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Abstract— Multi-UAV odor source localization (OSL) is
challenging under partial observability and limited
communication. We propose an event-triggered strategy based on
Expected Kullback-Leibler (EKL) divergence, where messages
are transmitted only when the expected information gain on
teammates’ beliefs exceeds a threshold. The search is formulated
as a Partially Observable Markov Decision Process (POMDP) and
combined with Infotaxis. 3D simulations show that EKI.-gated
communication substantially reduces transmissions and energy
consumption while preserving localization performance, yielding
higher information efficiency than conventional communication
schemes.
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1. INTRODUCTION

Multi-UAYV odor source localization (OSL) [1] is critical in
disaster scenarios such as toxic gas leaks. However, this task is
characterized by high uncertainty, partial observability, and
practical communication constraints including bandwidth,
energy, and environmental occlusion. To address these
challenges, this study proposes an information-theoretic strategy
termed Expected Kullback—Leibler Divergence (EKL) [2]-
threshold event-triggered communication. Under this
mechanism, message transmission is triggered only when an
observation yields an expected information gain on teammates’
beliefs that exceeds a threshold 7, thereby suppressing
unnecessary data exchange and enabling self-adaptive
communication rate. To contextualize the benefits of EKL-based
triggering, we compare it against commonly used alternatives,
including periodic communication, entropy-decrease-based
triggering, and no-communication baselines.

The search task is modeled as a Partially Observable Markov
Decision Process (POMDP) [3] coupled with the Infotaxis
search strategy [4]. The simulation platform integrates gas
diffusion and sensing models, Bayesian belief updates [5], and a
wireless channel model incorporating path loss and shadowing
effects. By systematically varying the threshold 7 in three-
dimensional simulations, and evaluating all methods under
identical sensing, motion, and channel conditions, we analyze
the trade-offs among search steps, communication frequency,
energy consumption, and belief entropy convergence.

Simulation results demonstrate that, within an appropriate
threshold range, EKL-threshold communication significantly

reduces transmission counts and energy consumption. Crucially,
the strategy maintains localization accuracy comparable to full
communication baselines while improving the information
efficiency of each transmission, thereby validating information
theory as a foundation for adaptive UAV cooperative
communication.

The contributions of this paper are as follows: (1)
establishing a reproducible multi-UAV OSL simulation
framework; (2) proposing an EKL-based information-value
metric that drives threshold-triggered communication; (3)
validating the proposed strategy under resource-constrained
conditions through comparison with multiple communication
baselines; and (4) providing a foundation for future extensions,
including dynamic thresholds, autonomous coordination, and
real-world deployment.

II.  SYSTEM MODEL AND PROBLEM FORMULATION

The overall system architecture is illustrated in Fig. 1, where
multiple UAVs cooperatively search for an odor source in a 3D
environment under limited communication. Each UAV
measures local gas concentration, updates its belief via Bayesian
inference, and exchanges information through unicast links
subject to path loss and shadowing.

The system model is described in the following subsections,
including the environment model, sensing and communication
models, and the POMDP formulation of the search problem.
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Figure 1. Multi-UAV Odor Source Search System Model. The black solid
circle denotes the odor source; the blue and orange paths illustrate the
trajectories of UAV-A and UAV-B, respectively; the dashed lines indicate
communication links.

A. Background and Bayesian Formulation

OSL aims to enable autonomous agents—such as unmanned
aerial vehicles—to infer the spatial location of an odor source



through continuous measurements of gas concentration or odor-
particle hit events [6]. This task belongs to a class of dynamic
search and decision-making problems characterized by high
uncertainty. The inputs to the system are the sensing outcomes
and the agent’s own position, while the output is a probabilistic
estimate of the odor source location. The research objective is to
identify the true source with minimal sensing and movement
steps, under limited time and energy budgets.

