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Abstract—Object detectors deployed in real-world environ-
ments often suffer severe performance degradation when input
images are corrupted by noise. While denoise-then-recognize
strategies are known to be effective for image classification, their
impact on object detection and the choice of suitable denoising
front-ends remain unclear. This study presents an efficient noise-
robust object detection pipeline that inserts a Gated Texture
CNN (GTCNN) as a trainable preprocessing module in front of a
Single-Shot multi-box Detector (SSD). GTCNN reduces noise by
separately modeling texture and context and fusing them through
a gating mechanism. Experiments on noisy images show that
denoising consistently improves detection performance over using
SSD alone. Our GTCNN front-end achieves detection accuracy
comparable to or higher than the conventional heavy-weight
denoising network, while requiring only about 3% additional pa-
rameters relative to the SSD backbone, demonstrating extremely
high parameter efficiency and practical suitability for resource-
constrained edge environments.

Index Terms—Object detection, Image denoising, Noise robust-
ness, Efficient neural networks, Edge devices, Gated Texture CNN
(GTCNN), U-net

I. INTRODUCTION

Object detection systems are vulnerable to noise in the input
image, and their detection accuracy can degrade severely when
the input is corrupted. Since detection relies on extracting
features from image patterns to localize and classify objects,
pixel-level perturbations easily propagate into erroneous high-
level representations. A natural way to mitigate this issue is
to insert an image denoising network before the detector, and
a variety of CNN-based denoisers [1]-[S] have in fact been
shown to recover a significant portion of the lost accuracy
in noisy conditions [6], [7]. At the same time, however, the
image denoising community is increasingly adopting large
transformer-based models [8]-[10], where improved restora-
tion accuracy is often achieved at the cost of dramatically
increased parameter counts and computational complexity.

While large-scale denoising networks offer impressive per-
formance, they are poorly suited for edge Al scenarios such
as smartphones or Iol' cameras, where real-time execution,
low latency, and energy efficiency are critical [11]. Deploying
heavyweight denoisers as a pre-processing stage on these
devices would incur substantial computational and memory
costs, undermining the latency budget of the downstream
detection pipeline. Consequently, there is a strong demand
for denoising approaches that achieve a favorable accuracy-

efficiency trade-off, enabling robust object detection under
noise without relying on large, resource-hungry models.

To address this need, GTCNN [5] (Gated Context CNN) has
been proposed as a lightweight and accurate image denoiser. It
disentangles noise removal and context extraction into separate
components, allowing for tailored architectures and achieving
competitive denoising performance with substantially fewer
parameters than conventional models. This design is partic-
ularly effective at suppressing noise while preserving fine tex-
tures and structural details that standard CNN denoisers often
over-smooth. However, prior work on GTCNN has focused on
signal-level quality measures like PSNR, and has not explored
training strategies to explicitly optimize its performance as
a preprocessor for high-level vision tasks, such as object
detection.

We adapt an intermediate-feature-based training objective,
previously used to connect restoration to recognition, to the
setting of GTCNN+SSD for noise-robust object detection. The
objective encourages the denoiser to preserve detector-relevant
representations under noise, emphasizing efficient front-end
system design for edge deployment.

As a result, our approach improves detection accuracy
in noise and realizes an efficient, end-to-end pipeline of
a lightweight denoiser and an object detector suitable for
resource-constrained edge platforms.

The major contributions of this paper are as follows:

o We evaluate GTCNN as a parameter-efficient denoising
front-end for SSD-based object detection and show that
it improves robustness under additive noise in our exper-
imental setting.

« We conduct an empirical sensitivity study on the choice of
SSD intermediate layers and distance norms for feature-
based training, providing practical guidance for configur-
ing a lightweight denoising front-end.

o Our GTCNN-based front-end achieves detection accuracy
comparable to or higher than conventional heavy-weight
denoisers, while requiring only about 3% additional pa-
rameters relative to the SSD backbone, highlighting its
high parameter efficiency and practical suitability for edge
environments.



TABLE I: Comparison of denoising (or enhancement) methods for high-level vision tasks. The notation meanings are as follows:
“Feature Loss”: use of intermediate feature losses; “Task Loss-Free”: training without task losses; “Frozen HLN”: high-level
vision task network kept frozen; “Obj. Det. Task™: target task is object detection.

