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Abstract— This study proposes a multidimensional metric 

for evaluating deep learning models in face image classification, 

addressing long-standing limitations of accuracy-centered 

evaluation. While modern architectures such as convolutional 

neural networks and Vision Transformers demonstrate strong 

predictive performance, conventional metrics fail to capture 

deeper structural behaviors, including fairness, 

representational quality, interpretability, and computational 

viability. To address this gap, the proposed framework 

integrates six components: validation F1 score, linear-probe 

embedding separability, fairness via skin-tone gap reduction, 

compute efficiency, anatomical interpretability, and embedding 

stability, yielding a holistic assessment of model performance. 

Applied across six benchmark architectures and four Baumann 

Skin Type tasks, the metric reveals consistent superiority of 

transformer-based models, which exhibit stronger fairness, 

stability, and interpretability compared to CNNs. Findings 

demonstrate that responsible facial model evaluation requires 

multidimensional criteria that move beyond accuracy to ensure 

equitable, transparent, and deployment-ready systems. This 

work contributes toward trustworthy and fairness-aware facial 

AI. 
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I. INTRODUCTION 

 

The rapid expansion of facial image classification has 

been driven by breakthroughs in deep learning, particularly 

convolutional neural networks (CNNs) and transformer-

based architectures. Landmark models such as VGGFace, 

FaceNet, ArcFace, and Vision Transformers  have 

demonstrated unprecedented performance in face 

recognition, expression analysis, attribute prediction, and 

identity verification tasks. As datasets such as CelebA and 

FairFace expanded in size and diversity, research in face 

image classification continued to accelerate, which deepens 

model sophistication and societal reach. 

 

Despite these advancements, model evaluation in facial 

image classification remains overwhelmingly centered on 

accuracy-based metrics, particularly accuracy [1] and the F1 

score [2]. While these metrics quantify predictive 

correctness, they fail to capture deeper, structural properties 

of model behavior. Studies revealed that commercial facial 

analysis systems, despite reporting high overall accuracy, 

exhibited error rates up to 34.7 times higher for darker-

skinned women compared to lighter-skinned men, which 

highlights the inadequacy of global accuracy as a measure of 

equitable model performance [3]. Similarly, a study 

demonstrated that accuracy often masks disparate impacts, 

where models maintain high aggregate performance while 

performing disproportionately poorly on marginalized 

demographic groups [4]. Complementary studies reinforce 

these findings, which shows that facial recognition models 

remain sensitive to demographic variables such as age, race, 

and sex [5], [6], [7]; while other studies argue that fairness-

aware evaluation requires metrics beyond conventional 

classification performance, including subgroup error analysis 

and representational quality measures [8], [9]. Collectively, 

these studies demonstrate that sole reliance on accuracy 

obscures essential concerns including dataset imbalance, 

representational bias, and disparate performance across 

demographic groups. Such blind spots pose risks when 

evaluating benchmark models, as they reward models 

optimized for majority groups and encourage architectures 

that reinforce bias rather than ensuring equitable 

representation. In fairness-critical domains like facial 

analysis, accuracy alone is an insufficient, and potentially 

misleading, basis for model selection. 

 

In response to these limitations, several alternative 

evaluation strategies have emerged. Researchers have 

explored balanced accuracy, ROC-AUC, precision–recall 

trade-offs [10], embedding separability [11], and 

demographic performance disaggregation [12] . Other works 

evaluated computational metrics such as inference latency, 

model size, or energy efficiency, especially in mobile 

deployment contexts [13]. However, these approaches are 

typically assessed in isolation, or used only in pairwise 

comparative studies, which leaves a persistent gap: the 

absence of a unified, multi-dimensional evaluation 

framework that holistically captures predictive performance, 

feature representation quality, fairness, interpretability, and 

computational efficiency. Current literature lacks an 

integrated metric that systematically consolidates these 

factors into a single evaluative structure for comparing deep 

learning benchmark models in facial image classification. 

 

To address this gap, the study introduces a comprehensive 

evaluation metric tailored for modern facial classification 

models. The framework integrates six dimensions to provide 

a richer, more actionable view of model behavior. This multi-

metric approach promotes transparent, responsible model 

selection by evaluating not only accuracy but also 

representational fairness and deployment readiness, 

contributing to broader efforts in AI fairness and trustworthy 

facial analysis. 