Odor transport is governed by stochastic advection, diffusion,
and turbulence, leading to an intermittent and highly non-smooth
concentration field. Even near the source, sensors may
experience consecutive zero-hit observations, making gradient-
based chemotaxis unreliable. To cope with such uncertainty,
OSL is commonly formulated as a POMDP. Since the source
location is unobservable, the agent maintains a belief
distribution P, (rg), representing the probability that each
candidate location is the true source. Upon receiving a new
measurement h, , the belief is updated via Bayes’ rule [7]:
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In practice, the normalization term is often omitted, yielding
the proportional update

Priar(rs) < P (x)P(h, | 1, 13), )

which simplifies the computation of entropy, expected
information gain, and EKL divergence.

Overall, Bayesian inference provides the sensing—update—
decision loop for OSL. Combined with a Poisson hit model for
the likelihood, this framework enables quantitative belief
updates and information metrics, forming the basis for
information-driven search strategies such as Infotaxis and the
proposed communication-triggering mechanism.

B. Environment and Sensing Model

To construct a tractable yet physically grounded search
environment, this study adopts a mean-plume approximation
with steady-state isotropic diffusion. The odor source is modeled
as a continuously emitting point source, and turbulence-induced
intermittency is captured through a probabilistic hit model rather
than solving the full convection—diffusion equation.

Under three-dimensional isotropic steady-state assumptions,
the average concentration at location r produced by a source at
I is expressed as

C(riry) cexp(=|r—rsl/D)/Ir =7, (3

where A is the characteristic decay length. Assuming that the
sensor’s hit rate is proportional to the local mean concentration,
the expected hit rate is given by

A
H(T|T5)=/«lomexp(1—|T—Ts|//1): 4)

where 1, is the reference hit rate at distance 4.

During each time step At, the number of odor-particle hits is
modeled as

h ~ Poisson(u(r|ry) At). (5)

However, the Poisson distribution has unbounded support.
To maintain a finite observation space for numerical filtering
and EKL evaluation, a truncated Poisson model is adopted [8],
where the maximum observed hit category is Ny;s- All values
h = Ny are merged into a single tail bin. The search terminates
when a UAV enters the source cell (r = ry).

C. Hit-Count Quantization for the Observation Model

To determine a physically meaningful and adaptive
truncation level, we exploit the Poisson property that the mean
equals the variance. The upper bound is set based on the
expected hit rate at the smallest resolvable distance—one grid
spacing Ax:

w = u(r—rg = Ax) (6)

Because Ax defines the minimum spatial increment on the
3D grid, y; automatically reflects the diffusion scale 1/Ax. The
hit-count truncation level is chosen as one standard deviation
above the mean, with all tail probability merged into a final
category:

Nuits = [ + | +1 (7

Thus the discrete observation alphabet for actual
computation is h € {0,1, ..., Np;;s — 1}, where the last index
corresponds to the aggregated tail. This design captures the
dominant Poisson mass while keeping the observation
dimension compact.

D. Wireless Channel Model

Communication between UAVs is modeled using a distance-
dependent path-loss model with log-normal shadowing. For two
UAVs separated by distance d, the average path loss (in dB) is

PL(d) = PL(d,) + 10ylog,o(d/dy) + X, €))]

where PL(d,) is the reference loss at distance d,, y is the
path-loss exponent, and X, ~ N(0,02) models large-scale
shadowing. A packet is lost when PL(d) exceeds the
communication budget. This affects only physical-layer success,
whereas the decision to transmit is governed by EKL gating.

E. POMDP and Problem Definition

This work formulates OSL as a POMDP and extends it to a
cooperative multi-UAV setting. The state is s = (13, 1), with s
denoting the terminal state. The action set A =
{north, south, east, west, up, down} determines 3D grid
movements. At each step, the UAV receives an observation o €



{9,0,1, ..., hypax}, Where the likelihoods follow the Poisson
model in (5). Conceptually, the ideal POMDP observation space
would allow h,,, — o . In practical computation, the
implemented maximum hit category equals the truncated bound,
Rmax = Npits — 1, as defined in Section C.

