
Abstract— Coexistence of IEEE 802.11ah (Wi-Fi HaLow) and 

IEEE 802.15.4g (Wi-SUN) in the sub-GHz band leads to cross-

technology interference that degrades packet delivery rate (PDR) 

and fairness, especially under dense, duty-cycle-limited 

deployments. Existing coexistence recommendations mainly 

provide static parameter settings and do not enable dynamic, device-

level adaptation. To address this gap, we propose a machine-

learning-based framework that formulates the joint channel and 

packet-size selection at each end node (EN) as a multi-armed bandit 

(MAB) problem and optimizes per-device PDR in a mixed 920 MHz 

deployment. Using QualNet 9.0 models of coexisting IEEE 

802.11ah and IEEE 802.15.4g networks, we implement and compare 

three online learning policies—ε-greedy, UCB-1 tuned with 

exponential forgetting, and a congestion-aware continuous-value 

Tug-of-War (ToW)—with normalized PDR as the reward in 10-

minute learning rounds. Simulation results show that the proposed 

ToW policy converges faster than ε-greedy and UCB-1 tuned, 

maintains comparable or higher average PDR, and significantly 

improves the PDR of previously low-performing IEEE 802.15.4g 

nodes. These findings demonstrate that per-device MAB-based 

learning is an effective mechanism for dynamic coexistence 

management and provide design insights for applying MAB-based 

adaptation in heterogeneous LPWA deployments. 

Keywords—Low-Power-Wide-Area Networks, Massive IoT,  

Multi-Armed Bandit, Sub-GHz Coexistence.  

I.  INTRODUCTION  

Driven by the rapid proliferation of Internet-of-Things (IoT) 
devices, the number of connected endpoints reached 16.6 
billion by the end of 2023, of which Low-Power Wide-Area 
Network (LPWAN) links accounted for roughly 8% (≈1.3 
billion)[1]. By 2030, total IoT connections are projected to 
grow to about 40 billion, with the LPWA share rising to 
around 10% [1]. In parallel, the LPWA market is expected to 
expand from USD 6.5 billion in 2023 to USD 48.1 billion by 
2030 (2024–2030 CAGR ≈ 33.1%) [2]. This diffusion has led 
to the coexistence of multiple LPWA protocols such as Wi-
SUN (IEEE 802.15.4g), Wi-Fi HaLow (IEEE 802.11ah), 
LoRaWAN, Sigfox, NB-IoT, and LTE-M. Notably, LoRa, 
IEEE 802.11ah, and IEEE 802.15.4g commonly share sub-
GHz ISM bands (Japan: 920 MHz; EU: 868 MHz; North 
America: 915 MHz; parts of Asia: 433 MHz), forming a 
shared-spectrum ecosystem [3]. The growing protocol 
diversity and device density intensify channel contention and 

cross-technology interference, elevating the risk of degraded 
throughput, PDR, and latency.  

In sub-GHz coexistence between IEEE 802.11ah and IEEE 
802.15.4g, severe interference from 802.11ah to IEEE 
802.15.4g has been reported even within standardized 
coexistence mechanisms. In response, the IEEE 802.19.3 
working group has conducted extensive coexistence studies 
and published recommendations that specify suitable network 
profiles in terms of network size, offered load, frame size, and 
MAC backoff parameters for different deployment scenarios 
[5]. However, these network-profile-based recommendations 
are essentially static: once the load and size category of a 
deployment are chosen, the corresponding frame-size and 
backoff settings remain fixed and are not designed to track fast, 
device-level fluctuations of interference and traffic load.   

To address these limitations, we propose a per-device online 
learning algorithm that dynamically selects the uplink channel 
and packet size of each end node (EN) based on its locally 
observed PDR. The algorithm is formulated within a multi-
armed bandit (MAB) framework and aims to maximize the 
long-term PDR of each EN while alleviating the unfair impact 
of IEEE 802.11ah on IEEE 802.15.4g under coexistence. We 
implement and evaluate this approach in QualNet [6] by 
modeling a mixed deployment where IEEE 802.11ah and 
IEEE 802.15.4g share spectrum and compare several learning-
based decision policies. 