Method Year  Feature Loss  Task Loss-Free =~ Frozen HLN  Obj. Det. Task ~ Denoiser

Liu et al. [6] 2018 v U-net [2] like
Liuetal. [12] 2020 N Vv U-net [2] like
Mamiya and Miyata [7] 2020 v v DnCNN [1]
Tran et al. [13] 2024 v NAFNet [10]
Ours 2026 v v v GTCNN [5]

II. RELATED WORK
A. Object Detection Methods

Early CNN-based object detectors such as R-CNN [14]
(Regions with CNN features) and its successors [15], [16]
achieved high accuracy by adopting a two-stage architecture
that first generated region proposals and then classified the
objects within them. However, the computational overhead of
these methods made them unsuitable for real-time applications
on embedded or resource-limited edge devices. To address this
limitation, SSD [17] (Single Shot Multi-Box Detector) and
YOLO [18] (You Only Look Once) introduced a representative
one-stage detection framework that simultaneously regresses
bounding boxes and predicts class scores directly from the
input image, enabling real-time performance without relying
on expensive proposal generation. While recent transformer-
based approaches [19] have achieved even higher accuracy
by leveraging global attention and end-to-end optimization,
SSD remains widely used in practical deployments owing to
its simplicity, efficiency, and ease of integration into real-world
applications [20], [21].

B. Image Denoising Methods

Image denoising aims to recover a clean image from a noisy
observation. Early CNN-based denoisers such as DnCNN [1]
learned mappings from noisy images to noise components,
significantly outperforming traditional model-based methods.
U-net [2] introduced an encoder-decoder architecture with skip
connections that enables effective multiscale feature extraction
and has since become a strong baseline for various image
restoration tasks, including denoising. GTCNN [5] further
disentangles texture and context information into separate
branches and fuses them via a gating mechanism, allow-
ing effective noise suppression while preserving important
structures. More recently, transformer-based denoisers such as
Restormer [8], SwinIR [9], and NAFNet [10] have leveraged
self-attention to capture long-range dependencies, and GTCNN
has been shown to remain highly competitive in terms of the
accuracy-parameter trade-off even against these state-of-the-art
models [22].

C. Robust High-Level Vision Network to Degraded Conditions

As mentioned in Section I, object detectors are vulnerable
to input noise, and their performance can degrade signifi-
cantly under noisy conditions. Existing approaches improve
the robustness of high-level vision networks under degraded

conditions by coupling a front-end denoising or enhancement
module with a task network, yet they differ in how high-level
information is exploited and which components are trained.

Liu et al. [6] froze a classification or segmentation network
and optimized a denoiser using the task loss, and Liu et
al. [12] additionally introduced intermediate feature losses as
an additional term in the loss function, thereby encouraging the
denoiser to preserve internal representations. These methods
employ U-net-inspired multiscale architectures as denoisers.
Mamiya and Miyata [7] employ DnCNN and relied solely on
intermediate feature discrepancies, removing the task loss and
enabling few-class training without retraining the classifier.
Tran et al. [13] addressed low-light object detection by placing
pre-trained enhancement modules before detectors and treating
them as task-agnostic black boxes that are not updated by
feature or task losses. They use NAFNet as the part of their
enhancement module.

These methods are compared in Table I with respect to four
aspects: (i) whether intermediate feature losses are used, (ii)
whether training is performed without task losses, (iii) whether
the high-level vision task network is kept frozen, and (iv)
whether the target task is object detection.

III. OUR PROPOSED PIPELINE

Our goal is to achieve robust object detection under noise
with a parameter-efficient architecture that can be deployed
in edge environments. To this end, we adopt GTCNN as a
denoising front-end, instead of relying on heavy networks such
as U-Net or NAFNet. Furthermore, inspired by prior work [7],
we construct our training objective from intermediate feature
maps of the VGG-16 backbone in SSD rather than directly
using the high-level detection loss of the object detection task
directly. In our proposed pipeline, the high-level detection
network remains completely frozen and only the GTCNN
parameters are updated.

Based on the above design policy, Fig. 1 illustrates the
overall pipeline from input to output. During inference, a noisy
input image is first fed into the GTCNN, which produces a
denoised image. This denoised output is then passed to an off-
the-shelf SSD detector consisting of a VGG-16 backbone and
its detection heads, from which object classes and bounding
boxes are obtained. Although this architecture is conceptually
simple, it remains unclear how the GTCNN should be trained
so that its denoising is optimally tailored for the downstream
high-level vision task.
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Fig. 1: Overview of our noise-robust object detection pipeline
using GTCNN as a denoising front-end for SSD. The training
strategy using intermediate feature losses from the SSD back-
bone are also depicted. Note that we freeze the SSD parameters
and update only the GTCNN parameters during training.

