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Abstract— Coexistence of IEEE 802.11ah (Wi-Fi HaLow) and
IEEE 802.15.4g (Wi-SUN) in the sub-GHz band leads to cross-
technology interference that degrades packet delivery rate (PDR)
and fairness, especially under dense, duty-cycle-limited
deployments. Existing coexistence recommendations mainly
provide static parameter settings and do not enable dynamic, device-
level adaptation. To address this gap, we propose a machine-
learning-based framework that formulates the joint channel and
packet-size selection at each end node (EN) as a multi-armed bandit
(MAB) problem and optimizes per-device PDR in a mixed 920 MHz
deployment. Using QualNet 9.0 models of coexisting IEEE
802.11ah and IEEE 802.15.4g networks, we implement and compare
three online learning policies—e-greedy, UCB-1 tuned with
exponential forgetting, and a congestion-aware continuous-value
Tug-of-War (ToW)—with normalized PDR as the reward in 10-
minute learning rounds. Simulation results show that the proposed
ToW policy converges faster than e-greedy and UCB-1 tuned,
maintains comparable or higher average PDR, and significantly
improves the PDR of previously low-performing IEEE 802.15.4g
nodes. These findings demonstrate that per-device MAB-based
learning is an effective mechanism for dynamic coexistence
management and provide design insights for applying MAB-based
adaptation in heterogeneous LPWA deployments.

Keywords—Low-Power-Wide-Area Networks, Massive IoT,
Multi-Armed Bandit, Sub-GH7z Coexistence.

I. INTRODUCTION

Driven by the rapid proliferation of Internet-of-Things (IoT)
devices, the number of connected endpoints reached 16.6
billion by the end of 2023, of which Low-Power Wide-Area
Network (LPWAN) links accounted for roughly 8% (=1.3
billion)[1]. By 2030, total IoT connections are projected to
grow to about 40 billion, with the LPWA share rising to
around 10% [1]. In parallel, the LPWA market is expected to
expand from USD 6.5 billion in 2023 to USD 48.1 billion by
2030 (2024-2030 CAGR = 33.1%) [2]. This diffusion has led
to the coexistence of multiple LPWA protocols such as Wi-
SUN (IEEE 802.15.4g), Wi-Fi HaLow (IEEE 802.11ah),
LoRaWAN, Sigfox, NB-IoT, and LTE-M. Notably, LoRa,
IEEE 802.11ah, and IEEE 802.15.4g commonly share sub-
GHz ISM bands (Japan: 920 MHz; EU: 868 MHz; North
America: 915 MHz; parts of Asia: 433 MHz), forming a
shared-spectrum ecosystem [3]. The growing protocol
diversity and device density intensify channel contention and

cross-technology interference, elevating the risk of degraded
throughput, PDR, and latency.

In sub-GHz coexistence between IEEE 802.11ah and IEEE
802.15.4g, severe interference from 802.11ah to IEEE
802.15.4g has been reported even within standardized
coexistence mechanisms. In response, the IEEE 802.19.3
working group has conducted extensive coexistence studies
and published recommendations that specify suitable network
profiles in terms of network size, offered load, frame size, and
MAC backoff parameters for different deployment scenarios
[5]. However, these network-profile-based recommendations
are essentially static: once the load and size category of a
deployment are chosen, the corresponding frame-size and
backoff settings remain fixed and are not designed to track fast,
device-level fluctuations of interference and traffic load.

To address these limitations, we propose a per-device online
learning algorithm that dynamically selects the uplink channel
and packet size of each end node (EN) based on its locally
observed PDR. The algorithm is formulated within a multi-
armed bandit (MAB) framework and aims to maximize the
long-term PDR of each EN while alleviating the unfair impact
of IEEE 802.11ah on IEEE 802.15.4g under coexistence. We
implement and evaluate this approach in QualNet [6] by
modeling a mixed deployment where IEEE 802.11ah and
IEEE 802.15.4g share spectrum and compare several learning-
based decision policies.

The remainder of this paper is organized as follows. Section
II introduces the system model and formulates the per-device
channel and packet-size optimization problem under IEEE
802.11ah / IEEE 802.15.4g coexistence. Section III presents
the proposed MAB-based learning policies and their
implementation. Section IV describes the simulation setup and
reports experimental results. Section V concludes the paper
and outlines future research directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Topology and Traffic Model

We consider a mixed sub-GHz deployment where IEEE
802.11ah (Wi-Fi HaLow) and IEEE 802.15.4g (Wi-SUN)
share the same 920 MHz band. End nodes (ENs) of both
technologies periodically transmit uplink traffic to their
associated access points (APs) using carrier-sense-based



channel access under duty-cycle-limited operation, which is
representative of dense industrial IoT and utility-network
deployments. Each EN selects a channel in the 920 MHz band
and a packet size from a given set of candidates.

