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Abstract— Multi-task learning (MTL) improves generalization 

and computational efficiency by learning shared representations 

across related tasks, yet imbalanced task learning often leads to 

unstable optimization. Dynamic Weight Averaging (DWA) 

addresses this challenge by reweighting tasks based on relative loss 

changes; however, its fixed temperature limits adaptability as 

learning dynamics evolves. To overcome this limitation, we 

propose Adaptive Temperature Dynamic Weight Averaging 

(ATDWA), a lightweight extension that adjusts the temperature 

using the temporal standard deviation of each task’s loss, enabling 

more responsive and stable task weighting. We integrate ATDWA 

into a joint segmentation–classification framework with a 

pretrained ResNet-34 backbone and evaluate it on the Breast 

Ultrasound Images (BUSI) dataset. Compared with the original 

SSC, ATDWA improves segmentation performance, increasing 

Dice and IoU by 5.4986% and 1.4863%, respectively, while 

segmentation accuracy decreases slightly by 0.5138%. For 

classification, ATDWA further boosts accuracy, Recall, and 

Precision by 5.8993%, 5.8993%, and 5.4230%, respectively. 

Overall, these results indicate that ATDWA stabilizes multi-task 

optimization and substantially enhances diagnostic performance 

in breast ultrasound analysis.  
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I.  INTRODUCTION 

Multi-task learning (MTL) has emerged as a crucial 
paradigm in deep learning, enabling a single model to learn 

multiple related tasks simultaneously. The primary motivation 
for using MTL is its ability to reduce overfitting and data 
scarcity by leveraging shared representations across tasks, 
resulting in better overall generalization [1, 2]. Furthermore, 
MTL provides computational advantages, as a unified model 
typically requires fewer resources and memory than training 
separate models for each task [3]. 

However, most multi-task learning networks face a 
fundamental challenge: training multiple tasks simultaneously is 
difficult without striking an appropriate balance [4–6]. When 
one task dominates the optimization process, the remaining tasks 
may receive insufficient learning signals, resulting in decreased 
overall performance. Dynamic Weight Averaging (DWA) [4] 
was introduced to address this issue by adjusting task weights 
based on changes in relative loss, thereby providing a 
lightweight mechanism for balancing task contributions during 
training. However, because DWA uses a fixed temperature 
hyperparameter, it is unable to adapt when task behaviours 
change over time, limiting its responsiveness to instability in 
task learning dynamics. 

To address this limitation, we present Adaptive Temperature 
Dynamic Weight Averaging (ATDWA), an extension of DWA 
that incorporates temporal uncertainty into the weighting 
mechanism. Instead of using a static temperature, ATDWA 
dynamically adjusts the temperature based on the recent 
volatility of each task’s loss, measured as the standard deviation 
over a small epoch window. By averaging these task-specific 
uncertainties, ATDWA estimates the overall instability of the 



learning process and proportionally increases the temperature as 
losses fluctuate. This adaptive strategy enables the weighting 
mechanism to respond more effectively to unpredictable or 
divergent task behaviours, resulting in more stable and context-
aware weight updates throughout training. 

Notably, ATDWA is architecture-agnostic because it relies 
only on general multi-task signals, namely task-wise losses and 
their relative learning dynamics, making it a potentially general-
purpose task-weighting method. In this study, we evaluate 
ATDWA for medical image analysis by integrating it into the 
Simultaneous Segmentation and Classification (SSC) 
framework [7]. Since the original SSC encoder tends to overfit 
and generalize poorly, we replace it with an ImageNet-
pretrained ResNet-34 (SSC-ResNet), which provides more 
robust and discriminative features [11, 16], mitigates vanishing 
gradients through residual learning [8–10], and improves 
convergence speed and training stability [12, 21]. ResNet-34 is 
also widely validated as an effective feature extractor for multi-
task learning and medical image analysis [14, 15]. 

The primary goal of this study is to create and validate an 
adaptive loss-weighting strategy that improves optimization 
stability in simultaneous tumor segmentation and classification. 
The proposed method introduces Adaptive Temperature 
Dynamic Weight Averaging ATDWA, which dynamically 
regulates task importance based on temporal loss uncertainty, 
enabling more balanced learning. This mechanism reduces task 
dominance, increases convergence stability, and improves 
overall performance in multi-task medical imaging. The primary 
findings of this study are summarised as follows: 

• The proposed ATDWA introduces an adaptive 
temperature mechanism based on the temporal 
variability of task losses, enabling more uncertainty-
aware and responsive task weighting in multi-task 
learning. 