Beliefs are updated by Bayes’ rule:

bi1(5) = (P(oc 1 )b} /(D PLoc15Db(N}. (9)
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The uncertainty of the belief is measured by Shannon
entropy [10]:

Ht =- Z Pt (rs) log Pt (rs);

rs€S

(10

and the expected information gain for an action a, at
position 7; is

AH(a;) = H, — Eht+1[Ht+1]- an

Search strategy is to select actions that maximize the
expected information gain [4]:

(12)

a; = argmaxAH(a,).
at

Two Infotaxis-driven UAVs cooperatively localize a single
odor source. After a local update, UAV i incorporates
successfully received neighbor measurements using distributed
Bayesian fusion:
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Pt+At,i(rs) =

where u;_,; € {0,1} indicates whether UAV i successfully
receives UAV j’s packet, determined by (1) EKL > t and (2)
successful wireless transmission.

The search ends when any UAV reaches the source or when
step/energy limits are reached.

III. PROPOSED METHOD: EKL-GATED ADAPTIVE
COMMUNICATION

A. EKL Formulation & Thresholding
For UAV i, the prior beliefis P, ; (1;). After receiving a local
observation h;, the belief is updated via Bayes’ rule:

Pt,i(rs)Pr( hi I rs)
2l P (r)Pr(h;Ts)

Piypei(rs | hy) = (14)

The information change caused by h; is measured using the
KL divergence:

Priae(rs 1 h)

Pt(rs) . (15)

Dyt (PeyaelPr) = ZPC+At(rs | h)log

Since the sender does not yet know the actual observation
before transmission, the communication decision uses the
expected KL divergence:

EKLi; = Epopiny Dt (Pe o0 (s L ROIP,; ()], (16)

Where P(h;) =%, Py ;(r)Pr(h; | T4, 1;). This quantity is
equivalent to the mutual information [9] between 1, and h;, and
therefore measures the expected entropy reduction.

A binary threshold rule determines whether UAV i transmits
toj:

{1, EKL-; = 7, a7
u._) . =
=70, EKLi; < T

Small 7 approximates full communication, whereas larger t
suppresses low-value transmissions. Because the optimal t
depends on factors such as odor decay length, geometry, and
channel conditions, this work treats T as a tuning parameter and
evaluates its impact on search efficiency and communication
cost through simulation.

B. EKL-Gated Communication Algorithm
To reduce communication load, UAV i separately evaluates
its EKL contribution to each receiver j. Let p, = p;|; be the

sender’s cached estimate of j’s prior, and let I, (1; | 1;) be the
Poisson likelihood map. The marginal probability of observing
h and the corresponding posterior are:

p(h) = (P, tr) (18)

pr(rs)'gh(rs | ri)
p(h)
Where O denotes element-wise multiplication and (:,-) is

the inner product over the spatial probability grid. The expected
information gain is:

p™(r) = = normalize(p, © ¢;). (19)

EKLi_; = ) p(Da(Palpy). (20)
h

If EKL;,; = 7, UAV i sends the packet(r;, h;) to j. Upon
successful reception, UAV j updates its belief via:

p} = normalize (p]- OL;(h;|r; ))- (21)



The overall procedure follows a low-complexity gate —
sense — fuse single-pass structure.

TABLE L EKL THRESHOLD-BASED COMMUNICATION

ALGORITHM

ALGORITHM: EKL-GATED COMMUNICATION (SINGLE-PASS, PER STEP)
Inputs: sender i at position 7; ; receiver set J (j#i) ; threshold ©
State: get_receiver prior(i,j) // returns i’s current estimate of j’s prior
(cached receiver-prior)

Outputs: D; : // set of receivers selected for transmission at this step
S, 5 // subset of receivers that successfully received the packet
p;  // updated posterior of the sender

{p} |j€s; } // updated posteriors of the receivers that successfully
received the packet