In this coexistence setting, PHY/MAC-level asymmetries
between IEEE 802.11ah and IEEE 802.15.4g inherently bias
channel access. IEEE 802.11ah typically employs a higher
energy-detect (ED) threshold than IEEE 802.15.4g, so an
IEEE 802.15.4g frame that is decodable at an IEEE 802.15.4g
receiver may still be invisible to IEEE 802.11ah ED-CCA; an
802.11ah node can therefore start a new transmission and
destroy the ongoing IEEE 802.15.4g frame. Moreover,
although both standards use carrier sense with backoff, the
effective backoff progression of 802.11ah is often faster,
allowing 802.11ah to preempt the medium. In addition, IEEE
802.15.4g usually operates at lower PHY rates than IEEE
802.11ah, so each IEEE 802.15.4g frame occupies the
channel for a longer time and increases contention under
mixed traffic.

As a result, IEEE 802.15.4g nodes tend to experience

degraded PDR and unfair access compared with IEEE
802.11ah nodes, especially under moderate-to-high duty
cycles. This work aims to mitigate these coexistence
problems by dynamically optimizing the channel and packet-
size selection at each EN under a fixed network-level duty-
cycle constraint.

B. Problem Formulation

In the coexistence scenario described above, each EN must
choose a channel-packet-size configuration for its uplink
transmissions in the sub-GHz band. Under a fixed network-
level duty-cycle constraint, inappropriate joint configurations
across ENs can severely degrade the PDR of IEEE 802.15.4g

nodes and aggravate unfairness between the two technologies.

Our goal is to design a distributed online adaptation
mechanism that allows each EN to adjust its own
configuration based only on locally observable performance.
We assume an autonomously distributed network in which
there is no central controller and each EN has no information
about the existence, actions, or PDR of other ENs, including
those belonging to the other technology.

We model this per-device adaptation as a sequence of
discrete decision epochs t = 1,2,...,T. At the beginning of
epoch t, EN j selects a configuration x;(t) = (f;(t), s;(t))
from its finite action set A;, which collects all feasible
channel—packet-size combinations for that EN. During epoch
t, EN j uses x;(t) for its uplink transmissions. At the end of
the epoch, EN j measures its packet delivery rate PDR;(t)

PDR;(t) € [04].
100

which we use as the sole performance indicator.

and defines a normalized reward 7;(t) =

The design objective is to construct a distributed online
adaptation rule for each EN that maps its own past
observations {x; (T),r]-(r)}i:l to the next configuration
x;j(t + 1), so as to maximize its long-term normalized PDR.
Equivalently, each EN seeks to maximize the cumulative

T . 1 «T
reward th ,1i(8) (or time-averaged reward p th 1 ()

while implicitly mitigating coexistence-induced unfairness
between IEEE 802.11ah and IEEE 802.15.4g nodes.

We model the above per-device adaptation problem within
a multi-armed bandit framework, where each feasible
configuration (channel, packet size) is treated as one arm and
the normalized per-round PDR 7;(t) is used as the reward. In
Section III, we instantiate this formulation and compare &-
greedy and UCB-1 tuned with forgetting, together with a
continuous-value Tug-of-War (ToW) based policy tailored to
the joint channel-packet-size selection problem under IEEE
802.11ah / IEEE 802.15.4g coexistence.

III. PROPOSED MAB-BASED LEARNING POLICIES
A. Common Per-Device Bandit Framework

In the per-device optimization problem of Section II, each
EN chooses a configuration consisting of a channel and a
packet size for its uplink transmissions. We discretize this
configuration space into a finite set of candidate actions and
treat each action as one arm in a bandit model. For each EN j,
let K; denote the number of available arms, and index the
arms by an integer k in {1, ..., K;}. The mapping between an
arm index k and the corresponding (channel, packet-size) pair
is fixed for each EN and is shared across all learning policies.

For each EN j, the learning policy maintains per-arm
statistics that are updated once per learning round. At the end
of round t, for every arm k, we store the cumulative reward
Gj(t), defined as the sum of all rewards obtained when arm
k has been selected by EN j up to round t, and an effective
pull count N; ;(t). The empirical mean reward of arm k for
EN j is then given by

Gjk(t)
TION .
Aje(@®) =N (@) N () > .
0, Njx(®)=0

At the beginning of each round ¢, EN j selects its next arm
a;(t) by applying its policy to its own per-arm statistics. At
the end of the round, EN j observes the reward 7j(t) and
updates the statistics of the selected arm. The three policies
considered in this paper—e-greedy, UCB-1 tuned with
exponential forgetting, and continuous-value ToW—share
this common structure and differ only in how they define the
selection rule and, in the case of UCB-1 tuned and ToW, how
they modify the statistics.

