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Abstract— Multi-UAV odor source localization (OSL) is 

challenging under partial observability and limited 

communication. We propose an event-triggered strategy based on 

Expected Kullback–Leibler (EKL) divergence, where messages 

are transmitted only when the expected information gain on 

teammates’ beliefs exceeds a threshold. The search is formulated 

as a Partially Observable Markov Decision Process (POMDP) and 

combined with Infotaxis. 3D simulations show that EKL-gated 

communication substantially reduces transmissions and energy 

consumption while preserving localization performance, yielding 

higher information efficiency than conventional communication 

schemes. 

 

Keywords— Multi-UAV, Odor Source Localization, Infotaxis, 

Expected KL Divergence, POMDP. 

I.  INTRODUCTION 

Multi-UAV odor source localization (OSL) [1] is critical in 
disaster scenarios such as toxic gas leaks. However, this task is 
characterized by high uncertainty, partial observability, and 
practical communication constraints including bandwidth, 
energy, and environmental occlusion. To address these 
challenges, this study proposes an information-theoretic strategy 
termed Expected Kullback–Leibler Divergence (EKL) [2]-
threshold event-triggered communication. Under this 
mechanism, message transmission is triggered only when an 
observation yields an expected information gain on teammates’ 
beliefs that exceeds a threshold 𝜏 , thereby suppressing 
unnecessary data exchange and enabling self-adaptive 
communication rate. To contextualize the benefits of EKL-based 
triggering, we compare it against commonly used alternatives, 
including periodic communication, entropy-decrease-based 
triggering, and no-communication baselines. 

The search task is modeled as a Partially Observable Markov 
Decision Process (POMDP) [3] coupled with the Infotaxis 
search strategy [4]. The simulation platform integrates gas 
diffusion and sensing models, Bayesian belief updates [5], and a 
wireless channel model incorporating path loss and shadowing 
effects. By systematically varying the threshold 𝜏  in three-
dimensional simulations, and evaluating all methods under 
identical sensing, motion, and channel conditions, we analyze 
the trade-offs among search steps, communication frequency, 
energy consumption, and belief entropy convergence. 

Simulation results demonstrate that, within an appropriate 
threshold range, EKL-threshold communication significantly 

reduces transmission counts and energy consumption. Crucially, 
the strategy maintains localization accuracy comparable to full 
communication baselines while improving the information 
efficiency of each transmission, thereby validating information 
theory as a foundation for adaptive UAV cooperative 
communication. 

The contributions of this paper are as follows: (1) 
establishing a reproducible multi-UAV OSL simulation 
framework; (2) proposing an EKL-based information-value 
metric that drives threshold-triggered communication; (3) 
validating the proposed strategy under resource-constrained 
conditions through comparison with multiple communication 
baselines; and (4) providing a foundation for future extensions, 
including dynamic thresholds, autonomous coordination, and 
real-world deployment. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

The overall system architecture is illustrated in Fig. 1, where 

multiple UAVs cooperatively search for an odor source in a 3D 
environment under limited communication. Each UAV 
measures local gas concentration, updates its belief via Bayesian 
inference, and exchanges information through unicast links 
subject to path loss and shadowing. 

The system model is described in the following subsections, 
including the environment model, sensing and communication 

models, and the POMDP formulation of the search problem. 

 

Figure 1.  Multi-UAV Odor Source Search System Model. The black solid 

circle denotes the odor source; the blue and orange paths illustrate the 

trajectories of UAV-A and UAV-B, respectively; the dashed lines indicate 

communication links. 

A. Background and Bayesian Formulation 

OSL aims to enable autonomous agents—such as unmanned 
aerial vehicles—to infer the spatial location of an odor source 



through continuous measurements of gas concentration or odor-
particle hit events [6]. This task belongs to a class of dynamic 
search and decision-making problems characterized by high 
uncertainty. The inputs to the system are the sensing outcomes 
and the agent’s own position, while the output is a probabilistic 
estimate of the odor source location. The research objective is to 
identify the true source with minimal sensing and movement 
steps, under limited time and energy budgets. 

