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Abstract—Many traffic collisions at urban intersections are
caused by human misperception and delayed judgment. V2X
(vehicle-to-everything) cooperative perception mitigates this lim-
itation by enabling vehicles equipped with cameras and roadside
units (RSUs) to share information about objects outside the
driver’s field of view. Practical deployment requires incentives for
data sharing and sensor fusion that reliably integrates uncertain
observations. Our focus is on fusion using Dempster’s rule of
combination from Dempster—Shafer evidence theory, which can
explicitly represent an unknown state and is therefore well suited
to occupancy grid maps with occlusions. However, conventional
fusion does not account for distance-dependent degradation and
may place too much trust in distant sensors. We propose a
distance-weighted combination rule on an occupancy grid map
and introduce a hybrid scheme to limit computational cost.
Numerical experiments in an urban intersection scenario suggest
reduced false alarms and missed detections, thereby improving
occupancy reliability without significantly increasing processing
time.

Index Terms—Sensor Fusion, Autonomous Driving Maps,
Dempster’s Rule of Combination

I. INTRODUCTION

Many traffic accidents are caused by “human factors” such
as misperception and delayed judgment. In particular, at ur-
ban intersections where pedestrians and vehicles interact in
complex ways, the limits of human perception and blind spots
created by buildings or large vehicles can cause hazardous
objects to suddenly appear from outside the driver’s field of
view, leading to serious collisions. To technically compensate
for such human errors and improve traffic safety at intersec-
tions, it is important to deploy V2X (Vehicle-to-Everything)
cooperative perception systems in which vehicles share infor-
mation with roadside units (RSUs) and other vehicles, thereby
providing environmental information that cannot be obtained
by a single vehicle alone [1]-[3].

The authors have previously proposed a Shapley-value-
based fair incentive mechanism to establish cooperative per-
ception as a sustainable social infrastructure [4]. In this frame-
work, diverse stakeholders are encouraged to continuously
provide data from cameras and LiDAR sensors, with the aim of
maintaining a high-density sensing network and improving Al
recognition accuracy over the long term. Building on that prior
work, this paper advances the cooperative-perception pipeline
by addressing the sensor-fusion layer—i.e., how the shared
multi-sensor data should be integrated into a reliable occu-
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Fig. 1: Distance-weighted Dempster-Shafer sensor fusion for
object detection at an intersection. This accounts for distance
uncertainty, resulting in a more accurate belief.

pancy grid map for safety-critical decision making. However,
for safety-critical applications, data collection alone is insuffi-
cient; the fusion stage must suppress both false positives and
false negatives when integrating observations from multiple
sensors. If incorrect fusion leads to the detection of an object
that does not actually exist, unnecessary alerts may induce
“alert fatigue” in drivers, whereas missing a truly dangerous
object may expose drivers, who trust the system, to collision
risk without sufficient time to react.

As methods for integrating uncertain information from
multiple sensors, approaches such as averaging, Bayesian
inference, and Kalman filtering have been widely used, to-
gether with Dempster’s rule of combination based on evidence
theory [5], [6]. Evidence theory has the advantage that, in
addition to “object present / object absent” for a grid cell, it
can explicitly represent an “ Unknown ” state, which allows
unobservable regions in an occupancy grid map to be modeled
in a natural way. However, the conventional Dempster’s Rule
of Combination does not explicitly account for the degradation
of detection accuracy caused by the distance between a sensor
and a target object, and noisy evidence from distant sensors is
fused with the same weight as evidence from nearby sensors.
As a result, false detections from distant sensors may produce
high confidence for objects that do not actually exist, while
the existence probability of truly dangerous objects may be



unnecessarily suppressed.

In this paper, we propose a sensor fusion method based
on a distance-weighted Dempster’s rule of combination, in
which the reliability of each sensor is weighted according to its
geometric distance to the target grid cell as shown in Fig. 1.
Moreover, we adopt a hybrid scheme in which the standard
Dempster’s rule of combination is used when the distance
difference among sensors is small, and the distance-weighted
rule is applied only when the distance difference is large, so
that the increase in computational cost is kept small while
reducing false positives and missed detections in distant grid.