• The integration of ATDWA into the SSC-ResNet 
framework improves both segmentation and 
classification performance for breast ultrasound imaging, 
surpassing the original SSC [7] and all SSC-ResNet 
variants, with and without adaptive weighting. 

The remainder of this paper is structured as follows. Section 
II provides a detailed literature review on multi-task learning in 
medical imaging and task-weighting strategies. Section III 
presents the methodology, including details of the proposed 
ATDWA and SSC-ResNet framework. Section IV describes the 
experimental setup and reports the results. Finally, Section V 
concludes the paper by highlighting the main contributions, 
discussing limitations, and outlining directions for future 
research. 

II. RELATED WORKS 

Multi-task learning (MTL) has been widely adopted in 
medical image analysis for tasks such as segmentation and 
classification. It has been shown to enhance diagnostic 
robustness by jointly leveraging pixel- and image-level 
information across modalities, including ultrasound, 
mammography, dermoscopy, and CT imaging [7, 17, 18]. While 
MTL frameworks often outperform single-task models, jointly 

optimizing heterogeneous tasks remains challenging due to task 
imbalance, where dominant tasks suppress the learning of 
others, leading to unstable convergence and inconsistent 
performance, particularly in complex anatomical settings [4–6]. 

To address task imbalance, several adaptive loss-weighting 
strategies for multi-task learning have been proposed. These 
methods dynamically adjust task contributions during training to 
ensure that optimization is stable and that no single task 
dominates the shared representation. Uncertainty-based 
weighting [5] adjusts task importance according to 
homoscedastic uncertainty by scaling each task loss, thereby 
reducing the influence of tasks with higher predictive 
uncertainty during optimization. However, its effectiveness is 
heavily reliant on accurate uncertainty estimation, which may 
not always reflect actual task learning progress. GradNorm [6] 
aims to maintain balanced learning speeds by equating gradient 
magnitudes across tasks; however, this method incurs significant 
computational overhead due to repeated gradient manipulations. 
Although these methods improve static weighting schemes, they 
are still unable to adapt smoothly to rapid or irregular 
fluctuations in task difficulty while training. 

Dynamic Weight Averaging (DWA) [4] offers a lightweight 
alternative by adjusting task weights based on relative loss 
changes across epochs, without requiring gradient normalization 
or explicit uncertainty modeling. By emphasizing tasks whose 
losses decrease more slowly, DWA helps mitigate the learning 
speed imbalance. However, its reliance on a constant 
temperature parameter limits adaptability, as fixed sensitivity 
may lead to under- or overcompensation when task dynamics 
vary across training stages. 

To overcome this limitation, we propose Adaptive 
Temperature Dynamic Weight Averaging (ATDWA), which 
extends DWA by dynamically adjusting the temperature 
according to the temporal variability of task losses. When recent 
loss fluctuations are high, ATDWA increases the temperature to 
smooth weight updates and reduce instability. As training 
becomes more stable, the temperature decreases, enabling more 
responsive adjustments to meaningful differences in task 
learning progress. 

This adaptive weighting mechanism better aligns with 
evolving task dynamics and maintains balanced optimization 
throughout training. Integrated into the SSC-ResNet framework, 
ATDWA consistently outperforms the original SSC, SSC-
ResNet without adaptive weighting, and SSC-ResNet with 
existing strategies such as GradNorm and standard DWA. These 
results demonstrate that ATDWA provides a stable and effective 
solution for addressing task imbalance in medical multi-task 
learning. 

III. METHODOLOGY 

A. Overall Architecture of Adaptive Weighting Framework 

The model is developed within the SSC framework [7], 
which comprises a shared encoder and two task-specific heads 
for segmentation and classification. In this implementation, we 
replaces the original SSC encoder with a pretrained ResNet-34 
backbone to enhance feature extraction while preserving the 
overall structure and training pipeline of the original framework. 