In order to train the GTCNN for SSD, we design a learning
strategy that leverages intermediate feature representations of
the VGG-16 backbone. VGG-16 consists of 16 layers: features
from the early layers tend to capture low-level information such
as edges and textures, whereas deeper layers provide more
abstract, object-level representations. Therefore, an important
design choice in our method is which feature maps from these
candidate layers are used to construct the feature-based loss
function.

Furthermore, another design issue is how to measure the
discrepancy between the feature maps at the selected layer,
extracted from the denoised image and from the corresponding
clean image. In conventional training of denoising networks,
the L, norm, which is directly related to the widely used metric
mean square error (MSE), has predominantly been adopted.
However, it has also become increasingly common to employ
the L; norm [23], [24], which is more robust to outliers.
Therefore, in this work we consider these two options, the L,
norm and the L; norm, as candidates for defining the feature-
space discrepancy.

Based on the above considerations, in our pipeline we
instantiate the feature-space loss using a single intermediate
layer and the L, norm. Specifically, we adopt the output feature
map of layer 7 of the VGG-16 backbone as the intermediate
representation. Let x denote a clean input image and X the
corresponding output of the GTCNN, and let ¢7(-) be the
mapping that extracts the layer-7 feature map from VGG-16.
The training loss function L for our pipeline is then defined
as

L()A(’ X) = ”¢7(§) - ¢7(X)||2’ (l)

where || - || denotes the L, norm. The choice of layer 7 and
the L, norm is motivated by empirical comparisons, and will
be discussed in detail in Section IV-D.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

Dataset. For the training set, we randomly selected 25
classes from the ImageNet training dataset. As shown in [7],
even when using images from a few classes, it is possible to
effectively train a denoising front-end for image recognition by
utilizing feature loss in the training process. In this study, we
evaluate whether a similar trend can be observed in the object
detection task. We use the PASCAL VOC 2007 test set as our
evaluation dataset. The PASCAL VOC 2007 dataset consists
of approximately 5,000 images containing 20 object categories
and is widely used as a standard benchmark dataset for object
detection tasks.

Evaluation Metric. We use mean Average Precision (mAP)
as the evaluation metric for object detection. Following the
PASCAL VOC 2007 evaluation protocol, a detection is con-
sidered true positive if its Intersection over Union (IoU) with a
ground-truth bounding box is at least 0.5. The Average Preci-
sion (AP) for each class is computed from its precision—recall
(PR) curve using the 11-point interpolation method, and mAP
is obtained by averaging the AP values over all classes. Higher
mAP indicates better overall detection performance.

Baselines. To evaluate the effectiveness of our proposed
pipeline, we compare it against the following baselines. First,
we use the case without any denoising (“None”) as the simplest
baseline. Second, we adopt a denoising method based on U-
Net trained with an MSE loss (U-Net w/ MSE). Third, we con-
sider a U-Net-based denoising method that employs a feature-
based loss (U-Net w/ VGG). For fairness, the intermediate
feature layer and norm in U-Net w/ VGG are fixed to the
combination of layer 10 and the L; norm, which yielded
the best performance among the design choices examined
in Section IV-D. By comparing these baselines with our
GTCNN-based denoising method (GTCNN w/ VGG (ours)),
we quantitatively assess the effectiveness of our approach.

Noise type and levels. Noisy input images are generated by
adding i.i.d. Gaussian noise to the clean images. We consider
three noise levels with standard deviations o = 40, 60, and
80.

Implementation details. For the object detector, we use
the open-source PyTorch SSD implementation [25] and adopt
SSD300 with an input resolution of 300 x 300 pixels. We
use the pre-trained weights on the PASCAL VOC 2007+2012
training set provided by the implementation. For the denoising
networks, we use the official PyTorch implementations of
GTCNN [5].

B. Quantitative Evaluation

To quantitatively evaluate the effectiveness of the proposed
method, we compare it with the baseline methods summarized
in Table II. We report the mean Average Precision (mAP) of
SSD under different noise conditions and denoising configura-
tions, focusing on how each method mitigates the performance
degradation caused by additive Gaussian noise.

We first examine the case without any denoising (“None”).
When no noise is added (o0 = 0), SSD achieves a high



TABLE II: Comparison of the proposed denoising method and
baselines at various noise levels. Best results are highlighted
in bold.

mAP T
Denoiser oc=0 o0c=40 oc=60 0o=80
None 77.26 56.52 37.71 21.44
U-net w/ MSE - 70.70 64.94 58.53
U-net w/ VGG - 73.55 70.18 65.59
GTCNN w/ VGG (ours) - 73.78 70.16 66.36

mAP of 77.26, indicating that the detector itself performs
well on clean images. However, as the noise level increases
to o = 40,60, and 80, the mAP drops sharply, showing that
the detection performance is severely deteriorated by noise.
This confirms our problem setting: SSD is highly vulnerable
to input noise, and a suitable denoising front-end is essential
for robust detection.