The rest of the paper is organized as follows. Section II
reviews related work and Dempster’s rule. Section III presents
the system setup and proposed fusion method. Section IV
evaluates the baseline and proposed methods. Section V dis-
cusses the results in terms of intersection safety, and Section
VI concludes.

II. RELATED WORK AND PRELIMINARIES
A. Related work

In this section, we review related work on sensor fusion
methods. Sensor fusion refers to the process of integrating in-
formation from multiple sensors to reduce false detections [7],
[8]. A variety of fusion techniques have been proposed for
this purpose. These include conventional methods such as
simple averaging and least-squares estimation [9], as well as
more advanced approaches based on Kalman filtering [10],
[11], Bayesian theory [12], weighted averaging [13], [14],
neural networks [15], and Dempster’s rule of combination
from evidence theory [16].

However, conventional approaches like simple averaging [9]
often degrade detection accuracy when dealing with complex
sensor data. While straightforward, these methods may fail
to properly handle sensor uncertainties and inconsistencies.
Kalman-filter-based methods [10], [11], on the other hand,
require repeated execution of highly complex computations,
which results in significant implementation costs. Furthermore,
these methods are mainly used for self-localization tasks,
making them less suitable for the objectives of the present
study. Bayesian-theory-based approaches [12] can also present
challenges. For instance, if a grid cell is mistakenly judged
as occupied when no object actually exists, the occupancy
probability of that cell can become excessively high. Although
such errors may not directly compromise collision avoidance
safety, they can lead to traffic congestion and adversely affect
driving comfort.

In contrast, methods based on evidence theory offer a
notable advantage by explicitly incorporating the uncertainty
of “unknown object existence” within a grid cell. This allows
non-detection cases to be considered in the fusion process,
thereby improving overall detection accuracy [16].

In this paper, we adopt Dempster’s rule of combination from
evidence theory and further enhance it by incorporating the
distance between sensors and objects into the fusion process.
This extension aims to achieve even greater detection accuracy.

B. Dempster’s Rule of Combination

Dempster’s rule of combination provides a method for
combining two basic probability assignments m; and my to
obtain a new assignment m [5], [6]. The combination is given
by the following Eq. (1):
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Here, letting ® denote the set of all possible states, A, B, C are
subsets of ®, and m1(B), m,(C) represent the basic probability
masses assigned to subsets B and C by different information
sources. The numerator sums the products | (B)m;(C) over all
pairs satisfying BNC = A, and reflects the degree to which both
information sources jointly support hypothesis A. Meanwhile,
the denominator is 1 — k, where k is the total mass assigned to
mutually exclusive hypotheses and corresponds to the conflict
between the two belief functions. Through this normalization,
m(A) incorporates only the consistent evidence shared by the
two sources, while discarding conflicting evidence.

Camarda et al. proposed a cooperative perception framework
in which connected vehicles exchange evidential occupancy
grids that are then fused using standard Dempster’s rule,
with discounting applied to account for pose uncertainty and
information aging [17]. Ben Ayed et al. further surveyed
evidential fusion for cooperative occupancy modeling and
benchmarked various existing combination rules in simulation,
but did not investigate distance-aware weighting of Demp-
ster fusion [18]. While their method mainly addresses inter-
vehicle alignment uncertainty, our approach focuses on distance-
dependent sensing reliability and introduces distance-weighted
Dempster fusion to suppress the influence of unreliable far-range
observations.

III. PROPOSED METHOD
A. Assumed System

In this study, we assume a V2X-based cooperative perception
system in which multiple sensors deployed around an urban in-
tersection share environmental information with roadside units
(RSUs) and automated vehicles. Each sensor is either an on-
board sensor mounted on a vehicle, such as a camera or LiDAR,
or a roadside sensor installed on traffic signals or streetlights,
and observes the monitoring area around the intersection from its
known installation position. The monitoring area is discretized
as an occupancy grid map, and each grid cell stores a probability
vector over three states: Empty, Occupy, and Unknown.