The remainder of this paper is organized as follows. Section 
II introduces the system model and formulates the per-device 
channel and packet-size optimization problem under IEEE 
802.11ah / IEEE 802.15.4g coexistence. Section III presents 
the proposed MAB-based learning policies and their 
implementation. Section IV describes the simulation setup and 
reports experimental results. Section V concludes the paper 
and outlines future research directions. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

A.  Network Topology and Traffic Model 

We consider a mixed sub-GHz deployment where IEEE 

802.11ah (Wi-Fi HaLow) and IEEE 802.15.4g (Wi-SUN) 

share the same 920 MHz band. End nodes (ENs) of both 

technologies periodically transmit uplink traffic to their 

associated access points (APs) using carrier-sense-based 
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channel access under duty-cycle-limited operation, which is 

representative of dense industrial IoT and utility-network 

deployments. Each EN selects a channel in the 920 MHz band 

and a packet size from a given set of candidates.  

In this coexistence setting, PHY/MAC-level asymmetries 

between IEEE 802.11ah and IEEE 802.15.4g inherently bias 

channel access. IEEE 802.11ah typically employs a higher 

energy-detect (ED) threshold than IEEE 802.15.4g, so an 

IEEE 802.15.4g frame that is decodable at an IEEE 802.15.4g 

receiver may still be invisible to IEEE 802.11ah ED-CCA; an 

802.11ah node can therefore start a new transmission and 

destroy the ongoing IEEE 802.15.4g frame. Moreover, 

although both standards use carrier sense with backoff, the 

effective backoff progression of 802.11ah is often faster, 

allowing 802.11ah to preempt the medium. In addition, IEEE 

802.15.4g usually operates at lower PHY rates than IEEE 

802.11ah, so each IEEE  802.15.4g frame occupies the 

channel for a longer time and increases contention under 

mixed traffic.   

As a result, IEEE 802.15.4g nodes tend to experience 

degraded PDR and unfair access compared with IEEE 

802.11ah nodes, especially under moderate-to-high duty 

cycles. This work aims to mitigate these coexistence 

problems by dynamically optimizing the channel and packet-

size selection at each EN under a fixed network-level duty-

cycle constraint. 

B.  Problem Formulation 

In the coexistence scenario described above, each EN must 

choose a channel–packet-size configuration for its uplink 

transmissions in the sub-GHz band. Under a fixed network-

level duty-cycle constraint, inappropriate joint configurations 

across ENs can severely degrade the PDR of IEEE 802.15.4g 

nodes and aggravate unfairness between the two technologies. 

Our goal is to design a distributed online adaptation 

mechanism that allows each EN to adjust its own 

configuration based only on locally observable performance. 

We assume an autonomously distributed network in which 

there is no central controller and each EN has no information 

about the existence, actions, or PDR of other ENs, including 

those belonging to the other technology. 

We model this per-device adaptation as a sequence of 

discrete decision epochs 𝑡 = 1,2, … , 𝑇. At the beginning of 

epoch t, EN j selects a configuration 𝑥𝑗(𝑡) = (𝑓𝑗(𝑡), 𝑠𝑗(𝑡)) 

from its finite action set 𝐴𝑗 , which collects all feasible 

channel–packet-size combinations for that EN. During epoch 

𝑡, EN 𝑗 uses 𝑥𝑗(𝑡) for its uplink transmissions. At the end of 

the epoch, EN 𝑗 measures its packet delivery rate PDR𝑗(𝑡) 

and defines a normalized reward 𝑟𝑗(𝑡) =
PDR𝑗(𝑡)

100
∈ [0,1] , 

which we use as the sole performance indicator. 

The design objective is to construct a distributed online 

adaptation rule for each EN that maps its own past 

observations {𝑥𝑗(𝜏), 𝑟𝑗(𝜏)}𝜏=1
𝑡 to the next configuration 

𝑥𝑗(𝑡 + 1), so as to maximize its long-term normalized PDR. 

Equivalently, each EN seeks to maximize the cumulative 

reward ∑ 𝑟𝑗(𝑡)
𝑇

𝑡=1
(or time-averaged reward 

1

𝑇
∑ 𝑟𝑗(𝑡)

𝑇

𝑡=1
 

while implicitly mitigating coexistence-induced unfairness 

between IEEE 802.11ah and IEEE 802.15.4g nodes. 