 

 



II. METHODOLOGY 

 

This study adopts a quantitative, experimental research 

design to develop and validate a multidimensional evaluation 

metric for deep learning-based face image classification 

models. The methodology consists of three stages: model 

selection, dataset preparation and preprocessing, and 

evaluation metric development. 

 

A. Model Selection 

 
This study evaluates six deep learning architectures that 

represent two dominant paradigms in modern face image 
classification: (1) Convolutional Neural Network (CNN) 
backbones, which encode strong spatial inductive biases [14], 
and (2) Vision Transformer (ViT) models, which rely on patch 
tokenization and global self-attention [15].  

 
CNNs are widely used in facial image classification 

because their architecture leverages spatial structure through 
localized receptive fields, shared filters, and hierarchical 
feature extraction. Early layers learn edges and textures, while 
deeper layers capture higher-level facial geometry and 
semantic patterns. With non-linear activations, pooling, and 
expanding receptive fields, CNNs build strong multi-scale 
facial representations. Weight sharing further provides 
translation invariance, helping the network recognize features 
despite small shifts or distortions. 

 
Three architectures, ResNet, EfficientNet, and DenseNet 

were selected because they represent complementary 
strengths in depth, efficiency, and feature reuse. ResNet 
introduced residual learning, which enables the training of 
very deep neural networks by addressing vanishing gradients 
[16], [17]. A residual block is expressed as: 

 
� = ���, �� + � 

 
where ���, �� is the residual mapping of the identity shortcut 
connection (x) and weights (W). These residual connections 
allow gradients to flow directly through the identity path, 
which stabilizes optimization in deep networks.  
  
EfficientNet introduces compound scaling, where depth 
 , 
width and resolution are scaled uniformly to allow the model 
to maintain balanced capacity across layers [18], [19]. 
EfficientNet is built around the Mobile Inverted Bottleneck 
Convolution (MBConv) with Squeeze-and-Excitation (SE) 
attention: 

� =  ��
��  •  ������ • � ⊙ �� ���� 

 
where the SE block computes: 
 

� =  �����������, � = �� ��� 

 
 DenseNet introduces dense connectivity, where each layer 
receives inputs from all previous layers  [20]. This 
connectivity pattern encourages feature reuse and strengthens 
gradient flow. The growth rate ! controls the number of new 
feature maps added per layer: 
 

"# =  "$ + ! • % 
 
A dense block applies: 

 
�# =  &#�[�$, ��, … , �#)� ]� 

 

where &#is BN → ReLU → Conv. DenseNet’s concatenation 

property ensures earlier textural cues (such as freckles, eye 

corner details) remain accessible in deeper layers. 

 

Meanwhile, Vision Transformers (ViTs) excel in facial 

image classification by modeling long-range dependencies 

and global context through self-attention. Instead of relying 

on local convolutions, ViTs divide an image into fixed-size 

patches and embed each as a token, treating the image as a 

sequence. This approach captures fine-grained patch-level 

detail while enabling global interactions across all facial 

regions via multi-head self-attention. 

 

In this study, three Vision Transformer patch embedding 

strategies were implemented to evaluate how different 

positional encoding mechanisms influence facial 

representation learning. Standard patch embedding [21] 

divides into non-overlapping patches �+, each flattened and 

projected using a learnable matrix �,: 

 

�+ =  �, • �%-../0��+� +  + 
 

with  +  denoting sinusoidal or learned positional encodings. 

This method is computationally efficient and allows global 

self-attention but lacks strong locality modeling, which may 

limit performance on fine-grained facial features. To address 

this limitation, sequential overlapping patch embedding [22] 

introduces overlapping windows �+:+23 with stride � < ! , 

improving spatial continuity across patches: 

 

 �̂+ =  �+:+23,                    �+ =  �, • �%-../0� �6+� +  +  
 

often combined with sequential positional biases  + = 7�8� +
9�8 − 1� to preserve ordering. This approach reduces patch-

boundary artifacts and enhances the modeling of local facial 

structures such as eyes and mouth regions. Finally, 

convolutional patch embedding [23] incorporates a 

convolutional layer prior to projection to infuse CNN-like 

inductive biases: 

 

�<+ = "=0>��+�,                 �+ = ���<+� +   +  
 

This method improves spatial coherence and is particularly 

advantageous for faces, where subtle geometric patterns and 

texture cues are critical.  