For each grid cell within its sensing range, a sensor transmits
to the RSU a probability vector whose elements represent the
probability that no object is present (Empty), the probability
that an object is present (Occupy), and the uncertainty caused by
detection failure or occlusion (Unknown). The map-generation
module running on the RSU or on an edge server computes
the Euclidean distance d; between sensor i and each target grid
cell from the known sensor locations and grid coordinates, and



determines a reliability weight w; for each sensor based on this
distance.

When probability vectors from multiple sensors are available
for the same grid cell, they are fused into a single probability
vector using the proposed distance-weighted Dempster’s Rule
of Combination. The resulting occupancy grid map is then
disseminated via V2X communication to vehicles passing
through the intersection and is used to provide early warnings
about pedestrians or other vehicles that are hidden in the driver’s
blind spots.

B. Sensor Information Fusion Based on Distance-weighted
Dempster’s Rule of Combination

In the previous subsection, we described the V2X-based
cooperative perception system considered in this study and the
structure of the probability vectors assigned to each grid cell.
When the same grid cell is observed by multiple sensors, the
probability vectors obtained from each sensor must be fused
while reflecting the reliability of each sensor. In this subsection,
based on Dempster’s Rule of Combination introduced in
Section II-B, we formulate an extended combination rule that
incorporates weighting according to the distance between each
sensor and the target grid cell.

Following Dempster’s rule of combination, we combine two
probability vectors m; and m; using distance-based reliability
weights w; and w,. The weights are inversely proportional to
the distances d; and d, from sensor 1 and sensor 2 to the target
grid cell, and are normalized so that their sum is equal to one,
i.e., w; + wp = 1. They are defined as

1/d;
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We denote each probability vector m; (i € {1,2}) as
m; = (M e, Mi o, Miu),

where the elements correspond to Empty, Occupy, and Un-
known, respectively. For this vector, we define the ele-

ments of the distance-weighted probability vector m; =
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w;
’ mi,S

m; s = ’

23 mwi

it

te{e,o,u}

where s € {e,0,u}.
The degree of conflict (collision rate) k between the weighted
probability vectors is defined as

Y ’ ’ ’
k = ml,e m2,o + ml,o mZ,e'

This quantity represents the amount of conflict between the mu-
tually exclusive states “Empty” and “Occupy.” To compensate
for this conflict, we define the normalization coeflicient « as

Based on the distance-weighted Dempster—Shafer rule, the
fused probabilities for the Empty, Occupy, and Unknown states
are

~ ’ ’ ’ ’ ’ ’
Me = a'(ml,emZ,e + ml,emZ,u + m2,eml,u)’ (2)

_ ’ ’ ’ ’ ’ ’
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By applying the above distance-weighted Dempster’s rule of
combination, we obtain a new probability vector

m= (’/hea T, ”hu)~

In this way, the outputs of multiple sensors for each grid cell can
be fused into a single probability vector.

IV. EVALUATION EXPERIMENT
A. Setting parameters

In this section, we evaluate the proposed sensor fusion
method based on the distance-weighted Dempster’s rule of
combination (Proposed) from two perspectives: processing time
and accuracy. As comparison methods, we use the conventional
method (Conventional) and the baseline method (Baseline).

In this study, we use a square area with a side length of 500
m as the simulation domain. The area is discretized into 0.5 m
X 0.5 m grid cells (1000 x 1000).

First, we generate ground-truth data for all grid cells. Each
cell is assigned a value of O or 1, where a cell with value 0 is
treated as “no object present,” and a cell with value 1 is treated
as “object present.”

Next, we select the grid cells on which sensors are placed
from the 1,000,000 cells. Each sensor can detect the grid cells
within a circular area of radius 200,m, and the number of sensors
is set to 16. This is because four sensors can cover the entire
simulation area once, so with 16 sensors the entire area can
be observed at least four times, which is expected to provide
sufficient detection accuracy even for the conventional method.