1 D; <0

2 foreachj € Jdo

3 P, < get_receiver_prior(r;,r;)

4 EKL;_ ;< 0

5 forh=10,1,..., N, —1do

6 ¢, — LikelihoodField(h | ;)

7 Pr— (Prs th)

8 if p;, > EPS then

9 post «— normalize(p,.O¥},)
10 EKL;_; « EKL;_; +py - Dg (post | p,)
11 end if

12 end for

13 if EKL, ,; > then

14 | D;—D; U}

15 end if

16  end for

Sender(No retransmission is performed; each SendPacket
attempt results in a single success-or-failure outcome.)

17  h; < SenseAt(r;)

18 p; < normalize(p; © LikelihoodField(h; | 1;))

Receiver
19 S; <0
20 for eachj € D; do
21 success < SendPacket(packet(r; , h;) — j)
22 if success then
23 pj < normalize(p; © LikelihoodField(h; | 1))
24 S; S v{j}
25 UpdateCache(j, i)
26 end if
27  end for

28 returnD;, S;, p;, {p;|J €S}

Note: EPS is a very small constant introduced to ensure numerical stability
(typically 10-12).

C. Simulation Flow and Performance Metrics

The system progresses in discrete time steps. In each
iteration, the following operations are executed sequentially:
action selection (Infotaxis), local measurement and Bayesian
update, EKL evaluation and thresholding (unicast), receiver-side
fusion and cache update, and termination checking with statistic
logging. The mission succeeds when any UAV enters the
detection radius of the source; otherwise, it fails upon reaching
the maximum step or energy limit.

The framework supports multiple communication modes,
including No-comm (no exchange), EKL-off (transmit every
step), EKL-on (threshold-gated transmission), as well as
periodic and entropy-triggered baselines for comparison. In
periodic communication, transmissions occur deterministically
every K steps (tmod K=0) . In entropy-triggered

communication, a UAV transmits when its local belief update
yields an entropy reduction exceeding a threshold, AH,,c, =
Tentropy - Unlike EKL gating, this criterion depends solely on
local uncertainty reduction at the sender. To quantify the
performance and cost under different thresholds 7, the following
metrics are used.

The total number of successful communication events
(packets) is:

Neomm zizzui—q’(t)- (22)

i Jj#i

Where ¢ is the time index, T is the final step, and u;, ;(t) €
{0,1} indicates whether UAV i successfully delivered a packet
to UAV j at step t. A transmission is counted when the
communication condition of the selected strategy is satisfied and
physical-layer  delivery  succeeds;  for  EKL-based
communication, this additionally requires EKL;,; = 7. This
metric represents the total number of odor-hit packets
successfully received during the mission.

To compare communication load across thresholds, the
normalized communication usage is defined relative to the full-
communication upper bound (EKL-off), which transmits at
every step:

Ecomm,norm (T) = Ncomm (T)/Ncomm ( EKL-Off) . (23)

A smaller value indicates greater communication savings.
The information efficiency of each packet is:

MNpkt = (HO - HT)/Ncomm , (24)

where H, and H; denote the initial and final mean belief
entropy (in bits). This measures the average information
contribution per successful transmission.

Search efficiency is measured by the average number of
steps Nyeps (in steps), and reliability by the task success rate
(percentage of successful runs). As 7 increases, fewer packets
are transmitted but search time generally increases, reflecting the
trade-off between communication load and search performance.

To jointly compare these effects across thresholds, we use
the composite cost:

](T) = Nsteps (T) + aEcomm ,norm (T)’ (25)

where a > 0 controls the trade-off between communication
cost and search time. J(7) serves as an analytical performance
indicator rather than an optimization objective.