Odor transport is governed by stochastic advection, diffusion, 
and turbulence, leading to an intermittent and highly non-smooth 
concentration field. Even near the source, sensors may 
experience consecutive zero-hit observations, making gradient-
based chemotaxis unreliable. To cope with such uncertainty, 
OSL is commonly formulated as a POMDP. Since the source 
location is unobservable, the agent maintains a belief 
distribution 𝑃𝑡 (𝒓𝒔) , representing the probability that each 
candidate location is the true source. Upon receiving a new 

measurement ℎ𝑡 , the belief is updated via Bayes’ rule [7]: 

𝑃𝑡 ( 𝒓𝒔 ∣∣ ℎ1:𝑡 ) =
𝑃( ℎ𝑡 ∣∣ 𝒓𝒔 )𝑃𝑡−1( 𝒓𝒔 ∣∣ ℎ1:𝑡−1 )

∑ 𝑃( ℎ𝑡 ∣∣ 𝒓𝒔
′ )𝑃𝑡−1( 𝒓𝒔

′ ∣∣ ℎ1:𝑡−1 )𝒓𝒔
′

. (1) 

In practice, the normalization term is often omitted, yielding 
the proportional update 

𝑃𝑡+Δ𝑡(𝐫𝑠) ∝ 𝑃𝑡 (𝐫𝑠)𝑃(ℎ𝑡 ∣ 𝐫𝑠 , 𝐫𝑡), (2) 

which simplifies the computation of entropy, expected 

information gain, and EKL divergence. 

Overall, Bayesian inference provides the sensing–update–
decision loop for OSL. Combined with a Poisson hit model for 
the likelihood, this framework enables quantitative belief 
updates and information metrics, forming the basis for 
information-driven search strategies such as Infotaxis and the 
proposed communication-triggering mechanism. 

B. Environment and Sensing Model 

To construct a tractable yet physically grounded search 
environment, this study adopts a mean-plume approximation 
with steady-state isotropic diffusion. The odor source is modeled 
as a continuously emitting point source, and turbulence-induced 
intermittency is captured through a probabilistic hit model rather 
than solving the full convection–diffusion equation. 

Under three-dimensional isotropic steady-state assumptions, 
the average concentration at location 𝐫 produced by a source at 
𝐫𝑠 is expressed as 

𝐶( 𝒓 ∣∣ 𝒓𝒔 ) ∝ e𝑥𝑝(−|𝒓 − 𝒓𝒔|/𝜆) |𝒓 − 𝒓𝒔|⁄ , (3) 

where 𝜆 is the characteristic decay length. Assuming that the 
sensor’s hit rate is proportional to the local mean concentration, 
the expected hit rate is given by 

𝜇( 𝒓 ∣∣ 𝒓𝒔 ) = 𝜇0

𝜆

|𝒓 − 𝒓𝒔|
e𝑥𝑝(1 − |𝒓 − 𝒓𝒔|/𝜆), (4) 

where 𝜇0 is the reference hit rate at distance 𝜆. 

During each time step Δ𝑡, the number of odor-particle hits is 
modeled as 

ℎ ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇( 𝒓 ∣∣ 𝒓𝒔 )Δ𝑡). (5) 

However, the Poisson distribution has unbounded support. 
To maintain a finite observation space for numerical filtering 
and EKL evaluation, a truncated Poisson model is adopted [8], 
where the maximum observed hit category is 𝑁hits. All values 
ℎ ≥ 𝑁hits are merged into a single tail bin. The search terminates 
when a UAV enters the source cell (𝐫 = 𝐫𝑠). 

C. Hit-Count Quantization for the Observation Model 

To determine a physically meaningful and adaptive 
truncation level, we exploit the Poisson property that the mean 
equals the variance. The upper bound is set based on the 
expected hit rate at the smallest resolvable distance—one grid 
spacing Δ𝑥: 

𝜇1 ≡ 𝜇(|𝒓 − 𝒓𝒔| =Δ𝑥) (6) 

Because Δ𝑥 defines the minimum spatial increment on the 
3D grid, 𝜇1 automatically reflects the diffusion scale 𝜆/Δ𝑥. The 
hit-count truncation level is chosen as one standard deviation 
above the mean, with all tail probability merged into a final 
category: 

𝑁hits = ⌈𝜇1 + √𝜇1⌉ + 1 (7) 

Thus the discrete observation alphabet for actual 
computation is ℎ ∈ {0,1, … , 𝑁ℎ𝑖𝑡𝑠 − 1} , where the last index 
corresponds to the aggregated tail. This design captures the 
dominant Poisson mass while keeping the observation 
dimension compact. 

D. Wireless Channel Model 

Communication between UAVs is modeled using a distance-
dependent path-loss model with log-normal shadowing. For two 

UAVs separated by distance 𝑑, the average path loss (in dB) is 

𝑃𝐿(𝑑) = 𝑃𝐿(𝑑0) + 10𝛾 log10(𝑑 𝑑0⁄ ) + 𝑋𝜎 , (8) 

where 𝑃𝐿(𝑑0) is the reference loss at distance 𝑑0 , 𝛾 is the 
path-loss exponent, and 𝑋𝜎 ∼ 𝒩(0, 𝜎2)  models large-scale 
shadowing. A packet is lost when 𝑃𝐿(𝑑)  exceeds the 
communication budget. This affects only physical-layer success, 
whereas the decision to transmit is governed by EKL gating. 