We model the above per-device adaptation problem within 

a multi-armed bandit framework, where each feasible 

configuration (channel, packet size) is treated as one arm and 

the normalized per-round PDR 𝑟𝑗(𝑡) is used as the reward. In 

Section III, we instantiate this formulation and compare ε-

greedy and UCB-1 tuned with forgetting, together with a 

continuous-value Tug-of-War (ToW) based policy tailored to 

the joint channel–packet-size selection problem under IEEE 

802.11ah / IEEE 802.15.4g coexistence. 

III. PROPOSED MAB-BASED LEARNING POLICIES 

A. Common Per-Device Bandit Framework 

In the per-device optimization problem of Section II, each 

EN chooses a configuration consisting of a channel and a 

packet size for its uplink transmissions. We discretize this 

configuration space into a finite set of candidate actions and 

treat each action as one arm in a bandit model. For each EN j, 

let 𝐾𝑗  denote the number of available arms, and index the 

arms by an integer k in {1, ..., 𝐾𝑗}. The mapping between an 

arm index k and the corresponding (channel, packet-size) pair 

is fixed for each EN and is shared across all learning policies. 

For each EN j, the learning policy maintains per-arm 

statistics that are updated once per learning round. At the end 

of round t, for every arm k, we store the cumulative reward 

𝐺𝑗,𝑘(𝑡), defined as the sum of all rewards obtained when arm 

k has been selected by EN j up to round t, and an effective 

pull count 𝑁𝑗,𝑘(𝑡). The empirical mean reward of arm k for 

EN j is then given by 

𝜇̂𝑗,𝑘(𝑡) = {

𝐺𝑗,𝑘(𝑡)

𝑁𝑗,𝑘(𝑡)
,   𝑁𝑗,𝑘(𝑡) > 0

0,        𝑁𝑗,𝑘(𝑡) = 0

                               

 

(1) 

At the beginning of each round 𝑡, EN 𝑗 selects its next arm 

𝑎𝑗(𝑡) by applying its policy to its own per-arm statistics. At 

the end of the round, EN 𝑗  observes the reward 𝑟𝑗(𝑡)  and 

updates the statistics of the selected arm. The three policies 

considered in this paper—ε-greedy, UCB-1 tuned with 

exponential forgetting, and continuous-value ToW—share 

this common structure and differ only in how they define the 

selection rule and, in the case of UCB-1 tuned and ToW, how 

they modify the statistics. 

B. ε-Greedy Policy 

 The ε-greedy policy balances exploitation of the currently 

best arm and exploration of other arms. When EN j selects 

arm 𝑎𝑗(𝑡)  and observes reward 𝑟𝑗(𝑡) , it updates the 

cumulative reward 𝐺𝑗,𝑎𝑗(𝑡) and the pull count 𝑁𝑗,𝑎𝑗(𝑡) of the 

selected arm as 

𝐺𝑗,𝑎𝑗(𝑡)(𝑡 + 1) = 𝐺𝑗,𝑎𝑗(𝑡)(𝑡) + 𝑟𝑗(𝑡) 

𝑁𝑗,𝑎𝑗(𝑡)(𝑡 + 1) = 𝑁𝑗,𝑎𝑗(𝑡)(𝑡) + 1 

(2) 

(3) 

and the empirical mean reward 𝜇̂𝑗,𝑘(𝑡) is computed as in (1). 

At the beginning of round 𝑡 + 1 , EN 𝑗  draws a uniform 

random number 𝑢 ∼ 𝒰(0,1) . With probability ε, EN 𝑗 



explores by choosing a random arm; otherwise, it exploits the 

arm with the largest empirical mean reward: 

𝑎𝑗(𝑡 + 1)

= {
random arm in{1, … , 𝐾𝑗},   with probability 𝜀

arg max k μ̂𝑗,𝑘(t),           with probability 1 − ϵ
 

 

(4) 

C. UCB-1 Tuned Policy 

UCB-1 tuned selects arms based on an optimism-in-the-

face-of-uncertainty index, with an exploration bonus that 

depends on an upper confidence bound of the variance. To 

cope with non-stationary interference conditions in the 

coexistence scenario, we incorporate exponential forgetting 

into both the cumulative rewards and the pull counts. 