Next, we compare the two U-Net-based baselines, U-Net
w/ MSE and U-Net w/ VGG. For all noise levels, both
methods significantly improve mAP compared to the ‘“None”
case, demonstrating that denoising before detection is effective.
Moreover, U-Net w/ VGG consistently outperforms U-Net
w/ MSE, indicating that using feature loss derived from
the SSD backbone is more beneficial than relying solely on
pixel-wise MSE. This result is consistent with our design
principle that leveraging intermediate representations of the
high-level network as supervision can better preserve task-
relevant information for object detection.

We then compare the proposed method, GTCNN w/ VGG,
with U-Net w/ VGG. Across the considered noise levels,
the proposed method achieves comparable or better mAP. In
particular, at o0 = 40 and o = 80, GTCNN w/ VGG attains
similar or slightly higher mAP than U-Net w/ VGG, while
at o = 60 it is slightly inferior, but the gap remains very
small. These results indicate that the lightweight GTCNN can
achieve almost the same level of detection accuracy as the
much heavier U-Net when both are trained with the same
feature-based loss.

Finally, we discuss parameter efficiency using Table III. U-
Net w/ VGG has 17M parameters, whereas GTCNN w/ VGG
uses only 0.85M parameters, which corresponds to roughly
a 3% increase relative to SSD (26M parameters) alone. In
contrast, U-Net w/ VGG increases the parameter count by
about 63% compared to SSD, meaning that a substantial
portion of the overall model capacity would have to be
devoted solely to the preprocessing stage. From the viewpoint
of deploying object detection in resource-constrained edge
environments, it is undesirable to allocate such a large number
of parameters to the denoising front-end, and the proposed
GTCNN-based approach is therefore much more attractive in
terms of parameter efficiency.

TABLE III: Comparison of the proposed method and baselines
in terms of mAP and number of parameters at noise level
o = 60. We also show additional parameter ratio (APR), the
ratio of additional parameters for denoising network relative
to the SSD network (26M parameters).

Denoiser mAP T Parameters | APR [%] |
None 21.44 N/A N/A
U-Net w/ VGG 70.18 17M 63
GTCNN w/ VGG (ours)  70.16 0.85M 3

C. Qualitative Evaluation

Fig. 2 presents qualitative results before and after denoising
using the proposed method. In this figure, we focus on the
noise level of o = 60. The comparison between the ground-
truth (GT) labels in Fig. 2 (a) and the noisy-image detections
in Fig. 2 (b) highlights how severely noise degrades SSD’s
performance. In the first row, an object that should be labeled
as a cat is misclassified as a dog. In the second row, a small
car located in the upper-right corner is completely missed,
illustrating a typical case of false negatives under noise. In the
third row, an object that is not a chair is incorrectly detected
as a chair, showing an example of false positives.

In contrast, the detection results on the denoised images in
Fig. 2 (c) demonstrate that the proposed method can largely
recover the performance of SSD under noisy conditions. Many
of the mistakes observed in the noisy case are corrected:
the cat is correctly classified, the small car in the corner
is successfully detected, and spurious chair detections are
suppressed. Overall, the detections on the denoised images are
much closer to the ground-truth annotations, indicating that the
proposed denoising front-end effectively restores the original
capability of SSD.

Regarding the visual appearance of the denoised images
themselves, we observe that the outputs of the proposed
method sometimes exhibit checkerboard artifacts, especially
when zoomed in. Such artifacts are commonly reported in
methods that use feature-based or perceptual losses to improve
the perceptual quality of images [24]. However, for high-level
vision tasks, these patterns, although perceptually noticeable
to humans, may still encode information that is beneficial for
the detector, as they preserve or even emphasize structures that
are important for recognition.

D. Design Choices for Proposed Method and Baseline

In this subsection, we investigate the design choices for the
proposed GTCNN w/ VGG, focusing on which intermediate
feature layer and norm to use in the feature loss. The backbone
VGG-16 in SSD consists of 13 convolutional layers followed
by 3 fully connected layers, that is, 16 layers in total. Among
these layers, we consider the output feature maps of layers
2, 4,7, 10, 13, and 15 as candidates for defining the feature
loss. Note that layer 15 corresponds to the feature map used
in the prior work FDnN [7]. For each of these candidate
layers, we also consider two options for measuring feature-



(a) Original image + GT labels

(b) Noisy image

(c) Denoised image (ours)

Fig. 2: Comparison of object detection results. Noise level o = 60. In the noisy image, the detector misses object classes, fails
to detect objects, or detects unnecessary objects. In contrast, in the denoised image using the proposed method, the detector

accurately recognizes the objects.

space discrepancy, namely the L; and L, norms, so that the
overall design space is given by all combinations of layer index
and norm.