E. POMDP and Problem Definition 

This work formulates OSL as a POMDP and extends it to a 

cooperative multi-UAV setting. The state is 𝑠 = (𝑟𝑠 , 𝑟𝑡 ), with 𝑠Ω 
denoting the terminal state. The action set 𝐴 =
{north, south, east, west, up, down}  determines 3D grid 
movements. At each step, the UAV receives an observation 𝑜 ∈



{Ω, 0,1, … , ℎmax} , where the likelihoods follow the Poisson 
model in (5). Conceptually, the ideal POMDP observation space 
would allow ℎmax → ∞ . In practical computation, the 
implemented maximum hit category equals the truncated bound, 
ℎ𝑚𝑎𝑥 = 𝑁ℎ𝑖𝑡𝑠 − 1, as defined in Section C.  

Beliefs are updated by Bayes’ rule: 

𝑏𝑡+1(𝑠) = {𝑃( 𝑜𝑡 ∣∣ 𝑠 )𝑏𝑡(𝑠)} {∑ 𝑃( 𝑜𝑡 ∣∣ 𝑠′ )𝑏𝑡(𝑠′)

𝑠′∈𝒮

}⁄ . (9) 

The uncertainty of the belief is measured by Shannon 

entropy [10]: 

𝐻𝑡 = − ∑ 𝑃𝑡 (𝒓𝒔)

𝒓𝒔∈𝑆

𝑙𝑜𝑔 𝑃𝑡 (𝒓𝒔), (10) 

and the expected information gain for an action 𝑎𝑡  at 
position 𝑟𝑡  is 

𝛥𝐻(𝑎𝑡) = 𝐻𝑡 − 𝐸ℎ𝑡+1
[𝐻𝑡+1]. (11) 

Search strategy is to select actions that maximize the 
expected information gain [4]: 

𝑎𝑡
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑎𝑡
𝛥 𝐻(𝑎𝑡). (12) 

Two Infotaxis-driven UAVs cooperatively localize a single 
odor source. After a local update, UAV 𝑖  incorporates 
successfully received neighbor measurements using distributed 
Bayesian fusion: 

𝑃𝑡+𝛥𝑡,𝑖(𝒓𝒔) =
𝑃𝑡,𝑖(𝒓𝒔) ∏ [𝐿𝑗( ℎ𝑗 ∣∣ 𝒓𝒋; 𝒓𝒔 )]

𝑢𝑗→𝑖
𝑗∈𝒩𝒾 ∪{𝑖}

∑ 𝑃𝑡,𝑖(𝒓𝒔
′ ) ∏ [𝐿𝑗( ℎ𝑗 ∣∣ 𝒓𝒋; 𝒓𝒔

′ )]
𝑢𝑗→𝑖

𝑗∈𝒩𝒾 ∪{𝑖}𝒓𝒔
′

, (13) 

where 𝑢𝑗→𝑖 ∈ {0,1}  indicates whether UAV 𝑖  successfully 

receives UAV 𝑗’s packet, determined by (1) EKL ≥ τ and (2) 
successful wireless transmission. 

The search ends when any UAV reaches the source or when 
step/energy limits are reached. 

III. PROPOSED METHOD: EKL-GATED ADAPTIVE 

COMMUNICATION 

A. EKL Formulation & Thresholding 

For UAV 𝑖, the prior belief is 𝑃𝑡,𝑖(𝑟𝑠). After receiving a local 

observation ℎ𝑖, the belief is updated via Bayes’ rule: 

𝑃𝑡+𝛥𝑡,𝑖( 𝒓𝒔 ∣∣ ℎ𝑖 ) =
𝑃𝑡,𝑖(𝒓𝒔)𝑃𝑟( ℎ𝑖 ∣∣ 𝒓𝒔 )

∑ 𝑃𝑡,𝑖(𝒓𝒔
′ )𝑃𝑟( ℎ𝑖 ∣∣ 𝒓𝒔

′ )𝒓𝒔
′

. (14) 

The information change caused by ℎ𝑖 is measured using the 
KL divergence: 

𝐷KL (𝑃𝑡+𝛥𝑡|𝑃𝑡 ) = ∑ 𝑃𝑡+𝛥𝑡 ( 𝒓𝒔 ∣∣ ℎ )

𝒓𝒔

𝑙𝑜𝑔
𝑃𝑡+𝛥𝑡 ( 𝒓𝒔 ∣∣ ℎ )