B. &-Greedy Policy

The e-greedy policy balances exploitation of the currently
best arm and exploration of other arms. When EN ; selects
arm a;(t) and observes reward 7;(t) , it updates the
cumulative reward Gj,aj(t) and the pull count Nj,a].(t) of the

selected arm as
Gia;i)(E +1) = G () +13(0) ()
Nia;e)(t +1) = Njg,;6r(8) +1 3)
and the empirical mean reward i, (t) is computed as in (1).

At the beginning of round t + 1, EN j draws a uniform
random number u ~ U(0,1) . With probability &, EN j



explores by choosing a random arm; otherwise, it exploits the
arm with the largest empirical mean reward:

_ [random arm in{l, e K]}, with probability € (4)
~ |argmax fij (0, with probability 1 — €

C. UCB-1 Tuned Policy

UCB-1 tuned selects arms based on an optimism-in-the-
face-of-uncertainty index, with an exploration bonus that
depends on an upper confidence bound of the variance. To
cope with non-stationary interference conditions in the
coexistence scenario, we incorporate exponential forgetting
into both the cumulative rewards and the pull counts.
Let a € (0,1] denote the forgetting factor. When EN j
selects arm a;(t) and observes reward 7j(t), we first apply
forgetting to all arms:

Girwy(th) = aGjpy(©), Ny (t*) = aN; (), Yk (5)

and then update the chosen arm as

Girpy(t+1) = Gy +1;(0) (6)
Nigwy(t+ 1) = N (t*) + 1 (7
The empirical mean reward is
G (t+1)
1 (t+1) =22

During the initial exploration phase, any arm with
N;,(t +1) =0 is prioritized and selected at least once.
After all arms have been tried, we define the total effective
number of pulls as

Kj

]V]_tot(t + 1) — z Ivj,k(t + 1) (9)
k=1

Following the UCB-1 tuned formulation, we approximate the
variance proxy of arm k as.

G o(t + D)

j.k A2
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2logNf° (t + 1)
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and define the exploration bonus as

Uj,k(t + 1) = (
(10)

logN{°t(t + 1)
RN D 025w+ ) (D
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The UCB-1 tuned index is then
and the next arm is chosen as
ai(t+1) = arg max Li(t+1) (13)

D. Continuous Tug-of-War Policy
ToW dynamics were originally proposed by Kim as a bio-

inspired framework for distributed reinforcement learning [9].

Building on this concept, both the binary and real-valued
reward versions of ToW [10, 11] were introduced, and it was
demonstrated that these methods can achieve -efficient

channel selection with very low computational complexity
[12]. Refs [13] and [14] extended this idea to distributed
channel selection in massive IEEE 802.15.4g IoT networks
by incorporating forgetting factors to cope with dense and
time-varying interference. Urabe et al. [15] applied
autonomous distributed reinforcement learning with ToW
dynamics to spreading-factor selection in LoRa networks and
confirmed that ToW-based policies can adapt SF to distance
and SNR without centralized coordination.

More recently, a continuous-value variant of ToW (CToW)
was proposed to enable real-valued updates of arm
preferences in dynamic radio environments, improving
adaptability over conventional discrete-value ToW
implementations. CToW enhances stability and reactivity by
computing scores as a combination of cumulative reward and
congestion-dependent penalties, and introduces Gaussian
noise to promote exploration [16]. A formal regret or
convergence analysis of the CToW-based policy is left as
future work.

Motivated by these studies, we design a continuous-value
ToW policy tailored to our per-device bandit framework,
where each arm corresponds to a joint choice of uplink
channel and packet size in the mixed IEEE 802.11ah / IEEE
802.15.4g deployment. For each EN j and arm &, we reuse the
cumulative reward G;j  (t) defined in Section I1I-A.