 

B. Dataset Preparation and Preprocessing 

 

The dataset was compiled from publicly available facial 

image repositories identified through targeted searches: 

“facial skin images dermatology dataset,” “skin texture face 

photos”. Only datasets with explicit open-access licenses or 

verifiable consent documentation were included. The final 

collection integrates facial images from multiple reputable 

sources, which include CelebA, FairFace, Caltech Faces, 

Labeled Faces in the Wild and IMDB-WIKI were 

incorporated to capture variations in pose, illumination, age, 

and real-world conditions. To further expand diversity, 



images were compiled from open-source Roboflow Universe 

datasets (2021–2025), and images from various Kaggle 

repositories focusing on skin type, tone, and dermatological 

conditions. All datasets were screened to ensure compliance 

with licensing, consent statements, and ethical use guidelines. 

 

Inclusion criteria required sufficient resolution, frontal 

orientation, and unobstructed cheek and nasal regions. 

Images were excluded for heavy makeup, major occlusions, 

severe blur, or non-human content. Automated filtering first 

checked image type, sharpness, and facial visibility, 

removing grayscale images without chromatic data and 

samples too blurred for texture analysis. Facial landmarks 

were detected using a 68-point model to verify boundaries, 

symmetry, and region visibility. Images with excessive head 

tilt, cut-off areas, or open-mouth expressions were discarded 

to ensure consistent facial geometry. Faces were then 

extracted, anonymized, cropped, and resized to 224×224 

pixels on a uniform background. To further reduce 

identifiable features, eye and mouth regions were masked 

while preserving the cheek and nasal areas. Final labels for 

Baumann Skin Types (oiliness, sensitivity, pigmentation and 

aging) [24] were assigned independently by two aestheticians 

and one dermatologist. 

 

To ensure diversity and fairness, skin-tone distribution 

was evaluated using the Monk Skin Tone (MST) Scale [25]. 

This can be done also with other representation techniques as 

age group, sex, and others depending on the task. The dataset 

contains 3,000 images, dominated by medium and darker 

tones across most BST labels, particularly oily, pigmented, 

non-pigmented, and wrinkled categories. Light tones are 

minimally represented, while medium tones appear at 

moderate levels. This imbalance, shown in Figure 1, may 

affect downstream analyses and model performance. 

 

 

 

 

 

 

 

 

 
Fig. 1. Dataset distribution across BST labels and skin tone 
 

C. Evaluation Metric Development 

 

The metric is composed of six components that quantifies 

a distinct structural behavior of deep learning models, which 

allows holistic comparison beyond accuracy.  

 

Component 1. The F1-score is a harmonic mean of 

precision and recall, making it more informative than 

accuracy when evaluating models on imbalanced facial 

datasets where minority classes, such as specific skin types or 

skin tones, are underrepresented [26]. Unlike accuracy, 

which can mask poor performance on small subgroups, the 

F1-score penalizes models that fail to detect minority 

instances (low recall) or frequently misclassify them (low 

precision). It is computed as: 

 

�1 = 2 �  @/A8�8=0 � B/A-%%
 @/A8�8=0 + B/A-%% 

 
 Because the harmonic mean amplifies the effect of low 
values, the F1-score drops sharply when the model struggles 
with either minority-class sensitivity or specificity.  
  
 Component 2. Linear-probe evaluation is widely used to 
assess the intrinsic quality of learned representations 
independent of fine-tuning [27]. The method evaluates 
whether the backbone encodes linearly separable features. The 
linear-probe accuracy is computed as: 
 

C DEE = 1
F G 1�ŷ+ = �+�

I

+J�
 

  
This evaluation directly measures the intrinsic quality of 
learned representations, free from the influence of fine-tuning 
or optimization tricks, and therefore offers a fair and 
interpretable basis for comparing backbone models.  
  
 Component 3. Bias across skin tones is a documented 
failure mode of facial classification systems. For this study, 
fairness is measured using the Monk Skin Tone (MST) scale 
[28]. The fairness gap is computed as: 
 

�-KLMN = max �3 − R80�3 
 

Fairness score is computed as (higher = fairer): 

 

Fairness = 1 − GapLMN 
 

 This metric directly captures how consistently a model 

performs across skin tones; large gaps indicate 

representational or decision-boundary biases that can lead to 

unequal error rates and harmful downstream impacts [29].  
  