𝑃𝑡 (𝒓𝒔)
. (15) 

Since the sender does not yet know the actual observation 
before transmission, the communication decision uses the 
expected KL divergence: 

EKLi→j = 𝐸ℎ𝑖∼𝑃(ℎ𝑖) [𝐷KL (𝑃𝑡+Δ𝑡,𝑗( 𝒓𝒔 ∣∣ ℎ𝑖 )|𝑃𝑡,𝑗(𝒓𝒔))] , (16) 

Where 𝑃(ℎ𝑖) = ∑ 𝑃𝑡,𝑖(𝒓𝒔)𝑃𝑟( ℎ𝑖 ∣∣ 𝒓𝒔, 𝒓𝒊 )𝒓𝒔
. This quantity is 

equivalent to the mutual information [9] between 𝑟𝑠  and ℎ𝑖, and 
therefore measures the expected entropy reduction. 

A binary threshold rule determines whether UAV 𝑖 transmits 
to 𝑗: 

𝑢𝑖→𝑗 = {
1, EKLi→j ≥  𝜏,

0, EKLi→j <  𝜏.
(17) 

Small 𝜏 approximates full communication, whereas larger 𝜏 
suppresses low-value transmissions. Because the optimal τ 
depends on factors such as odor decay length, geometry, and 
channel conditions, this work treats τ as a tuning parameter and 
evaluates its impact on search efficiency and communication 
cost through simulation. 

B. EKL-Gated Communication Algorithm 

To reduce communication load, UAV 𝑖 separately evaluates 
its EKL contribution to each receiver 𝑗. Let 𝑝𝑟 = 𝑝̂𝑗∣𝑖  be the 

sender’s cached estimate of 𝑗’s prior, and let 𝑙ℎ(𝑟𝑠 ∣ 𝑟𝑖) be the 
Poisson likelihood map. The marginal probability of observing 

ℎ and the corresponding posterior are: 

𝑝(ℎ) = 〈𝑝𝑟 , ℓℎ〉, (18) 

𝑝(ℎ)(𝐫𝐬) =
𝑝𝑟(𝐫𝐬)ℓℎ( 𝐫𝐬 ∣∣ 𝒓𝒊 )

𝑝(ℎ)
= 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑝𝑟 ⊙ ℓℎ). (19) 

Where ⊙  denotes element-wise multiplication and ⟨⋅,⋅⟩ is 
the inner product over the spatial probability grid. The expected 
information gain is: 

EKL𝑖→𝑗 = ∑ 𝑝(ℎ)𝐷KL(𝑝ℎ|𝑝𝑟)

ℎ

. (20) 

If EKL𝑖→𝑗 ≥ 𝜏 , UAV 𝑖  sends the packet(𝐫𝑖 , ℎ𝑖) to 𝑗. Upon 

successful reception, UAV 𝑗 updates its belief via: 

𝑝𝑗
′ = normalize (𝑝𝑗 ⊙ 𝐿𝑖( ℎ𝑖 ∣∣ 𝐫𝑖 )) . (21) 



The overall procedure follows a low-complexity gate → 

sense → fuse single-pass structure. 

TABLE I.  EKL THRESHOLD-BASED COMMUNICATION 

ALGORITHM 

ALGORITHM: EKL-GATED COMMUNICATION (SINGLE-PASS, PER STEP) 

 Inputs: sender i at position 𝒓𝒊；receiver set J (𝒋≠𝒊)；threshold 𝜏 

 State: get_receiver_prior(i,j)  // returns i’s current estimate of j’s prior 

(cached receiver-prior) 

 Outputs: 𝑫𝒊；// set of receivers selected for transmission at this step 

 𝑺𝒊； // subset of receivers that successfully received the packet 

 𝒑𝒊
′；// updated posterior of the sender 

 { 𝒑𝒋
′ ∣∣ 𝒋 ∈ 𝑺𝒊 } // updated posteriors of the receivers that successfully 

received the packet 

1 𝑫𝒊 ← ∅ 

2 for each 𝒋 ∈ J do 

3  𝒑𝒓 ← get_receiver_prior(𝒓𝒊,𝒓𝒋) 

4  EKLi→j← 0 

5  for ℎ = 0,1, … , 𝑁hits − 1 do 

6   𝓵𝒉 ← LikelihoodField(𝒉 | 𝒓𝒊)    

7   𝒑𝒉 ← ⟨𝒑𝒓, 𝓵𝒉⟩              
8   if 𝒑𝒉 > EPS then               

9    𝒑𝒐𝒔𝒕 ← normalize(𝒑𝒓⊙𝓵𝒉)   

10    EKLi→j  ← EKLi→j  + 𝒑𝒉 · 𝐷𝐾𝐿( 𝒑𝒐𝒔𝒕 ∣∣ 𝒑𝒓 )    

11   end if 

12  end for 

13  if  EKLi→j  ≥ τ then 

14   𝑫𝒊 ← 𝑫𝒊 ∪ {𝒋}   
15  end if 

16 end for 

 Sender(No retransmission is performed; each SendPacket 

attempt results in a single success-or-failure outcome.) 