IV. SIMULATION RESULTS AND ANALYSIS

A. Platform and Scenarios

Simulations are conducted in a three-dimensional discrete
environment to evaluate the proposed EKL-based adaptive
communication strategy. The search region is a cubic grid of size
N = 43 with spacing Ax =5m(215 m per side). The odor
source is located at r; = [40,40,40], and two UAVs start from
r; =[10,0,0] and r, = [0,10,0], approximately 330 m = 114
away from the source, representing low-concentration initial
conditions. The simulation advances with a timestep At = 0.5 s.
The mission succeeds once any UAV reaches the source cell.

Each UAV’s initializes its prior P,;(x) as a uniform
distribution over the grid, except that the occupied cell is
assigned zero probability. To break symmetry, each UAV
performs an initial measurement h, at its starting position, after
which the likelihood update (using the Poisson model of (5))
generates an asymmetric initial belief.

Although 7, 1, and 7; are fixed, trial-to-trial stochasticity
arises from two components: (1) the Poisson-distributed sensing
process producing random hit counts; and (2) shadowing in the
wireless channel (Section II.D), which induces random packet-
delivery outcomes. These stochastic elements ensure variability
across repeated runs even under identical geometry.

Five communication modes are evaluated:

o EKL-off (full communication):
measurements at every step;

transmit  all

e EKL-on (adaptive communication): transmit only when
EKL;,; = 1;

e Periodic communication: transmit deterministically
every K steps (t mod K = 0);

e Entropy-triggered communication: transmit when the
sender’s local belief update yields an entropy reduction
AH]ocal 2 Tentropy;

e No-comm: UAVs search independently.

These models represent, respectively, an upper-bound
reference, an information-adaptive strategy, two commonly used
heuristic baselines, and a lower-bound baseline. Multiple
thresholds t are scanned for the EKL-on and entropy-triggered
modes, and 10 independent runs are performed for each
configuration to obtain statistically reliable averages.

The simulation ends when the source is reached, when
energy is exhausted, or when 500 steps are completed.
Performance is assessed using four metrics: (1) Communication
cost, quantified by the total number of successfully delivered
packets and the normalized communication-energy ratio defined
in (23); (2) Search efficiency, evaluated using the average
completion steps Ngepsand the information-efficiency measure
in (24); (3) Composite mission cost, represented by the weighted
cost function in (25), where aspecifies the relative importance
between search time and communication energy. All simulation
parameters reflect physically realistic odor dispersion and short-
range wireless communication characteristics.

TABLE II. SIMULATION PARAMETER SETTINGS

Parameter Value / Unit
Grid spacing, Scenario size Sm,215m
Time step At 0.5s
Odor decay length A, Detection radius a 30m,2.5m
Reference hit rate p, 0.77 hits/step
Path-loss exponent y 2
Path-loss budget PLy,gq 90 dB
Shadowing standard deviation o 6 dB
Reference distance dg I m
Hovering power, Motion energy 100 W, 5 J/m
Sensing energy, Tx/RX startup energy 0.05 J/step, 1 mJ /0.5 mJ
Energy per bit, Amplifier constant Se-8 J/bit, le-11 J/bit/m™n
Total UAV energy 50007

B. Communication Energy Model and Packet Bit Length

To enable consistent comparison across communication
strategies, a simplified but repeatable communication-energy
model is used. The model converts the number of packet bits into
transmission energy, capturing relative performance trends
rather than replicating precise hardware characteristics. For a
measurement packet with bit length b transmitted over link
distance d, the transmitter and receiver energy costs are

Etx = Lgtart,ix + Eelecb + 8ampbdnt (26)

Erx = Es‘rart,rx + Eelecb' (27)

A failed transmission still incurs full transmit energy (26) but
no receive energy (27). The bit length of each measurement
packet consists of the header, a 3-D position index, and the
discretized hit category derived from the truncated Poisson
model (Section II.C). The total number of bits is

bmeas = bhdr + Ndim [lng N] + [IOgZ Nhits ]! (28)

where by 4. = 64 bits, N3, = 3, and N is the grid size per
dimension. The value of Ny is determined by the adaptive
truncation rule of (7), which aggregates all Poisson outcomes
above the threshold into a single tail category. Because the
amplifier term grows approximately linearly with mission
duration under the simulated distance scale and path-loss
exponent, both packet counts and normalized communication
energy are reported.