 Component 4. To support lightweight deployment, it is 
essential to evaluate the computational efficiency of a model, 
particularly its inference latency, since even highly accurate 
systems become impractical if they respond too slowly [30]. 
Inference latency per batch is measured, where .+ denotes the 
time required to process a batch. The mean latency is 
computed as: 
 

.̅ =  1
T G .+

U

+J�
 

  
To make latency comparable across models and deployment 
settings, the score is normalized within a defined operational 
range [.VWX, .VYZ]: 

�#D[ = 1 − .̅ − .\+]
.\D� − .\+]

 

 Values are then clipped to the interval [0,1], where higher 

scores indicate faster, more deployment-ready models. This 

normalization ensures that latency does not overwhelm other 

evaluation metrics and allows for fair comparison of systems 

with different computational profiles.  

  

 Component 5. Interpretability is essential for fairness-

critical facial applications because it reveals whether a model 



relies on meaningful facial cues or on spurious correlations 

that may propagate bias [31]. In this study, the anatomical 

plausibility was evaluated of explanation maps generated 

using LIME, which produces local perturbation-based 

attributions highlighting image regions most influential to the 

model’s prediction. Let &��, �� denote the normalized LIME 

saliency map, and let B���, �� represent binary masks 

corresponding to anatomically relevant regions of the face, 

specifically the forehead, nose, and cheeks. The proportion of 

attribution assigned to region _ is computed as: 

 

 � =  Σ�,a&��, ��B���, ��
Σ�,a&��, ��  

 
 An overall anatomical interpretability score is then 
obtained by weighting these regional proportions according to 
their diagnostic relevance: 
 

�bcd = 0.3 g�
�h�Di + 0.4 ]�k� + 0.3 Eh��3k 

 

High-quality model explanations should concentrate 

attribution within core facial structures, those most relevant 

to human visual reasoning and clinical interpretation, rather 

than on hair, background areas, or occlusions. A higher 

�XAI therefore reflects explanations that are more 

anatomically plausible and trustworthy for fairness-sensitive 

facial analysis tasks. 

 

Component 6. Embedding stability assesses whether a 

model’s facial embeddings maintain high intra-class 

similarity and low inter-class similarity, a core principle in 

metric learning and Siamese networks [32]. Using cosine 

similarity, the expected similarity for samples from the same 

class was computed: 

lm+[h+] = no�8R�8, _�p�+ = ��q, 
 
and for samples from different classes, 
 

lr�[m��] = no�8R�8, _�p�+ s ��q, 
 
A stability score is defined to quantify how well the 
embeddings separate identities or categories: 

�k[Dr = 1
1 + �lr�[m��] − lm+[h+]� 

 
 Higher values indicate more stable and discriminative 
embeddings, where same-class samples cluster tightly while 
different-class samples remain well separated.  
 
 Each metric in the evaluation framework is first 
normalized to the interval [0,1]to ensure comparability across 
measures that naturally exist on different scales. The metrics 
are combined through a weighted summation to produce a 
single composite performance score: 
 

�g+]D# = 0.40�t� + 0.20�uv + 0.15�tD+
 + 0.10�#D[
+ 0.10�bcd20.05�k[Dr  

 
 The weighting scheme reflects the relative importance of 
each component in fairness-critical facial analysis. F1-score 
receives the largest weight (0.40) as it is the primary measure 
of predictive performance, especially under class imbalance. 

Linear-probe accuracy (0.20) follows, emphasizing the quality 
of learned representations that support reliability and fair 
downstream behavior. Fairness (0.15) is strongly weighted to 
penalize demographic disparities without overshadowing core 
accuracy metrics. Latency (0.10) and anatomical 
interpretability (0.10) are equally valued, highlighting the 
need for both efficient deployment and trustworthy, 
anatomically grounded explanations. Embedding stability 
(0.05) contributes modestly, capturing representational 
consistency while remaining secondary to accuracy and 
fairness. 