ResNet-34 is selected because it has been extensively validated 
as an effective feature extractor in multi-task learning and 
medical image analysis [14, 15]. The shared backbone produces 
a unified feature representation for a given input image, which 
is simultaneously consumed by both prediction heads. During 
training, each task yields a task-specific loss that is passed to the 
Adaptive Temperature Dynamic Weight Averaging (ATDWA) 
module. ATDWA quantifies the temporal variability of each 
loss to derive dynamic task weights, which are then combined to 
form a single total loss. This total loss is used to update all model 
parameters via backpropagation. Integrating ATDWA into the 
SSC architecture preserves the benefits of shared representation 
learning while promoting more stable and adaptively balanced 
optimization across tasks. Fig. 1 illustrates the overall structure 
of the proposed multi-task framework. 

 

B. Adaptive Temperature Dynamic Weight Average (Our 

Proposed Technique) 

The original DWA [4] employs a fixed temperature, which 

constrains its responsiveness to evolving task difficulty and 

inter-task divergence. In contrast, ATDWA augments DWA 

with a dynamic, uncertainty-aware temperature while retaining 

the same per-epoch weight update rule. 

1) Loss Ratio  

Let the set of tasks be denoted by 𝑇 = {1,… , 𝐾}. For each 
task 𝑘 , let 𝐿𝑘(𝑡) represent its loss at epoch 𝑡. The ratio loss 
𝑟𝑘(𝑡) is computed as: 

 𝑟𝑘(𝑡) =
𝐿𝑘(𝑡−1)

𝐿𝑘(𝑡−2)+𝜖
 () 

with 𝜖 = 10−8 added for numerical stability.  

ATDWA uses the same formulation as standard DWA [4] 
for computing the loss ratios 𝑟𝑘(𝑡). However, the subsequent 
formulas in (2) – (5) are proposed in this work. 

2) Task-wise Temporal Uncertainty 

Instead of computing uncertainty across tasks, ATDWA 

estimates temporal uncertainty for each task individually. For 

every task 𝑘 , uncertainty is measured using the standard 

deviation of its loss values over the most recent window of three 

epochs (the window length can be set manually): 

 𝑢𝑘(𝑡) = 𝑆𝑡𝑑𝐷𝑒𝑣(𝐿𝑘(𝑡), 𝐿𝑘(𝑡 − 1), 𝐿𝑘(𝑡 − 2)) () 

Higher values of 𝑢𝑘(𝑡) indicate that the task is fluctuating more 

strongly over time, signaling instability in its optimization 

trajectory. 

To obtain a single uncertainty value that reflects the overall 

network stability, we compute the average across tasks: 

 𝑢̅(𝑡) =
1

𝐾
∑ 𝑢𝑘(𝑡)
𝐾
𝑘=1  () 

3) Adaptive Temperature Scaling 

The temperature at epoch 𝑡  is updated using the average 

temporal uncertainty: 

 𝑇(𝑡) = 𝑇0(1 + 𝛾𝑢̅(𝑡)) () 

The base temperature 𝑇0 is set to 2 by following the standard 

DWA formulation, where a temperature of 2 has been 

empirically shown to provide optimal and stable performance 

across a wide range of network architectures [6]. 

The sensitivity parameter  γ  is set to 0.8, determined through a 

grid search over the range of 0.1 to 0.9 with a step size of 0.1. 

The selected value yields the lowest standard deviation across 

all folds, indicating improved robustness to data variation. 

When losses fluctuate strongly, 𝑢̅(𝑡) increases, leading to a 

higher temperature and more stable weighting. When losses are 

relatively stable, the temperature remains close to its base value, 

allowing more decisive adjustments in task weights. 

4) Adaptive Weight Update 

Using the ratios 𝑟𝑘(𝑡)and the adaptive temperature 𝑇(𝑡), the 

weight for each task is computed as: 

 𝑤𝑘(𝑡) =
exp(

𝑟𝑘(𝑡)

𝑇(𝑡)
)

∑ exp(
𝑟𝑗(𝑡)

𝑇(𝑡)
)𝐾

𝑗=1

× K () 

The multiplication by 𝐾  ensures that the weights sum to 𝐾 , 

matching the normalization form used in our implementation.  