C. Search Efficiency and Communication Cost

Five communication strategies are evaluated under identical
conditions: EKL-on, EKL-off, Periodic, Entropy-triggered, and
No-comm. In the Periodic baseline, transmissions occur every
K = 5 steps. For the Entropy-triggered baseline, a transmission
is triggered when the local entropy reduction satisfies AH,,., =
Tentopy = 0.05. For EKL-on, the threshold is fixed at 7 =
5x107* , corresponding to a moderate communication
intensity identified in preliminary scans. All statistics are
computed over 10 independent runs.

Experimental results show that the task success rates are
100% for EKL-on, EKL-off, Periodic, and Entropy-triggered
strategies, while the No-comm baseline achieves approximately



90%. Table III reports the mean, standard deviation, and 95%
confidence intervals of search steps, packet transmissions, and
communication energy. Compared with other communication
strategies, EKL-on achieves fewer average search steps while
requiring fewer packets and lower energy consumption, without
degrading search efficiency. As expected, the No-comm strategy
exhibits significantly increased search steps due to the absence
of information exchange.

TABLE III. PERFORMANCE COMPARISON OF FIVE COMMUNICATION
STRATEGIES (MEAN + STD AND 95% CI)
Method Steps Packets Energy (J)
mean + 280.4 + 495.2 + 0732011
EKL ON std 66.0 73.6
- 05% CI [233.2, [442.6, [0.657,
° 327.6] 547.8] 0.808]
mean + 303.4 + 606.8 + 089 <016
EKL OFF std 54.3 108.6
- 959 C1 [264.6, [529.1, [0.776,
0 342.2] 684.5] 1.003]
mean + 446.3 + ) )
No-comm std 114.2
95% CI [;;ggf - -
mean + 336.6 = 673.2
Periodic std 118.1 236.1 1.03+0.36
05% CI [252.2, [504.3, [0.767,
421.1] 842.1] 1.284]
mean + 304.2 + 608.4 +
Entropy- std 32.6 65.2 0-93+0.10
triggered ) [280.9, [561.8, [0.855,
BHCL | 375 655.0] 0.997]

D. Dynamics of Entropy and Traffic

Fig. 2 illustrates the evolution of mean belief entropy as a
function of normalized search progress. All strategies start with
high entropy, indicating substantial initial uncertainty about the
source location. As the search proceeds, entropy decreases
steadily and converges toward zero.

EKL-on, EKL-off, Periodic, and Entropy-triggered
strategies exhibit similar entropy convergence rates without
noticeable delay. In contrast, the No-comm strategy shows
slower entropy reduction and a higher final entropy level due to
insufficient information exchange. These results indicate that
EKL-on preserves the convergence quality of full
communication while reducing transmission overhead. Since
EKL-off represents the theoretical information upper bound, the
results imply that EKL-on incurs no significant performance loss
rather than outperforming full communication.

Mean entropy vs normalized progress

mean entropy (bits)
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Figure 2. Variation of Average Entropy with Normalized Search Time
Progress

Fig. 3 compares the evolution of mean belief entropy as a
function of cumulative packet count. All communication
strategies exhibit the expected trend that increased
communication leads to lower entropy, reflecting the positive
role of information exchange in belief concentration. Compared
under the same packet budget, EKL-on achieves a faster entropy
reduction in the mid-range of cumulative transmissions
(approximately 350-520 packets), indicating a higher
information contribution per transmitted packet.

EKL-off, Periodic, and Entropy-triggered strategies require
a larger number of packets to reach comparable entropy levels,
while No-comm does not appear in this plot due to zero
transmissions. The oscillatory behavior observed near the end of
some curves is not caused by entropy increases, but by reduced
averaging samples after early task termination in successful runs.