17 𝒉𝒊 ← SenseAt(𝒓𝒊)                               

18 𝒑𝒊
′ ← normalize(𝒑𝒊 ⊙ LikelihoodField(ℎ𝑖  | 𝒓𝒊) )    

 Receiver 

19 𝑺𝒊 ← ∅ 

20 for each j ∈ 𝑫𝒊 do 

21  success ← SendPacket(packet(𝒓𝒊 , ℎ𝑖) → j)   

22  if success then 

23   𝒑𝒋
′  ← normalize(𝒑𝒋 ⊙ LikelihoodField(𝒉𝒊 | 𝒓𝒊)) 

24   𝑺𝒊 ←𝑺𝒊 ∪ {𝒋}            
25   UpdateCache(𝒋, 𝒊)   
26  end if 

27 end for 

28 return 𝑫𝒊, 𝑺𝒊, 𝒑𝒊
′, {𝒑𝒋

′  | 𝒋 ∈ 𝑺𝒊} 

Note: EPS is a very small constant introduced to ensure numerical stability 
(typically 𝟏𝟎−𝟏𝟐). 

C. Simulation Flow and Performance Metrics 

The system progresses in discrete time steps. In each 
iteration, the following operations are executed sequentially: 
action selection (Infotaxis), local measurement and Bayesian 
update, EKL evaluation and thresholding (unicast), receiver-side 
fusion and cache update, and termination checking with statistic 
logging. The mission succeeds when any UAV enters the 
detection radius of the source; otherwise, it fails upon reaching 

the maximum step or energy limit.  

The framework supports multiple communication modes, 
including No-comm (no exchange), EKL-off (transmit every 
step), EKL-on (threshold-gated transmission), as well as 
periodic and entropy-triggered baselines for comparison. In 
periodic communication, transmissions occur deterministically 
every 𝐾  steps (𝑡 𝑚𝑜𝑑 𝐾 = 0) . In entropy-triggered 

communication, a UAV transmits when its local belief update 
yields an entropy reduction exceeding a threshold, Δ𝐻local ≥
𝜏entropy . Unlike EKL gating, this criterion depends solely on 

local uncertainty reduction at the sender. To quantify the 

performance and cost under different thresholds 𝜏, the following 
metrics are used. 

The total number of successful communication events 
(packets) is: 

𝑁comm = ∑ ∑ ∑ 𝑢𝑖→𝑗(𝑡)

𝑗≠𝑖𝑖

𝑇

𝑡

. (22) 

Where 𝑡 is the time index, 𝑇 is the final step, and 𝑢𝑖→𝑗(𝑡) ∈

{0,1} indicates whether UAV 𝑖 successfully delivered a packet 
to UAV 𝑗  at step 𝑡 . A transmission is counted when the 
communication condition of the selected strategy is satisfied and 
physical-layer delivery succeeds; for EKL-based 
communication, this additionally requires EKL𝑖→𝑗 ≥ 𝜏 . This 

metric represents the total number of odor-hit packets 

successfully received during the mission. 

To compare communication load across thresholds, the 
normalized communication usage is defined relative to the full-
communication upper bound (EKL-off), which transmits at 

every step: 

𝐸comm,norm (τ) = 𝑁comm (τ) 𝑁comm ( EKL-off )⁄ . (23) 

A smaller value indicates greater communication savings. 

The information efficiency of each packet is: 

ηpkt = (𝐻0 − 𝐻𝑇) 𝑁comm⁄ , (24) 

where 𝐻0  and 𝐻𝑇  denote the initial and final mean belief 
entropy (in bits). This measures the average information 
contribution per successful transmission. 

Search efficiency is measured by the average number of 
steps 𝑁steps (in steps), and reliability by the task success rate 

(percentage of successful runs). As 𝜏 increases, fewer packets 
are transmitted but search time generally increases, reflecting the 
trade-off between communication load and search performance. 

To jointly compare these effects across thresholds, we use 

the composite cost: 

𝐽(𝜏) = 𝑁steps (𝜏) + 𝛼𝐸comm , norm (𝜏), (25) 

where 𝛼 > 0 controls the trade-off between communication 
cost and search time. 𝐽(𝜏) serves as an analytical performance 
indicator rather than an optimization objective. 