Next, for each grid cell within the sensing range of a sensor,
we assign probabilities corresponding to the three states: Empty,
Occupy, and Unknown. These probabilities are determined with
reference to the ground-truth data, and are configured so that
the misdetection rate increases as the distance from the sensor
becomes larger. Note that this evaluation does not aim to
faithfully reproduce all real-world sensor errors; instead, we
employ a simplified noise assumption that models uncertainty
mainly as a function of the sensor—cell distance.

Here, let d; denote the distance between sensor i and a grid
cell, let the sensing radius of each sensor be R = 200 m, and let
v € {6,7,...,15} be a parameter that controls the increase
of misdetection with distance. If we denote by &(d;;y) the
probability that a grid cell which is truly empty is incorrectly
output as Occupy or Unknown, then in this simulation we model
it, for simplicity, as a linear function that increases in proportion
to the distance d;,

eldi;y) =g0+ ——.



Similarly, when the true state is Occupy, we assign the
misdetection probability toward Empty also by &(d;;y), so that
misdetections become more likely as the distance d; increases
and as the parameter y becomes larger. Here, gy represents
the baseline misdetection rate at distance d; = 0, and in this
simulationitis setto gy = 0.0625, corresponding to the Dirichlet
parameter (30, 1, 1). By varying this parameter, we can simulate
a wide range of sensing conditions, from situations where data
acquisition is easy (e.g., clear weather) to environments where
it is difficult due to heavy fog or rain.

For grid cells whose sensing regions overlap across multiple
sensors, the probability vectors obtained from each sensor
are fused into a single probability vector using the distance-
weighted Dempster’s rule of combination proposed in Sec-
tion III. Finally, a threshold is applied to the probability vector of
each grid cell; if the probability of one of the states exceeds the
threshold, that state is taken as the decision for the cell, and this
decision is compared with the ground-truth data for accuracy
evaluation.

B. Comparison Methods and Evaluation Conditions

In this subsection, we describe the methods used for com-
parison in this study and their evaluation conditions. The main
parameter settings for each method are summarized in Table I.
We consider three methods: the conventional method (Con-
ventional), the baseline method (Baseline), and the proposed
method (Proposed).

In the conventional method (Conventional), we assume 40
sensors representing on-vehicle LiDARs, and each sensor is
randomly placed within the simulation area. In the baseline
method (Baseline), the sensor fusion algorithm itself is the same
as in the conventional method, namely the standard Dempster’s
rule of combination, but the number of sensors is fixed to 16 and
their locations are also fixed. This ensures that all grid cells are
observed at least once, and that four sensor fusion operations
are performed for each grid cell.

In the proposed method (Proposed), the number and place-
ment of sensors are identical to those of Baseline, and only the
sensor fusion method is changed. Specifically, as formulated in
Section III, the distance-weighted Dempster’s rule of combina-
tion is used when the distance difference between sensors and
the target grid cell is large, whereas the standard Dempster’s
rule of combination, as in Baseline, is used when the distance
difference is small, resulting in a hybrid scheme.

Regarding the evaluation metrics, processing time is com-
pared among the three methods: Conventional, Baseline, and
Proposed. On the other hand, for accuracy evaluation, we
compare only Baseline and Prop, and exclude the Conventional
method. As described in the previous subsection, we prepare
ground-truth data for all grid cells by simulation, and define
the accuracy metric as the fraction of cells whose estimated
state matches the ground truth. In contrast, the Conventional
method assumes random sensor placement, and many grid cells
remain unobserved; therefore, it is not designed for an evaluation
scheme in which all grid cells are matched one-to-one with the
ground truth to compute the accuracy. For this reason, it is

difficult to apply the accuracy metric used in this paper fairly to
the Conventional method, and the accuracy plots focus on the
comparison between Baseline and Proposed.

C. Evaluation Metrics and Evaluation Strategy

In this subsection, we describe the evaluation metrics used in
this study and the comparison strategy. We employ two metrics:
processing time and accuracy.

For processing time, we define the processing time as the
elapsed time from when all 16 sensors start their detection
processing until probability vectors have been generated for all
grid cells.