Let 𝛼 ∈ (0,1] denote the forgetting factor. When EN 𝑗 
selects arm 𝑎𝑗(𝑡) and observes reward 𝑟𝑗(𝑡), we first apply 

forgetting to all arms: 

𝐺𝑗,𝑘(𝑡)(𝑡+) = 𝛼𝐺𝑗,𝑘(𝑡)(𝑡), 𝑁𝑗,𝑘(𝑡)(𝑡+) = 𝛼𝑁𝑗,𝑘(𝑡)(𝑡), ∀𝑘 (5) 

and then update the chosen arm as 

𝐺𝑗,𝑘(𝑡)(𝑡 + 1) = 𝐺𝑗,𝑘(𝑡)(𝑡+) + 𝑟𝑗(𝑡) 

𝑁𝑗,𝑘(𝑡)(𝑡 + 1) = 𝑁𝑗,𝑘(𝑡)(𝑡+) + 1   

(6) 

(7) 

The empirical mean reward is 

𝜇̂𝑗,𝑘(𝑡 + 1) =
𝐺𝑗,𝑘(𝑡 + 1)

𝑁𝑗,𝑘(𝑡 + 1)
 

 

(8) 

During the initial exploration phase, any arm with 

 𝑁𝑗,𝑘(𝑡 + 1) = 0  is prioritized and selected at least once. 

After all arms have been tried, we define the total effective 

number of pulls as 

𝑁𝑗
𝑡𝑜𝑡(𝑡 + 1) = ∑ 𝑁𝑗,𝑘(𝑡 + 1)     

𝐾𝑗

𝑘=1

 

 

(9) 

Following the UCB-1 tuned formulation, we approximate the 

variance proxy of arm 𝑘 as. 

𝜐𝑗,𝑘(𝑡 + 1) = (
𝐺𝑗,𝑘(𝑡 + 1)

𝑁𝑗,𝑘(𝑡 + 1)
)

2

− 𝜇̂𝑗,𝑘
2 (𝑡 + 1)

+ √
2𝑙𝑜𝑔𝑁𝑗

𝑡𝑜𝑡(𝑡 + 1)

𝑁𝑗,𝑘(𝑡 + 1)
 

 

 

(10) 

and define the exploration bonus as 

𝐵𝑗,𝑘(𝑡 + 1)

= √
𝑙𝑜𝑔𝑁𝑗

𝑡𝑜𝑡(𝑡 + 1)

𝑁𝑗,𝑘(𝑡 + 1)
∙ min{0.25, 𝜐𝑗,𝑘(𝑡 + 1)} 

 

 

(11) 

The UCB-1 tuned index is then 

𝐼𝑗,𝑘(𝑡 + 1) = 𝜇̂𝑗,𝑘(𝑡 + 1) + 𝐵𝑗,𝑘(𝑡 + 1) (12) 

and the next arm is chosen as  

𝑎𝑗(𝑡 + 1) = arg 𝑚𝑎𝑥
𝑘

 𝐼𝑗,𝑘(𝑡 + 1)   (13) 

D. Continuous Tug-of-War Policy 

 ToW dynamics were originally proposed by Kim as a bio-

inspired framework for distributed reinforcement learning [9]. 

Building on this concept, both the binary and real-valued 

reward versions of ToW [10, 11] were introduced, and it was 

demonstrated that these methods can achieve efficient 

channel selection with very low computational complexity 

[12]. Refs [13] and [14] extended this idea to distributed 

channel selection in massive IEEE 802.15.4g IoT networks 

by incorporating forgetting factors to cope with dense and 

time-varying interference. Urabe et al. [15] applied 

autonomous distributed reinforcement learning with ToW 

dynamics to spreading-factor selection in LoRa networks and 

confirmed that ToW-based policies can adapt SF to distance 

and SNR without centralized coordination. 

More recently, a continuous-value variant of ToW (CToW) 

was proposed to enable real-valued updates of arm 

preferences in dynamic radio environments, improving 

adaptability over conventional discrete-value ToW 

implementations. CToW enhances stability and reactivity by 

computing scores as a combination of cumulative reward and 

congestion-dependent penalties, and introduces Gaussian 

noise to promote exploration [16]. A formal regret or 

convergence analysis of the CToW-based policy is left as 

future work. 