These weights are then applied to the corresponding task 

losses to compute the weighted total loss, which is subsequently 

used for backpropagation. 

IV. RESULTS AND DISCUSSION 

A. Experimental Settings 

The Breast Ultrasound Images (BUSI) dataset [23] used in 
this study contains 647 images, including 210 malignant cases. 
The dataset was split into 80% for training and 20% for testing. 
Figure 2 shows representative examples of the dataset. We 
adopted five-fold cross-validation on the training set, where each 
fold reserved 20% of the training data for validation. After 
applying data augmentation to the training split, the effective 
training set increased to approximately 2,900 images, while the 
validation set contained about 100 images per fold and the held-
out test set remained at 129 images. This protocol helps mitigate 
overfitting and provides a more reliable estimate of model 
performance. For consistent input formatting, all images were 
resized to 256×256 pixels, and data augmentation was applied to 
increase input variability [19, 20]. Augmentations applied with 
a probability of 1.0 included grid distortion, random rotations of 
up to 45°, optical distortion, horizontal and vertical flips, and 
elastic transformations. These augmentations substantially 

 

Figure 1.  Overall Architecture 



expanded diversity in the input space [19, 20], enabling the 
model to learn more robust and consistent representations. 

 

 

Model training was conducted using the Adam optimizer 
with a learning rate of 1 × 10⁻⁴. A dropout rate of 0.3 was applied 
throughout the network to improve generalization. To mitigate 
training stagnation, the learning rate was reduced when the 
validation loss plateaued. Early stopping with a patience of 15 
epochs was applied and monitored using the mean validation 
loss across the segmentation and classification tasks to maintain 
balanced optimization. A batch size of 16 was used for all 
methods, except for GradNorm [6], which required a reduced 
batch size of 8 due to its increased memory consumption for 
gradient-based weighting. Standard DWA [4] was implemented 
with a fixed temperature of T = 2, consistent with its original 
formulation. 

We conduct a comparative study against prior studies and 
perform an ablation analysis involving multiple architectural and 
weighting configurations: SSC-ResNet, SSC-ResNet with 
GradNorm (SSC-ResNet-GradNorm), SSC-ResNet with DWA 
(SSC-ResNet-DWA), and the proposed SSC-ResNet with 
ATDWA (SSC-ResNet-ATDWA). To comprehensively assess 
performance, both segmentation and classification tasks are 
evaluated on the test set using widely adopted metrics in medical 
image analysis. Segmentation performance is evaluated using 
the Dice coefficient, IoU, segmentation accuracy (Acc), Recall, 
Precision, and AUC. Classification performance is evaluated 
using accuracy (Acc), F1-score, Recall, and Precision. All 
metrics adhere to their standard definitions, without task-
specific modifications, ensuring a fair comparison across 
weighting strategies and consistency with prior literature. In 
addition to accuracy, we measure training memory usage and 
runtime of SSC-ResNet with and without adaptive weighting 
methods to evaluate their computational efficiency. Memory 
consumption is measured using PyTorch CUDA memory 
allocation statistics, and runtime is measured using PyTorch 
timing utilities [24]. 

B. Comparison with Previous Studies  

Table I shows that the proposed SSC-ResNet-ATDWA 
achieves better overall performance than prior SSC-based work, 
including the baseline SSC [7]. Compared with SSC [7], our 

method yields substantial gains in segmentation metrics: the 
Dice and IoU scores increase by 5.4986% and 1.4863%, 
respectively, while the segmentation accuracy (Acc) decreases 
slightly by 0.5138%. Simultaneously, classification accuracy 
(Acc) and Recall improve by 5.8993%, accompanied by a 
5.4230% increase in Precision. These results suggest that 
combining a pretrained ResNet-34 encoder with the ATDWA 
adaptive weighting mechanism improves both feature learning 
and task balancing, enabling our model to outperform prior 
methods while maintaining strong performance in segmentation 
and diagnosis. 