For accuracy, we use the agreement between the probability
vectors stored in each grid cell and the previously generated
ground truth data as the metric. Each cell holds probability
values m = (m,, m,,my) corresponding to the three states,
Empty, Occupy, and Unknown, and we assume that these values
are stored in each cell. Among these three probabilities, let the
largest one be denoted by pmax and the sum of the remaining
two be denoted by potners-

When the following condition is satisfied, pmax — Pothers = 6,
the cell is judged to be in the state corresponding to pyax. Here,
6 is a threshold value, which is set to & = 0.8 in this study. The
resulting decisions are compared with the ground truth data for
each cell, and the ratio of the number of cells that match the
ground truth to the total number of cells is used as the accuracy.

As mentioned in the previous subsection, processing time is
compared among the three methods, Conventional, Baseline,
and proposed, whereas for accuracy we compare only Baseline
and proposed and exclude Conventional from the comparison.

D. Comparison Results of Processing Time

For the comparison of processing time, we used the three
methods, Conventional, Baseline, and proposed. Each method
was executed 30 times, and the average processing time is shown
in Table II.

From the measurement results, we observe that Conventional
has the largest processing time, while Baseline and proposed
are significantly faster. Comparing Baseline and proposed, the
difference is about 10 seconds, with Baseline being faster.

This difference is considered to be due to the computational
complexity of each method. As described in Section III, the
proposed method uses the distance weighted Dempster’s rule
of combination that takes into account the distance between
sensors and grid cells, whereas Baseline uses the standard
Dempster’s rule of combination. Therefore, the computational
cost per fusion operation is higher in the proposed method
than in Baseline. Although the difference for each individual
fusion operation is small, it is applied repeatedly to all grid
cells, which results in an overall processing time difference
of about 10 seconds. It should be noted that the processing
times reported here correspond to the total runtime of the offline
simulation and do not directly represent the end-to-end latency
of a real-time V2X system. In practical deployments, feasibility
should be evaluated in terms of per-update latency under a target
update rate, and the proposed method can be accelerated through
parallel processing across grid cells and sensors.



TABLE I: Parameter settings for comparison methods.

Ttem Conventional Baseline Proposed

Number of sensors 40 16 16

Sensor allocation Random Fixed Fixed

Number of detected grids ITrregular All cells in area All cells in area

Number of sensor-fusion per grid Irregular 4 4

Sensor fusion method Standard Dempster combination | Standard Dempster combination | Distance-weighted Dempster combination

TABLE II: Processing time.

Baseline
154.1

Conventional
271.2

Proposed
166.7

processing time [s]

TABLE III: Accuracy experiment: number of grids not exceed-
ing the threshold.

Method \y 6 8 10 12 14
Proposed 1,425 3,971 27,462 | 129,740 | 336,247
Baseline 4,728 | 59,862 | 252,652 | 536,355 | 710,003

E. Comparison Results of Accuracy

In the accuracy evaluation, we compare Baseline and the
proposed method based on the thresholding rule defined in the
previous subsection. First, Table III summarizes the number of
grid cells that did not exceed the threshold. The number of grids
that did not exceed the threshold in each column represents the
number of cells whose probability vector does not exceed the
threshold 6 in any component, i.e., cells for which a confident
decision could not be made. Therefore, smaller values can be
interpreted as higher accuracy. From the table, we observe that
for all values of the false-detection-rate parameter, the proposed
method yields far fewer below-threshold grid cells than Baseline
and thus achieves higher accuracy.

Fig. 2 shows the accuracy as a function of the distance-
dependent error growth coeflicient y. The vertical axis indicates
the proportion of grid cells whose estimated state matches
the ground truth, and the horizontal axis indicates the false-
detection-rate parameter. The figure shows that, under easy
sensing conditions (small horizontal-axis values), the difference
between the two methods is relatively small, whereas as the
conditions become more difficult, the agreement rate of Baseline
drops sharply while the proposed method maintains a high
agreement rate. Especially for larger parameter values, the
proposed method significantly outperforms Baseline, indicating
that the distance-aware hybrid combination rule is effective in
improving detection performance under adverse conditions.