Motivated by these studies, we design a continuous-value 

ToW policy tailored to our per-device bandit framework, 

where each arm corresponds to a joint choice of uplink 

channel and packet size in the mixed IEEE 802.11ah / IEEE 

802.15.4g deployment. For each EN j and arm k, we reuse the 

cumulative reward 𝐺𝑗,𝑘(𝑡) defined in Section III-A. 

When EN 𝑗 selects arm 𝑎𝑗(𝑡) and observes reward 𝑟𝑗(𝑡), the 

counters are updated as 

𝐺𝑗,𝑎𝑗(𝑡)(𝑡 + 1)   =  𝐺𝑗,𝑎𝑗(𝑡)(𝑡) + 𝑟𝑗(𝑡)  

𝑁𝑗,𝑎𝑗(𝑡)
(𝑡 + 1) =  𝑁𝑗,𝑎𝑗(𝑡)

(𝑡) +  1 

 

(14) 

(15) 

The empirical gain of each arm is 

𝑃𝑗,𝑘(𝑡 + 1) =  {

𝐺𝑗,𝑘(𝑡 + 1)

𝑁𝑗,𝑘(𝑡 + 1)
,  𝑁𝑗,𝑘(𝑡 + 1) >  0

0,  𝑁𝑗,𝑘(𝑡 + 1) =  0.

          

 

(16) 

Let 𝑃𝑗,(1)(𝑡 + 1)  and 𝑃𝑗,(2)(𝑡 + 1) denote the largest and 

second-largest elements of {𝑃𝑗,𝑘(𝑡 + 1)}𝑘 , respectively. We 

define 

𝐼𝑗,𝑘(𝑡 + 1) = 𝜇̂𝑗,𝑘(𝑡 + 1) + 𝐵𝑗,𝑘(𝑡 + 1) (17) 

which acts as a congestion coefficient. The base ToW score 

of arm 𝑘 is 

𝑞𝑗,𝑘(𝑡 + 1) =  𝐺𝑗,𝑘(𝑡 + 1) −  
𝛾𝑗(𝑡 + 1)

2
𝑁𝑗,𝑘(𝑡 + 1) 

 

(18) 

The first term accumulates gains, whereas the second term 

penalizes heavily used arms with a coefficient proportional to 

the combined expected gains of the two currently most 

promising arms. To enhance comparability across arms, we 

mean-center the scores and add Gaussian exploration noise: 

𝑋𝑗,𝑘(𝑡 + 1) = ( 𝑞𝑗,𝑘(𝑡 + 1) −  𝑞
𝑗
(𝑡 + 1))

+  𝜎𝜉𝑗,𝑘(𝑡 + 1) 

 

(19) 

where 𝑞̄𝑗(𝑡 + 1)  is the average of {𝑞𝑗,𝑘(𝑡 + 1)}𝑘 , 𝜉𝑗,𝑘(𝑡 +

1) ∼ 𝒩(0,1), and 𝜎 is the exploration-noise amplitude. The 

next arm is chosen as  

𝑎𝑗(𝑡+1) = arg max
𝑘

𝑋𝑗,𝑘 (𝑡 + 1)    (20) 



IV. EXPERIMENTS AND RESULTS 

A. Simulation and Learning Setup 

We use the QualNet 9.0 network simulator[6] and 

implement PHY/MAC models that emulate IEEE 802.11ah 

and IEEE 802.15.4g according to the parameters in Table I. 

A single access point (AP) is placed within 10 m of the center 

of the simulation area. For each technology, 15 ENs are 

randomly and uniformly distributed in an annulus with inner 

radius 100 m and outer radius 500 m around the AP, as 

illustrated in Fig. 1. 

For each experiment, the overall duty cycle of each network 

is fixed to 10% and applied uniformly to all ENs of that 

technology by setting the offered load per EN such that their 

aggregate duty cycle equals 10%. One learning round 

corresponds to a 10-minute simulation interval in QualNet. 