IV. SIMULATION RESULTS AND ANALYSIS 

A. Platform and Scenarios 

Simulations are conducted in a three-dimensional discrete 
environment to evaluate the proposed EKL-based adaptive 
communication strategy. The search region is a cubic grid of size 

𝑁 = 43  with spacing Δ𝑥 = 5 m(215 m per side). The odor 
source is located at 𝑟𝑠 = [40,40,40], and two UAVs start from 
𝑟1 = [10,0,0] and 𝑟2 = [0,10,0], approximately 330 m ≈ 11𝜆 
away from the source, representing low-concentration initial 
conditions. The simulation advances with a timestep Δ𝑡 = 0.5 s. 
The mission succeeds once any UAV reaches the source cell. 

Each UAV’s initializes its prior 𝑃0,𝑖(𝑥)  as a uniform 

distribution over the grid, except that the occupied cell is 
assigned zero probability. To break symmetry, each UAV 
performs an initial measurement ℎ0 at its starting position, after 
which the likelihood update (using the Poisson model of (5)) 

generates an asymmetric initial belief. 

Although 𝑟1 , 𝑟2 , and 𝑟𝑠  are fixed, trial-to-trial stochasticity 
arises from two components: (1) the Poisson-distributed sensing 
process producing random hit counts; and (2) shadowing in the 
wireless channel (Section II.D), which induces random packet-
delivery outcomes. These stochastic elements ensure variability 
across repeated runs even under identical geometry. 

Five communication modes are evaluated: 

• EKL-off (full communication): transmit all 

measurements at every step; 

• EKL-on (adaptive communication): transmit only when 
EKL𝑖→𝑗 ≥ 𝜏; 

• Periodic communication: transmit deterministically 
every 𝐾 steps (𝑡 𝑚𝑜d 𝐾 = 0); 

• Entropy-triggered communication: transmit when the 
sender’s local belief update yields an entropy reduction 
Δ𝐻local ≥ 𝜏entropy ; 

• No-comm: UAVs search independently. 

These models represent, respectively, an upper-bound 
reference, an information-adaptive strategy, two commonly used 
heuristic baselines, and a lower-bound baseline. Multiple 

thresholds 𝜏 are scanned for the EKL-on and entropy-triggered 
modes, and 10 independent runs are performed for each 
configuration to obtain statistically reliable averages. 

The simulation ends when the source is reached, when 
energy is exhausted, or when 500 steps are completed. 
Performance is assessed using four metrics: (1) Communication 
cost, quantified by the total number of successfully delivered 
packets and the normalized communication-energy ratio defined 
in (23); (2) Search efficiency, evaluated using the average 
completion steps 𝑁stepsand the information-efficiency measure 

in (24); (3) Composite mission cost, represented by the weighted 
cost function in (25), where 𝛼specifies the relative importance 
between search time and communication energy. All simulation 
parameters reflect physically realistic odor dispersion and short-

range wireless communication characteristics. 

TABLE II.  SIMULATION PARAMETER SETTINGS 

Parameter Value / Unit 

Grid spacing, Scenario size 5 m, 215 m 

Time step 𝚫𝒕 0.5 s 

Odor decay length 𝛌, Detection radius 𝒂 30 m, 2.5 m 

Reference hit rate 𝛍𝟎 0.77 hits/step 

Path-loss exponent 𝛄 2 

Path-loss budget 𝑷𝑳budget 90 dB 

Shadowing standard deviation 𝛔 6 dB 

Reference distance 𝒅𝟎 1 m 

Hovering power, Motion energy 100 W, 5 J/m 

Sensing energy, Tx/Rx startup energy 0.05 J/step, 1 mJ / 0.5 mJ 
Energy per bit, Amplifier constant 5e-8 J/bit, 1e-11 J/bit/m^η 

Total UAV energy 5000 J 

B. Communication Energy Model and Packet Bit Length 

To enable consistent comparison across communication 
strategies, a simplified but repeatable communication-energy 
model is used. The model converts the number of packet bits into 
transmission energy, capturing relative performance trends 
rather than replicating precise hardware characteristics. For a 
measurement packet with bit length 𝑏  transmitted over link 
distance 𝑑, the transmitter and receiver energy costs are 

𝐸tx = 𝐸start ,tx + 𝐸elec 𝑏 + εamp𝑏𝑑𝜂, (26) 

𝐸rx = 𝐸start,rx + 𝐸elec 𝑏. (27) 