Overall, Baseline has a slight advantage in terms of processing
time, whereas the proposed method shows a clear advantage in
terms of accuracy. Given the modest increase in processing time
(about 10 seconds) and the larger accuracy gains in challenging
environments, Proposed achieves higher accuracy than Baseline
with only a small additional runtime in our experiments.

V. DiscussioN

In this section, based on the results obtained in Section IV, we
discuss how the proposed method can contribute to improving
traffic safety at intersections, as outlined in Section I. We also

accuracy [%]

—e—Baseline

30 -=-Proposed

20
6 8 10 12 14
Distance-dependent error growth coefficient y

Fig. 2: Accuracy comparison of fusion methods: the standard
Dempster’s rule of combination is used as the baseline under a
shared occupancy-grid representation with an explicit Unknown
state, and is compared with its distance-weighted extension.

describe the limitations of this study and directions for future
work.

A. Implications for Traffic Safety at Intersections

In the V2X-based cooperative perception system considered
in this paper, multiple sensors and roadside units (RSUs) de-
ployed around an intersection cooperate to provide surrounding
environment information to vehicles via an occupancy grid map.
From the results in Section IV, it was shown that, compared with
the Baseline, Proposed can significantly reduce the number of
grid cells that do not exceed the confidence threshold, especially
for cells located far from the sensors. This means that the states
Occupy/Empty can be determined with higher confidence even
for pedestrians and vehicles located in poorly visible areas or
deep inside the intersection.

Many serious accidents at intersections are related to collision
risks arising from driver blind spots or delayed recognition,
such as collisions between right-turning vehicles and oncoming
through traffic, or between left-turning vehicles and crossing
pedestrians. If a more accurate occupancy grid map is obtained
by Proposed, the risk estimation modules in RSUs and vehicles
can detect and predict potentially dangerous objects inside the
intersection, even when they are outside the field of view of
human drivers or automated driving systems, at an earlier stage.
For example, when the Occupy probability of a specific grid
cell in the intersection (such as a crosswalk or the conflict area
with a right-turn lane) exceeds a certain threshold, prompting
deceleration or issuing a warning at that moment could reduce
collision risk in advance.



Furthermore, it was shown that Proposed maintains a higher
agreement rate than the Baseline even when sensing conditions
deteriorate. In situations with low visibility, such as dense fog,
heavy rain, or nighttime, ensuring safety using only on-board
vehicle sensors becomes difficult; however, by complementing
information from distant and occluded regions through distance-
weighted sensor fusion, Proposed is expected to help improve
safety at intersections under such adverse conditions.

B. Limitations and Future Work

On the other hand, this study has several limitations. First,
the evaluation in this paper is based on simulations of static
occupancy grid maps and does not explicitly model the motion
of vehicles and pedestrians (e.g., their speed or acceleration).
From the viewpoint of practical traffic-safety assessment, it
is necessary to combine not only occupancy states but also
dynamic metrics such as Time-To-Collision (TTC) [19] and
Post-Encroachment Time (PET) [20].

Second, in this study we simplified sensor characteristics
and modeled homogeneous sensors as having identical perfor-
mance. In real intersections, however, heterogeneous sensors
with different properties coexist, including in-vehicle cameras,
LiDAR, radar, and roadside cameras. To extend Prop to such
environments, we need a more general weighting design that
incorporates not only distance but also factors such as sensor
type, field of view, and detection latency.

Third, this study does not take into account the effects of
communication delay or packet loss. In V2X environments,
the communication quality between RSUs and vehicles directly
affects the freshness of the occupancy grid map, and therefore
an important direction for future work is to investigate real-
time implementations that balance the computational cost of
Proposed with communication latency.

VI. CoNCLUSION

We proposed a distance-weighted Dempster’s rule for V2X
cooperative perception at intersections, accounting for sensor-
to-cell distance. Compared with standard Dempster fusion, it
improved agreement with ground truth, especially for far cells
and degraded sensing, while only slightly increasing processing
time.

As future work, we plan to integrate the proposed method
with traffic flow simulators and real vehicle experiments, and
quantitatively evaluate how cooperative perception based on the
proposed fusion can reduce near miss events at intersections and
improve time to collision margins.
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