TABLE I.  COMPARATIVE PERFORMANCE WITH PREVIOUS STUDIES 

Author 
Segmentation Classification 

Acc Dice IoU Acc Recall Precision 

Byra et al.  [22] 0.9270 0.6440 NA 0.8650 0.8200 NA 

SSC [7] 0.9639 0.7167 0.6613 0.8667 0.8587 0.8733 

SSC-ResNet-
ATDWA (Ours) 

0.9589 0.7561 0.6711 0.9178 0.9178 0.9178 

*Numbers in bold indicate the highest value 

C. Comparison on Ablation Models 

 This section presents the results of the ablation study on the 
test set. All metrics are averaged over five cross-validation folds 
to provide a robust estimate of generalization performance. 
Table II summarizes segmentation and classification outcomes 
across architectural and task-weighting variants. Additionally, 
qualitative comparisons are provided to assess lesion boundary 
consistency and illustrate the effects of different task-weighting 
strategies. 

 

 

 

 

Table II shows that GradNorm achieves the strongest 
classification performance, improving accuracy (Acc), F1-
score, Recall, and Precision by 3.4602%, 3.4729%, 3.4602%, 
and 3.3713%, respectively, compared with SSC-ResNet. 
However, GradNorm substantially degrades segmentation 
performance, with decreases of 0.0616% in segmentation 
accuracy (Acc), 3.6447% in Dice, 3.2378% in IoU, 2.3642% in 

 

Figure 3.  GradNorm loss weights across training epochs 

 

Figure 2.  Samples of BUSI Dataset [23] 

 

TABLE II.  COMPARISON ON TESTING SET RESULTS BETWEEN ABLATION MODELS 

Model 
Segmentation Classification 

Acc Dice IoU AUC Recall Precision Acc F1-score Recall Precision 

SSC-ResNet 0.9576 0.7414 0.6502 0.8887 0.7970 0.7538 0.8961 0.8960 0.8961 0.8981 

SSC-ResNet-GradNorm [6] 0.9570 0.7144 0.6291 0.8677 0.7498 0.7508 0.9271 0.9271 0.9271 0.9284 

SSC-ResNet-DWA [4] 0.9598 0.7420 0.6565 0.8815 0.7789 0.7659 0.9039 0.9033 0.9039 0.9080 

SSC-ResNet-ATDWA (Ours) 0.9589 0.7561 0.6711 0.8843 0.7837 0.7816 0.9178 0.9178 0.9178 0.9207 

*Numbers in bold indicate the highest value 



AUC, 5.9178% in Recall, and 0.3950% in Precision. This 
inconsistency in GradNorm is driven by a rapidly emerging task 
imbalance during training, where GradNorm reallocates 
weights to prioritize the classification loss, causing the 
segmentation weight to approach zero, as shown in Fig. 3. 

DWA exhibits a more balanced, though still imperfect, 
weighting behavior across tasks. Compared with SSC-ResNet, 
DWA improves segmentation accuracy (Acc), Dice, IoU, and 
Precision by 0.2269%, 0.0808%, 0.9678%, and 1.5999%, 
respectively. However, the segmentation AUC and Recall 
decreased by 0.8169% and 2.2640%. For classification, DWA 
yields modest gains, with accuracy (Acc), F1-score, Recall, and 
Precision increasing by 0.8651%, 0.8172%, 0.8651%, and 
1.1054%, respectively 

The proposed ATDWA achieves a more favorable balance 
between tasks by delivering consistent improvements in 
segmentation while remaining highly competitive in 
classification. Compared with SSC-ResNet, segmentation 
accuracy (Acc) increases by 0.1376%, which is only 0.0890% 
lower than DWA. Moreover, Dice, IoU, and Precision improve 
by 1.9866%, 3.2226%, and 3.6793%, respectively. The 
decreases in pixel-wise AUC and Recall are also notably smaller 
than those observed with GradNorm and DWA. For 
classification, ATDWA improves accuracy (Acc), F1-score, 
Recall, and Precision by 2.4221%, 2.4336%, 2.4221%, and 
2.5111%, respectively, relative to SSC-ResNet. Compared with 
GradNorm, ATDWA consistently ranks as the second-best 
performing technique in classification, with reductions across all 
metrics remaining within approximately 1%. Unlike GradNorm, 
which substantially compromises segmentation, ATDWA 
preserves effective segmentation learning while achieving near-
maximum classification performance. These results highlight 
the benefit of adaptive temperature adjustment in improving the 
stability and reliability of multi-task optimization. 