At the end of each round 𝑡, each EN 𝑗 measures its PDR and 

converts it into the normalized reward 

𝑟𝑗(𝑡) =
PDR𝑗(𝑡)

100
∈ [0,1]                   (21) 

which we use as the sole performance indicator. Unless 

otherwise noted, each learning policy is trained for 𝑇 = 1000 

rounds. This single-AP, 10%-duty-cycle configuration 

already yields severe coexistence-induced degradation for 

IEEE 802.15.4g nodes, and is therefore used as a baseline to 

isolate the impact of the learning policies; extensions to other 

duty cycles, traffic loads, node densities, and multi-AP 

topologies are left for future work. 

The action spaces follow this configuration. Each IEEE 

802.11ah EN has 30 arms corresponding to five payload sizes 

{200, 400, 600, 800, 1000} bytes combined with six 1 MHz 

channels in the 920 MHz band. Each IEEE 802.15.4g EN has 

70 arms obtained from the same five payload sizes and 14 

channels in the 920 MHz band. 

For the UCB-1 tuned policy, we introduce an initial 

exploration phase: before applying the UCB-1 tuned selection 

rule, each arm of each EN is forced to be selected exactly five 

times so that all arms start with the same number of 

observations. After this phase, the policy switches to the 

UCB-1 tuned rule described in Section III-C. The 

hyperparameters of the three learning policies are fixed as 

follows. For the ε-greedy policy, ε is set to 0.2. For UCB-1 

tuned, we use a forgetting factor 𝛼 = 0.99 together with the 

above exploration scheme. For the ToW policy, the 

exploration-noise amplitude 𝜎 is set to 0.001, which we 

empirically found to balance exploitation and exploration. 

Table I  Simulation Parameters 

Protocol 802.11ah 802.15.4g 

Frequency Bandwidth 1 MHz 281 kHz 

Throughput 300 kbps 100 kbps 

Tx Power 13 dBm 13 dBm 

Rx Threshold -95 dBm -93 dBm 

 

B.  PDR Learning Curves and Convergence Speed 

Figs. 2 and 3 show the evolution of the average per-EN PDR 

for the three policies under the 10% network duty-cycle 

scenario. PDR curves are smoothed using a moving average 

with a window of 20 rounds. In each figure, the solid lines 

show the smoothed PDR, while the faint dotted lines in the 

background indicate the instantaneous per-round PDR 

without smoothing. All reported mean values are computed 

from the unsmoothed samples.  For IEEE 802.11ah (Fig. 2), 

the proposed ToW policy rapidly converges to almost 100% 

PDR within the first several tens of rounds and then remains 

essentially flat. UCB-1 tuned also approaches a PDR close to 

100% in the long run, but its trajectory contains several 

pronounced drops in the middle rounds due to aggressive 

exploration. In contrast, ε-greedy only gradually improves 

from about 60% to the low-80% range and never reaches the 

high PDR region achieved by ToW and UCB-1 tuned. 

For IEEE 802.15.4g (Fig. 3), ToW again converges quickly 

and stably, attaining a PDR close to 100%. ε-greedy 

converges much more slowly and saturates around 80% PDR. 

UCB-1 tuned suffers from an extended period of very low 

PDR in the middle of learning before recovering to around 

90%. Consequently, its final PDR for IEEE 802.15.4g 

remains clearly lower than that of ToW, indicating that the 

proposed policy provides the best overall reliability, 

especially for the more vulnerable IEEE 802.15.4g ENs. 

 

 

Fig.1: Node Placement 

 

Fig.2: PDR learning curves for 802.11ah  



 

C. Channel and Packet-Size Selection Patterns 

Figs. 4–7 show heatmaps of channel and packet-size choices 

over the learning rounds. In each figure, the horizontal axis is 

the round index 𝑡 = 1, … ,1000, and the vertical axis has 15 

rows, each corresponding to one EN of the considered 

technology (IEEE 802.11ah in Figs. 4 and 5, IEEE 802.15.4g 

in Figs. 6 and 7). The three panels from top to bottom 

represent 𝜀-greedy (EPS), UCB-1 tuned, and the proposed 

ToW policy. In the channel-selection figures (Figs. 4 and 6), 

the color denotes the selected center frequency (MHz), 

whereas in the packet-size figures (Figs. 5 and 7) it denotes 

the selected payload size (bytes). 

