strong performance in segmentation
and diagnosis.

TABLE L. COMPARATIVE PERFORMANCE WITH PREVIOUS STUDIES
Segmentation Classification
Author Acc Dice ToU Acc Recall Precision
Byraetal. [22] 0.9270 | 0.6440 NA 0.8650 | 0.8200 NA
SSC [7] 0.9639 | 0.7167 | 0.6613 | 0.8667 | 0.8587 | 0.8733
SSC-ResNet- 0.9589 | 0.7561 | 0.6711 | 0.9178 | 0.9178 | 0.9178
ATDWA (Ours)

*Numbers in bold indicate the highest value

C. Comparison on Ablation Models

This section presents the results of the ablation study on the
test set. All metrics are averaged over five cross-validation folds
to provide a robust estimate of generalization performance.
Table II summarizes segmentation and classification outcomes
across architectural and task-weighting variants. Additionally,
qualitative comparisons are provided to assess lesion boundary
consistency and illustrate the effects of different task-weighting
strategies.

GradNorm Weighting Across Training

WEIGHT

14 7 101316192225 28 31 34 37 40 43 46 49 52 55 58
EPOCHS

——Seg ion Weight Classifi Weight

Figure 3. GradNorm loss weights across training epochs

Table II shows that GradNorm achieves the strongest
classification performance, improving accuracy (Acc), F1-
score, Recall, and Precision by 3.4602%, 3.4729%, 3.4602%,
and 3.3713%, respectively, compared with SSC-ResNet.
However, GradNorm substantially degrades segmentation
performance, with decreases of 0.0616% in segmentation
accuracy (Acc), 3.6447% in Dice, 3.2378% in IoU, 2.3642% in
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Figure 4. Comparison of Segmentation Results

AUC, 5.9178% in Recall, and 0.3950% in Precision. This
inconsistency in GradNorm is driven by a rapidly emerging task
imbalance during training, where GradNorm reallocates
weights to prioritize the classification loss, causing the
segmentation weight to approach zero, as shown in Fig. 3.

DWA exhibits a more balanced, though still imperfect,
weighting behavior across tasks. Compared with SSC-ResNet,
DWA improves segmentation accuracy (Acc), Dice, loU, and
Precision by 0.2269%, 0.0808%, 0.9678%, and 1.5999%,
respectively. However, the segmentation AUC and Recall
decreased by 0.8169% and 2.2640%. For classification, DWA
yields modest gains, with accuracy (Acc), F1-score, Recall, and
Precision increasing by 0.8651%, 0.8172%, 0.8651%, and
1.1054%, respectively

The proposed ATDWA achieves a more favorable balance
between tasks by delivering consistent improvements in
segmentation while remaining highly competitive in
classification. Compared with SSC-ResNet, segmentation
accuracy (Acc) increases by 0.1376%, which is only 0.0890%
lower than DWA. Moreover, Dice, IoU, and Precision improve
by 1.9866%, 3.2226%, and 3.6793%, respectively. The
decreases in pixel-wise AUC and Recall are also notably smaller
than those observed with GradNorm and DWA. For
classification, ATDWA improves accuracy (Acc), Fl-score,
Recall, and Precision by 2.4221%, 2.4336%, 2.4221%, and
2.5111%, respectively, relative to SSC-ResNet. Compared with
GradNorm, ATDWA consistently ranks as the second-best
performing technique in classification, with reductions across all
metrics remaining within approximately 1%. Unlike GradNorm,
which substantially compromises segmentation, ATDWA
preserves effective segmentation learning while achieving near-
maximum classification performance. These results highlight
the benefit of adaptive temperature adjustment in improving the
stability and reliability of multi-task optimization.

Fig. 4 shows qualitative segmentation results for selected
malignant and benign tumors. Across methods, the predicted
masks generally capture the overall tumor morphology.
However, none of the approaches delineates lesion boundaries,
particularly for malignant cases where contours are often
irregular and visually ambiguous. We visualize predictions
using contour overlays to better assess the alignment of
boundaries. While the proposed method reliably localizes
lesion regions, boundary ambiguity remains a key challenge.
On the right side of the malignant lesion, the subtle intensity

difference between tumor tissue and background causes the
predicted contour to contract inward, producing a narrower
segmentation than the ground truth. At the left boundary, where
background contrast is comparable to the lesion, the model
shows a mild tendency to over-segment. Along the inferior
boundary, the predicted contour follows a darker intensity
transition, whereas the ground truth extends into brighter tissue
regions consistent with tumor presence, suggesting that
annotation ambiguity may also contribute to the discrepancy.
Overall, these observations indicate that segmentation errors
are largely driven by low-contrast and visually ambiguous
regions, in addition to model limitations.

TABLE IIL. COMPUTATIONAL EFFICIENCY COMPARISON BETWEEN
ABLATION MODELS
Max Longest Per
o | ey | RIS | o
Usage (GB) Runtime (s)
SSC-ResNet 0.8046 179.5562 26.5903
SSC-ResNet-
DWA [4] 0.8049 185.5686 26.0866
SSC-ResNet-
GradNorm [6] 6.8029 1286.3955 258.8503
SSC-ResNet-
ATDWA (Ours) 0.8049 1874173 26.6796

Table III shows that the proposed ATDWA maintains a
lightweight computational profile comparable to DWA and the
baseline SSC-ResNet. ATDWA introduces only a slight increase
in peak memory usage and training time relative to the
unweighted model, with both step-level and epoch-level
runtimes remaining close to those of DWA. In contrast, SSC-
ResNet-GradNorm incurs substantial overhead, increasing peak
memory usage by more than eight times and extending training
time by approximately six to eight times compared with the
baseline, DWA, and ATDWA. Overall, these results confirm
that ATDWA provides adaptive task weighting while preserving
training efficiency.

V. CONCLUSION

This study presents the SSC-ResNet-ATDWA, which
adaptively modifies task weights according to temporal loss
variability, showing enhanced performance in segmentation
and classification tasks relative to previous SSC-based



approaches. We conducted a comprehensive evaluation against
prior works and multiple ablation variants (SSC-ResNet, SSC-
ResNet-GradNorm, and SSC-ResNet-DWA) using a five-fold
cross-validation approach.

Compared to earlier SSC-based work, SSC-ResNet-
ATDWA demonstrates significant improvements in key
metrics, achieving increases of 5.4986% and 1.4863% in Dice
and IoU scores, respectively, while accuracy decreased slightly
by 0.5138%. For classification, accuracy (Acc) and Recall each
increased by 5.8933%, accompanied by a 5.4230% increase in
Precision. In comparison to the ablation models, ATDWA also
achieved the strongest overall segmentation performance,
improving Dice, IoU, and Precision by 1.9866%, 3.2226%, and
3.6793%, respectively, over SSC-ResNet, while maintaining
segmentation accuracy (Acc), AUC, and Recall at levels
comparable to those of DWA and SSC-ResNet. In classification
tasks, ATDWA ranks just below GradNorm, with all metrics
differing by about 1% from the top-performing model.
However, ATDWA avoids the severe segmentation degradation
caused by GradNorm’s imbalance-driven gradient scaling,
resulting in a more stable and reliable weighting strategy.

Future research may investigate the integration of validation-
aware weighting decisions or the incorporation of gradient
interaction modeling to improve optimization stability.
Furthermore, assessing the proposed method on a broader range
of multi-task learning benchmarks, beyond medical imaging and
across diverse backbone architectures, would enhance the
understanding of its general-purpose applicability.
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