Overall, the results indicate that EKL-based thresholding
improves information efficiency per packet and reduces the
communication required to achieve belief convergence, without
affecting the final estimation quality.

Entropy vs packets
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Figure 3. Average Entropy versus Cumulative Packet Count

E. t-Sensitivity & Design Guidelines

Because varying 7 across several orders of magnitude
induces multiplicative changes in search behavior, all analyses
use log ;,(7) as the horizontal axis. The threshold sweep is
divided into two ranges:

e [10% 1073]: from “near-full communication” to the
onset of throttling;

e [1073 1072]: where throttling becomes significant and
search efficiency begins to degrade.

Each range is sampled at ten points (with denser sampling
around transition regions). The results in Fig. 4 show a clear
nonlinear relationship between 7 and both the average search
steps and communication usage, forming three behavioral
regimes:

1) Low-threshold regime (t <3 X 107%)
Here, both search steps and communication usage differ by
less than 2%. This regime effectively corresponds to near-full
communication, serving as the lower-bound reference.

2) Transition regime (3 X 107* <7< 8x1073)
This is the key trade-off region. As 7 increases, low-value
transmissions are filtered out, resulting in a substantial
communication reduction while search performance remains



largely unaffected. Across this interval: Communication cost
drops by 30-40% compared to EKL-off. Search steps increase
only slightly (<5%). In our simulations, the best balance—i.e.,
the “knee point’—occurs near T =~ 6 X 1073, where the
weighted cost J(7) reaches its minimum.

3) High-threshold regime (t = 8 X 1073)

Excessively high thresholds over-filter communication,
reducing usage by more than 50% but causing a sharp rise in
search steps (10-20%t). This degradation reflects insufficient
belief fusion and increasingly inconsistent posteriors across
UAVs.

Steps (A% vs ekl_off) vs tau (ekl_on)

Steps vs ekl_off (%)

1074 1073 1072
tau

Figure 4. Variation Rate of Average Search Steps under Threshold t(relative
to EKL-off)

To jointly capture search efficiency and communication
savings, the weighted cost in (25) is applied to characterize the
trade-off between the two performance objectives under
different threshold settings.

Fig. 5 shows that all three weight settings (¢ = 0.1,0.3,0.5)
exhibit a consistent Pareto-like trade-off: as T increases,
communication usage decreases monotonically while search
steps increase, creating a distinct knee point. This knee shifts
rightward as more emphasis is placed on energy/bandwidth
savings (larger @ ): (1) a=0.Lt*=4x107*, 2) a=
0.3:7* = 6x107*, and (3) a = 0.5:7* ~ 6 X 1073 These
results offer practical guidance: For time-critical missions (small
a): choose T€E[4%x107%,6x107*] to maintain stable
convergence with minimal delay. For energy- or bandwidth-
limited missions (large a): T € [6 X 107%,6 x 1073] provides
substantial communication reduction with acceptable
performance loss.

Weighted cost ] vs tau (ekl_on)

_comm_norm
@ w w
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Figure 5. Relationship between Weighted Cost Function and Threshold ©

V. CONCLUSION

This work investigates an EKL-based information-driven
communication strategy for multi-UAV odor source localization
under communication constraints. By using expected KL
divergence as a transmission trigger, the proposed approach
enables selective information sharing while preserving effective
cooperative search behavior.

Simulation results confirm that EKL-gated communication
achieves a favorable balance between search performance and
communication cost, with the threshold t providing a simple
and interpretable control knob. Compared with periodic,
entropy-based, and full-communication baselines, the EKL
mechanism improves information efficiency  without
introducing additional coordination complexity.

While this study focuses on a two-UAV setting to isolate
fundamental entropy and communication effects, the proposed
framework is inherently scalable. Future work will extend the
analysis to larger UAV teams to study how communication load,
channel conditions, and the effective T operating region evolve
with team size, as well as to incorporate more realistic plume
dynamics and networking constraints.
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