With 𝜀 -greedy, the heatmaps remain highly mixed, 

indicating that both technologies keep switching among many 

channels and packet sizes and do not clearly converge. UCB-

1 tuned produces horizontal stripes in the channel plots, 

showing that most ENs eventually settle on quasi-fixed 

channels, but the packet-size patterns remain scattered. In 

contrast, the proposed ToW policy yields stable horizontal 

bands in both channel and packet-size figures, meaning that 

ENs converge to consistent channel–packet-size 

configurations, which matches the PDR and fairness 

improvements in Figs. 2 and 3. 

D. Per-Node Fairness and Spatial PDR Distribution 

Figs. 8-10 show the spatial distribution of the average PDR 

per transmitter over the last 200 learning rounds at a 10% 

network duty cycle for ε-greedy, UCB-1 tuned, and ToW, 

respectively. Circles denote IEEE 802.11ah ENs and triangles 

denote IEEE 802.15.4g ENs, and the color indicates the 

average PDR.  With ε-greedy (Fig. 8), most ENs achieve only 

moderate PDR values of about 70–85%, and there is 

noticeable variation among nodes. Several IEEE 802.15.4g 

ENs located near the outer ring exhibit lower PDR than the 

others.  Under UCB-1 tuned (Fig. 9), many ENs reach high 

PDR values around 90–95%. However, one IEEE 802.15.4g 

EN suffers from almost zero PDR, which leads to severe 

unfairness despite the high network average.  With the 

proposed ToW policy (Fig. 10), all ENs achieve uniformly 

high PDR, typically above 95%, and the difference between 

the best and worst nodes becomes very small. In particular, 

the IEEE 802.15.4g ENs that had low or even zero PDR under 

the baseline policies now attain PDR close to those of the 

IEEE 802.11ah ENs. This demonstrates that the proposed 

ToW dynamics not only improve the overall reliability but 

also enhance per-node fairness in the mixed IEEE 802.11ah / 

IEEE 802.15.4g deployment. In ToW, the volume-

conservation term effectively penalizes arms that are heavily 

used across the network, so each EN is gradually pushed 

away from congested channels and packet sizes. As a result, 

the per-EN PDR values concentrate at similarly high levels 

(Fig. 10), whereas under ε-greedy and UCB-1 tuned a subset 

of nodes remains trapped in persistently low-PDR 

configurations (Figs. 8 and 9).  

 

 

Fig.3: PDR learning curves for 802.15.4g  

 

Fig.4: Channel selection patterns of IEEE 802.11ah ENs 

 

Fig.5: Packet-size selection patterns of IEEE 802.11ah ENs 

 

Fig.6: Channel selection patterns of IEEE 802.15.4g ENs 

 

Fig.7: Packet-size selection patterns of IEEE 802.15.4g ENs 



 

 

  

V. CONCLUSION 

In this paper, we formulated per-device channel and packet-

size selection as an online learning problem and compared 

three MAB-based policies, including a proposed continuous 

ToW scheme tailored to IEEE 802.11ah / IEEE 802.15.4g 

coexistence in the sub-GHz band. Using a QualNet-based 

model of a single-AP topology at a 10% network duty cycle, 

the proposed ToW policy achieved the highest PDR for both 

technologies. For IEEE 802.11ah ENs, ToW and UCB-1 

tuned eventually converged to PDR values close to 100%, 

while ε-greedy saturated at a lower level. For IEEE 802.15.4g 

ENs, ToW clearly outperformed the baselines, reaching near-

100% PDR where ε-greedy and UCB-1 tuned remained 

significantly lower. The spatial analysis further showed that 

ToW improved per-node fairness, eliminating the severely 

degraded IEEE 802.15.4g nodes observed under the baseline 

policies. 

Future work includes evaluating the proposed learning 

framework under more dynamic environments, such as time-

varying traffic loads, interference patterns, and topology 

changes; assessing its performance under different node 

densities and spatial configurations; and generalizing the 

learning-based parameter adaptation to other sub-GHz 

coexistence scenarios involving protocols such as LoRa and 

ZigBee. 
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Fig.8: Average PDR by Transmitter and Node Layout (ε-greedy) 

 

Fig.9: Average PDR by Transmitter and Node Layout (UCB-1 tuned) 

 

Fig.10: Average PDR by Transmitter and Node Layout (ToW) 