A failed transmission still incurs full transmit energy (26) but 
no receive energy (27). The bit length of each measurement 
packet consists of the header, a 3-D position index, and the 
discretized hit category derived from the truncated Poisson 
model (Section II.C). The total number of bits is 

𝑏meas = 𝑏hdr + 𝑁dim ⌈log2 𝑁⌉ + ⌈log2 𝑁hits ⌉, (28) 

where 𝑏hdr = 64 bits, 𝑁dim = 3, and 𝑁 is the grid size per 
dimension. The value of 𝑁hits  is determined by the adaptive 
truncation rule of (7), which aggregates all Poisson outcomes 
above the threshold into a single tail category. Because the 
amplifier term grows approximately linearly with mission 
duration under the simulated distance scale and path-loss 
exponent, both packet counts and normalized communication 
energy are reported. 

C. Search Efficiency and Communication Cost 

Five communication strategies are evaluated under identical 
conditions: EKL-on, EKL-off, Periodic, Entropy-triggered, and 
No-comm. In the Periodic baseline, transmissions occur every 
𝐾 = 5 steps. For the Entropy-triggered baseline, a transmission 
is triggered when the local entropy reduction satisfies Δ𝐻local ≥
𝜏entropy = 0.05 . For EKL-on, the threshold is fixed at 𝜏 =
5 × 10−4 , corresponding to a moderate communication 
intensity identified in preliminary scans. All statistics are 

computed over 10 independent runs. 

Experimental results show that the task success rates are 
100% for EKL-on, EKL-off, Periodic, and Entropy-triggered 
strategies, while the No-comm baseline achieves approximately 



90%. Table III reports the mean, standard deviation, and 95% 
confidence intervals of search steps, packet transmissions, and 
communication energy. Compared with other communication 
strategies, EKL-on achieves fewer average search steps while 
requiring fewer packets and lower energy consumption, without 
degrading search efficiency. As expected, the No-comm strategy 
exhibits significantly increased search steps due to the absence 
of information exchange. 

TABLE III.  PERFORMANCE COMPARISON OF FIVE COMMUNICATION 

STRATEGIES (MEAN ± STD AND 95% CI) 

Method  Steps Packets Energy (J) 

EKL_ON 

mean ± 

std 

280.4 ± 

66.0 

495.2 ± 

73.6 
0.73 ± 0.11 

95% CI 
[233.2, 

327.6] 

[442.6, 

547.8] 

[0.657, 

0.808] 

EKL_OFF 

mean ± 

std 

303.4 ± 

54.3 

606.8 ± 

108.6 
0.89 ± 0.16 

95% CI 
[264.6, 

342.2] 

[529.1, 

684.5] 

[0.776, 

1.003] 

No-comm 

mean ± 

std 

446.3 ± 

114.2 
- - 

95% CI 
[364.6, 

528.0] 
- - 

Periodic 

mean ± 

std 

336.6 ± 

118.1 

673.2 ± 

236.1 
1.03 ± 0.36 

95% CI 
[252.2, 

421.1] 

[504.3, 

842.1] 

[0.767, 

1.284] 

Entropy-

triggered 

mean ± 

std 

304.2 ± 

32.6 

608.4 ± 

65.2 
0.93 ± 0.10 

95% CI 
[280.9, 

327.5] 

[561.8, 

655.0] 

[0.855, 

0.997] 

D. Dynamics of Entropy and Traffic 

Fig. 2 illustrates the evolution of mean belief entropy as a 
function of normalized search progress. All strategies start with 
high entropy, indicating substantial initial uncertainty about the 
source location. As the search proceeds, entropy decreases 
steadily and converges toward zero. 

EKL-on, EKL-off, Periodic, and Entropy-triggered 
strategies exhibit similar entropy convergence rates without 
noticeable delay. In contrast, the No-comm strategy shows 
slower entropy reduction and a higher final entropy level due to 
insufficient information exchange. These results indicate that 
EKL-on preserves the convergence quality of full 
communication while reducing transmission overhead. Since 
EKL-off represents the theoretical information upper bound, the 
results imply that EKL-on incurs no significant performance loss 
rather than outperforming full communication. 

 

Figure 2.  Variation of Average Entropy with Normalized Search Time 

Progress 

Fig. 3 compares the evolution of mean belief entropy as a 
function of cumulative packet count. All communication 
strategies exhibit the expected trend that increased 
communication leads to lower entropy, reflecting the positive 
role of information exchange in belief concentration. Compared 
under the same packet budget, EKL-on achieves a faster entropy 
reduction in the mid-range of cumulative transmissions 
(approximately 350–520 packets), indicating a higher 
information contribution per transmitted packet. 