When EN j selects arm a;(t) and observes reward 7;(t), the
counters are updated as

Gyt +1) = Gia() + 7y

(14)
Nj‘aj(t)(t +1)= Nj,aj(t)(t) +1 (15)
The empirical gain of each arm is
Gip(t+1)

N (E+1)> 0
Pi(t+1) = {Ny(t+1) "7k (16)

0, N],k(t + 1) = 0
Let P;(1y(t + 1) and P;5)(t + 1) denote the largest and

second-largest elements of {P; ;(t + 1)}, respectively. We
define

which acts as a congestion coefficient. The base ToW score
of arm k is

Yt +1)
gt +1) = Gjp(t+1)— ’#

The first term accumulates gains, whereas the second term
penalizes heavily used arms with a coefficient proportional to
the combined expected gains of the two currently most
promising arms. To enhance comparability across arms, we
mean-center the scores and add Gaussian exploration noise:

Yu+ D= (que+D-q,e+D)
+ O-Ej,k(t + 1)

where q;(t + 1) is the average of {q;,(t + 1)}, & (t +
1) ~ N (0,1), and o is the exploration-noise amplitude. The
next arm is chosen as

Nt +1)  (18)

Aj(e+1) = argmax Xjk (t+1) (20)



IV. EXPERIMENTS AND RESULTS

A. Simulation and Learning Setup

We use the QualNet 9.0 network simulator[6] and
implement PHY/MAC models that emulate IEEE 802.11ah
and IEEE 802.15.4g according to the parameters in Table 1.
A single access point (AP) is placed within 10 m of the center
of the simulation area. For each technology, 15 ENs are
randomly and uniformly distributed in an annulus with inner
radius 100 m and outer radius 500 m around the AP, as
illustrated in Fig. 1.

For each experiment, the overall duty cycle of each network
is fixed to 10% and applied uniformly to all ENs of that
technology by setting the offered load per EN such that their
aggregate duty cycle equals 10%. One learning round
corresponds to a 10-minute simulation interval in QualNet.
At the end of each round ¢, each EN j measures its PDR and
converts it into the normalized reward

PDR;(t)

T](t) = W € [0,1] (21)

which we use as the sole performance indicator. Unless
otherwise noted, each learning policy is trained for T = 1000
rounds. This single-AP, 10%-duty-cycle configuration
already yields severe coexistence-induced degradation for
IEEE 802.15.4g nodes, and is therefore used as a baseline to
isolate the impact of the learning policies; extensions to other
duty cycles, traffic loads, node densities, and multi-AP
topologies are left for future work.

The action spaces follow this configuration. Each IEEE
802.11ah EN has 30 arms corresponding to five payload sizes
{200, 400, 600, 800, 1000} bytes combined with six 1 MHz
channels in the 920 MHz band. Each IEEE 802.15.4g EN has
70 arms obtained from the same five payload sizes and 14
channels in the 920 MHz band.

For the UCB-1 tuned policy, we introduce an initial
exploration phase: before applying the UCB-1 tuned selection
rule, each arm of each EN is forced to be selected exactly five
times so that all arms start with the same number of
observations. After this phase, the policy switches to the
UCB-1 tuned rule described in Section III-C. The
hyperparameters of the three learning policies are fixed as
follows. For the e-greedy policy, ¢ is set to 0.2. For UCB-1
tuned, we use a forgetting factor @ = 0.99 together with the
above exploration scheme. For the ToW policy, the
exploration-noise amplitude ois set to 0.001, which we
empirically found to balance exploitation and exploration.

Table I Simulation Parameters

Protocol 802.11ah 802.15.4¢g
Frequency Bandwidth 1 MHz 281 kHz
Throughput 300 kbps 100 kbps

Tx Power 13 dBm 13 dBm

Rx Threshold -95 dBm -93 dBm
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Fig.1: Node Placement

B.  PDR Learning Curves and Convergence Speed

Figs. 2 and 3 show the evolution of the average per-EN PDR
for the three policies under the 10% network duty-cycle
scenario. PDR curves are smoothed using a moving average
with a window of 20 rounds. In each figure, the solid lines
show the smoothed PDR, while the faint dotted lines in the
background indicate the instantaneous per-round PDR
without smoothing. All reported mean values are computed
from the unsmoothed samples. For IEEE 802.11ah (Fig. 2),
the proposed ToW policy rapidly converges to almost 100%
PDR within the first several tens of rounds and then remains
essentially flat. UCB-1 tuned also approaches a PDR close to
100% in the long run, but its trajectory contains several
pronounced drops in the middle rounds due to aggressive
exploration. In contrast, ¢-greedy only gradually improves
from about 60% to the low-80% range and never reaches the
high PDR region achieved by ToW and UCB-1 tuned.