To analyze the effect of these design choices on detection
performance, we conduct a systematic exploration for the
proposed GTCNN w/ VGG. We fix the noise level to o = 60
and, for each combination of the all candidate layers and
norms, train the GTCNN using the corresponding feature
loss. The denoised images produced by each trained model
are then fed into SSD, and the resulting mAP is reported
in Table IV. As shown in the table, the L, norm generally
achieves equal or better performance than the L; norm for
most layers, indicating that L, is preferable for the GTCNN
in this setting. In particular, the combination of layer 7 and
the L, norm attains the highest mAP of 70.16. Based on these
results, we adopt layer 7 with the L, norm as the default loss
configuration for the proposed method.

An interesting observation is that the layer that works best
for the GTCNN does not coincide with the layers most heavily
used by SSD itself. In SSD, intermediate feature maps from
layer 10 and layer 13 of VGG-16 are directly exploited for
detection. The feature map at layer 13 is fed into an extra fea-
ture extractor specific to SSD, which produces five additional
feature maps that are used to estimate object locations and
classes at multiple scales. From this architecture, one might
expect that using layer 10 or layer 13 as the supervision for

TABLE IV: Design choices for the proposed method. Noise
level o = 60.

mAP T
Norm layer2 layer4 layer7 layer 10 layer 13  layer 15
L 65.05 64.88 67.84 68.03 68.95 67.45
L 66.99 68.70 70.16 69.32 68.02 67.25

the denoiser would be the most appropriate choice. However,
Table IV shows that a shallower intermediate layer, layer 7,
yields the best performance for the GTCNN, suggesting that
using slightly earlier, mid-level features as a loss target can
be more suitable for a lightweight denoising front-end than
directly matching the task-critical layers of the detector.

We also perform a similar design-space exploration for the
U-Net-based denoiser with feature loss, U-Net w/ VGG, and
summarize the results in Table V. Under the same noise
level o = 60, we train U-Net w/ VGG for all combinations.
In this case, the combination of layer 10 and the L; norm
achieves the highest mAP. All U-Net w/ VGG baseline results
in the quantitative comparison are obtained using this best-
performing loss configuration.

V. CONCLUSION

We presented an efficient system design for noise-robust ob-
ject detection by combining an off-the-shelf SSD detector with



TABLE V: Design choices for the baseline method. Noise level
o = 60.

mAP T
Norm layer2 layer4 layer7 layer 10 layer 13  layer 15
L, 68.42 68.18 69.07 70.18 69.54 66.69
Ly 69.91 69.69 69.94 69.97 69.60 67.69

a lightweight GTCNN front-end trained using intermediate
feature supervision. Experiments on the PASCAL VOC 2007
dataset with additive Gaussian noise showed that our GTCNN
w/ VGG achieves almost the same mAP as parameter-heavy
baseline methods, while requiring only about a 3% increase
in parameters relative to the SSD backbone. Furthermore,
we quantitatively showed that performance is highly sensitive
to the design of the loss function, in particular to which
intermediate feature of VGG-16 is used and whether the L; or
L, norm is employed. Even small changes in the selected layer
can alter the detection accuracy, and the optimal combination
of layer and norm differs between GTCNN and U-Net.

We also found that, for GTCNN, the most effective super-
vision is obtained by using a higher-resolution, more image-
like intermediate feature map from layer 7 with the L, norm,
whereas for U-Net the best configuration is to use the layer 10
feature map, which SSD mainly relies on, together with the L
norm. The fact that the smaller GTCNN benefits more from
such “raw” mid-level features is somewhat counterintuitive;
one possible hypothesis is that, due to its limited capacity,
GTCNN learns more effectively when it is directly encouraged
to preserve local, low-to-mid-level structures that indirectly
sustain higher-level representations in the downstream detector.

As future work, in addition to a deeper analysis of the
behavior in feature space, we plan to measure latency and
throughput on actual edge-Al devices, extend the framework to
other detectors such as YOLO and Transformer-based models,
and investigate robustness under other degradation conditions
(e.g., low illumination and motion or defocus blur). Further
efficiency improvements, for example by incorporating depth-
wise separable convolutions [22] or knowledge distillation, are
also promising directions.
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