EKL-off, Periodic, and Entropy-triggered strategies require 
a larger number of packets to reach comparable entropy levels, 
while No-comm does not appear in this plot due to zero 
transmissions. The oscillatory behavior observed near the end of 
some curves is not caused by entropy increases, but by reduced 
averaging samples after early task termination in successful runs. 

Overall, the results indicate that EKL-based thresholding 
improves information efficiency per packet and reduces the 
communication required to achieve belief convergence, without 
affecting the final estimation quality. 

 

Figure 3.  Average Entropy versus Cumulative Packet Count 

E. 𝜏-Sensitivity & Design Guidelines 

Because varying 𝜏  across several orders of magnitude 
induces multiplicative changes in search behavior, all analyses 

use log 10(𝜏)  as the horizontal axis. The threshold sweep is 
divided into two ranges: 

• [10⁻⁴, 10⁻³]: from “near-full communication” to the 

onset of throttling; 

• [10⁻³, 10⁻²]: where throttling becomes significant and 

search efficiency begins to degrade. 

Each range is sampled at ten points (with denser sampling 
around transition regions). The results in Fig. 4 show a clear 
nonlinear relationship between 𝜏  and both the average search 
steps and communication usage, forming three behavioral 
regimes: 

1) Low-threshold regime (𝜏 ≤ 3 × 10−4) 
Here, both search steps and communication usage differ by 

less than 2%. This regime effectively corresponds to near-full 
communication, serving as the lower-bound reference. 

2) Transition regime (3 × 10−4 ≤ 𝜏 ≤ 8 × 10−3) 

This is the key trade-off region. As 𝜏 increases, low-value 
transmissions are filtered out, resulting in a substantial 
communication reduction while search performance remains 



largely unaffected. Across this interval: Communication cost 
drops by 30–40% compared to EKL-off. Search steps increase 
only slightly (<5%). In our simulations, the best balance—i.e., 

the “knee point’’—occurs near 𝜏 ≈ 6 × 10−3,  where the 
weighted cost 𝐽(𝜏) reaches its minimum. 

3) High-threshold regime (𝜏 ≥ 8 × 10−3) 
Excessively high thresholds over-filter communication, 

reducing usage by more than 50% but causing a sharp rise in 
search steps (10–20%+). This degradation reflects insufficient 
belief fusion and increasingly inconsistent posteriors across 
UAVs. 

 

Figure 4.  Variation Rate of Average Search Steps under Threshold τ(relative 

to EKL-off) 

To jointly capture search efficiency and communication 
savings, the weighted cost in (25) is applied to characterize the 
trade-off between the two performance objectives under 
different threshold settings. 

Fig. 5 shows that all three weight settings (𝛼 = 0.1,0.3,0.5) 
exhibit a consistent Pareto-like trade-off: as 𝜏 increases, 
communication usage decreases monotonically while search 
steps increase, creating a distinct knee point. This knee shifts 
rightward as more emphasis is placed on energy/bandwidth 

savings (larger 𝛼 ): (1) 𝛼 = 0.1: 𝜏⋆ ≈ 4 × 10−4 , (2) 𝛼 =
0.3: 𝜏⋆ ≈ 6 × 10−4 , and (3) 𝛼 = 0.5: 𝜏⋆ ≈ 6 × 10−3 . These 
results offer practical guidance: For time-critical missions (small 
𝛼 ): choose 𝜏 ∈ [4 × 10−4, 6 × 10−4]  to maintain stable 
convergence with minimal delay. For energy- or bandwidth-
limited missions (large 𝛼): 𝜏 ∈ [6 × 10−4, 6 × 10−3] provides 
substantial communication reduction with acceptable 
performance loss. 

 

Figure 5.  Relationship between Weighted Cost Function and Threshold τ 

V. CONCLUSION 

This work investigates an EKL-based information-driven 
communication strategy for multi-UAV odor source localization 
under communication constraints. By using expected KL 
divergence as a transmission trigger, the proposed approach 
enables selective information sharing while preserving effective 
cooperative search behavior. 

Simulation results confirm that EKL-gated communication 
achieves a favorable balance between search performance and 
communication cost, with the threshold 𝜏  providing a simple 
and interpretable control knob. Compared with periodic, 
entropy-based, and full-communication baselines, the EKL 
mechanism improves information efficiency without 
introducing additional coordination complexity. 

While this study focuses on a two-UAV setting to isolate 
fundamental entropy and communication effects, the proposed 
framework is inherently scalable. Future work will extend the 
analysis to larger UAV teams to study how communication load, 
channel conditions, and the effective 𝜏 operating region evolve 
with team size, as well as to incorporate more realistic plume 

dynamics and networking constraints. 
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