For IEEE 802.15.4¢g (Fig. 3), ToW again converges quickly
and stably, attaining a PDR close to 100%. e-greedy
converges much more slowly and saturates around 80% PDR.
UCB-1 tuned suffers from an extended period of very low
PDR in the middle of learning before recovering to around
90%. Consequently, its final PDR for IEEE 802.15.4g
remains clearly lower than that of ToW, indicating that the
proposed policy provides the best overall reliability,
especially for the more vulnerable IEEE 802.15.4g ENs.
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Fig.2: PDR learning curves for 802.11ah
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C. Channel and Packet-Size Selection Patterns

Figs. 4—7 show heatmaps of channel and packet-size choices
over the learning rounds. In each figure, the horizontal axis is
the round index t = 1, ...,1000, and the vertical axis has 15
rows, each corresponding to one EN of the considered
technology (IEEE 802.11ah in Figs. 4 and 5, IEEE 802.15.4g
in Figs. 6 and 7). The three panels from top to bottom
represent e-greedy (EPS), UCB-1 tuned, and the proposed
ToW policy. In the channel-selection figures (Figs. 4 and 6),
the color denotes the selected center frequency (MHz),
whereas in the packet-size figures (Figs. 5 and 7) it denotes
the selected payload size (bytes).

With ¢ -greedy, the heatmaps remain highly mixed,
indicating that both technologies keep switching among many
channels and packet sizes and do not clearly converge. UCB-
1 tuned produces horizontal stripes in the channel plots,
showing that most ENs eventually settle on quasi-fixed
channels, but the packet-size patterns remain scattered. In
contrast, the proposed ToW policy yields stable horizontal
bands in both channel and packet-size figures, meaning that
ENs converge to consistent channel-packet-size
configurations, which matches the PDR and fairness
improvements in Figs. 2 and 3.

D. Per-Node Fairness and Spatial PDR Distribution

Figs. 8-10 show the spatial distribution of the average PDR
per transmitter over the last 200 learning rounds at a 10%
network duty cycle for e-greedy, UCB-1 tuned, and ToW,
respectively. Circles denote IEEE 802.11ah ENs and triangles
denote IEEE 802.15.4g ENs, and the color indicates the
average PDR. With ¢-greedy (Fig. 8), most ENs achieve only
moderate PDR values of about 70-85%, and there is
noticeable variation among nodes. Several IEEE 802.15.4g
ENs located near the outer ring exhibit lower PDR than the
others. Under UCB-1 tuned (Fig. 9), many ENs reach high
PDR values around 90-95%. However, one IEEE 802.15.4g
EN suffers from almost zero PDR, which leads to severe
unfairness despite the high network average. With the
proposed ToW policy (Fig. 10), all ENs achieve uniformly
high PDR, typically above 95%, and the difference between
the best and worst nodes becomes very small. In particular,
the IEEE 802.15.4g ENs that had low or even zero PDR under
the baseline policies now attain PDR close to those of the
IEEE 802.11ah ENs. This demonstrates that the proposed
ToW dynamics not only improve the overall reliability but

also enhance per-node fairness in the mixed IEEE 802.11ah /
IEEE 802.15.4g deployment. In ToW, the volume-
conservation term effectively penalizes arms that are heavily
used across the network, so each EN is gradually pushed
away from congested channels and packet sizes. As a result,
the per-EN PDR values concentrate at similarly high levels
(Fig. 10), whereas under ¢-greedy and UCB-1 tuned a subset
of nodes remains trapped in persistently low-PDR
configurations (Figs. 8 and 9).
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Fig.10: Average PDR by Transmitter and Node Layout (ToW)

V. CONCLUSION

In this paper, we formulated per-device channel and packet-
size selection as an online learning problem and compared
three MAB-based policies, including a proposed continuous
ToW scheme tailored to IEEE 802.11ah / IEEE 802.15.4¢g
coexistence in the sub-GHz band. Using a QualNet-based
model of a single-AP topology at a 10% network duty cycle,
the proposed ToW policy achieved the highest PDR for both
technologies. For IEEE 802.11ah ENs, ToW and UCB-1
tuned eventually converged to PDR values close to 100%,
while ¢-greedy saturated at a lower level. For IEEE 802.15.4g
ENs, ToW clearly outperformed the baselines, reaching near-
100% PDR where e¢-greedy and UCB-1 tuned remained
significantly lower. The spatial analysis further showed that
ToW improved per-node fairness, eliminating the severely
degraded IEEE 802.15.4g nodes observed under the baseline
policies.

Future work includes evaluating the proposed learning
framework under more dynamic environments, such as time-
varying traffic loads, interference patterns, and topology
changes; assessing its performance under different node
densities and spatial configurations; and generalizing the
learning-based parameter adaptation to other sub-GHz
coexistence scenarios involving protocols such as LoRa and
ZigBee.
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