Fig. 4 shows qualitative segmentation results for selected 
malignant and benign tumors. Across methods, the predicted 
masks generally capture the overall tumor morphology. 
However, none of the approaches delineates lesion boundaries, 
particularly for malignant cases where contours are often 
irregular and visually ambiguous. We visualize predictions 
using contour overlays to better assess the alignment of 
boundaries. While the proposed method reliably localizes 
lesion regions, boundary ambiguity remains a key challenge. 
On the right side of the malignant lesion, the subtle intensity 

difference between tumor tissue and background causes the 
predicted contour to contract inward, producing a narrower 
segmentation than the ground truth. At the left boundary, where 
background contrast is comparable to the lesion, the model 
shows a mild tendency to over-segment. Along the inferior 
boundary, the predicted contour follows a darker intensity 
transition, whereas the ground truth extends into brighter tissue 
regions consistent with tumor presence, suggesting that 
annotation ambiguity may also contribute to the discrepancy. 
Overall, these observations indicate that segmentation errors 
are largely driven by low-contrast and visually ambiguous 
regions, in addition to model limitations. 

TABLE III.  COMPUTATIONAL EFFICIENCY COMPARISON BETWEEN 

ABLATION MODELS 

Model 

Max 

Memory 

Usage (GB) 

Longest Per Step 

Runtime (ms) 

Longest Per 

Epoch 

Runtime (s) 

SSC-ResNet 0.8046 179.5562 26.5903 

SSC-ResNet-

DWA [4] 
0.8049 185.5686 26.0866 

SSC-ResNet-

GradNorm [6] 
6.8029 1286.3955 258.8503 

SSC-ResNet-

ATDWA (Ours) 
0.8049 187.4173 26.6796 

 

Table III shows that the proposed ATDWA maintains a 
lightweight computational profile comparable to DWA and the 
baseline SSC-ResNet. ATDWA introduces only a slight increase 
in peak memory usage and training time relative to the 
unweighted model, with both step-level and epoch-level 
runtimes remaining close to those of DWA. In contrast, SSC-
ResNet-GradNorm incurs substantial overhead, increasing peak 
memory usage by more than eight times and extending training 
time by approximately six to eight times compared with the 
baseline, DWA, and ATDWA. Overall, these results confirm 
that ATDWA provides adaptive task weighting while preserving 
training efficiency. 

V. CONCLUSION 

This study presents the SSC-ResNet-ATDWA, which 
adaptively modifies task weights according to temporal loss 
variability, showing enhanced performance in segmentation 
and classification tasks relative to previous SSC-based 

 

Figure 4.  Comparison of Segmentation Results 



approaches. We conducted a comprehensive evaluation against 
prior works and multiple ablation variants (SSC-ResNet, SSC-
ResNet-GradNorm, and SSC-ResNet-DWA) using a five-fold 
cross-validation approach. 

Compared to earlier SSC-based work, SSC-ResNet-
ATDWA demonstrates significant improvements in key 
metrics, achieving increases of 5.4986% and 1.4863% in Dice 
and IoU scores, respectively, while accuracy decreased slightly 
by 0.5138%. For classification, accuracy (Acc) and Recall each 
increased by 5.8933%, accompanied by a 5.4230% increase in 
Precision. In comparison to the ablation models, ATDWA also 
achieved the strongest overall segmentation performance, 
improving Dice, IoU, and Precision by 1.9866%, 3.2226%, and 
3.6793%, respectively, over SSC-ResNet, while maintaining 
segmentation accuracy (Acc), AUC, and Recall at levels 
comparable to those of DWA and SSC-ResNet. In classification 
tasks, ATDWA ranks just below GradNorm, with all metrics 
differing by about 1% from the top-performing model. 
However, ATDWA avoids the severe segmentation degradation 
caused by GradNorm’s imbalance-driven gradient scaling, 
resulting in a more stable and reliable weighting strategy. 

Future research may investigate the integration of validation-
aware weighting decisions or the incorporation of gradient 
interaction modeling to improve optimization stability. 
Furthermore, assessing the proposed method on a broader range 
of multi-task learning benchmarks, beyond medical imaging and 
across diverse backbone architectures, would enhance the 
understanding of its general-purpose applicability. 
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