III. RESULTS AND DISCUSSION 

 

The multidimensional evaluation framework was 

applied to six deep learning architectures: three CNN-based 

models and three Vision Transformer with patch embedding 

variants, across four Baumann Skin Type (BST) facial 

classification tasks: oiliness, sensitivity, pigmentation, and 

aging.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Evaluation results for oiliness dimension 

 

As shown in Figure 2, oiliness classification 

revealed stark contrasts between CNN and ViT architectures. 

All CNN models converged at an F1 score of 0.42, which 

mirrors traditional failures associated with class imbalance 

and insufficient representational generalization [33]. 

Although CNNs such as ResNet and DenseNet achieved 

relatively strong linear-probe scores (0.87), indicating 

potentially rich internal features, their inconsistent 

embedding stability and moderate fairness values (0.45) 

limited their overall performance [34]. The ViT family 

demonstrated stronger results, with ViT-Standard producing 

the highest composite score (0.7495). Its superior F1 score 

(0.79), high fairness value (0.80), and strong embedding 

stability (0.67) underscore the transformer’s ability to 

integrate global facial cues, coherent, discriminative 

representations. These findings reinforce the notion that 

transformer architectures can better capture the subtle texture 

gradients associated with oiliness compared to CNNs’ 

localized filters [35]. 

 

 

 

 

 

 
 
 
Fig. 3. Evaluation results for sensitivity dimension 

 

As shown in Figure 3, sensitivity prediction is the 

most challenging BST tasks, as it depends on nuanced 

redness patterns, micro-irritation markers, and inflammation-



based cues [35]. CNNs demonstrated performance 

limitations: all three models reached an F1 score of 0.31 with 

stability near zero, indicating weak clustering of sensitivity-

related features in embedding space. Despite moderately 

strong linear-probe accuracies (0.80–0.82), these models did 

not translate representational quality into effective decision 

boundaries, which suggests a disconnect between learned 

features and the classifier’s ability to separate sensitive versus 

resistant categories [36]. ViT-Standard achieved the best 

performance across all metrics (total score 0.738), driven by 

a strong F1 score (0.75), high fairness (0.93), and 

substantially improved stability (0.49). These gains likely 

arise from ViTs’ global attention, which enables more 

coherent modeling of distributed facial irritation cues [37]. 

The poor performance of ViT-ConvPE, largely due to severe 

embedding instability (–7.19), which illustrates the 

importance of carefully selected positional encodings in 

transformer architectures [38]. 

 
 
 
 
 
 
 
 
 
 
Fig. 4. Evaluation results for pigmentation dimension 

 

      As shown in Figure 6, pigmentation classification yielded 

the highest performance across models, likely due to distinct 

chromatic and melanin patterns [39]. CNNs showed strong 

linear-probe separability (up to 0.95) but consistently low 

fairness scores (0.29), which indicates uneven performance 

across skin tones  [40]. Their embedding stability ranged 

from moderate (0.58) to high (0.87), suggesting good identity 

clustering but limited task-specific fairness. ViT-SOPE 

achieved the highest composite score (0.7735), with strong 

F1 (0.86), high linear separability (0.92), and the best 

embedding stability (0.84). Its overlapping patch mechanism 

appears well suited for modeling melanin gradients and facial 

discoloration  [41].  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Evaluation results for aging dimension 

 

As shown in Figure 5, aging prediction 

demonstrated the widest disparity between CNN and ViT 

performance. CNNs produced uniformly low F1 scores (0.16) 

despite strong linear-probe accuracies (0.82–0.85), which 

suggests that they encoded meaningful features but failed to 

translate these into effective classification decisions. This 

aligns with literature noting that aging cues are spatially 

diffuse and require global contextual modeling [42]. ViT-

Standard achieved the highest overall score (0.6845) with an 

F1 of 0.67. Interestingly, ViT-SOPE also performed well 

(0.6045), whereas ViT-ConvPE (0.4225) lagged, 

highlighting that positional encoding choices materially 

influence transformer performance [43].  

 

Across all four tasks, Vision Transformers consistently 

outperformed CNN architectures in every major dimension 

of the evaluation metric: F1 score, fairness, interpretability, 

embedding stability, and total composite performance. CNNs 

occasionally achieved strong linear-probe scores, but their 

decision layers consistently underperformed, which indicates 

insufficient transfer of representational quality into 

classification accuracy [44]. This suggests that CNNs may 

encode meaningful features but struggle with tasks requiring 

spatially global or contextually diffuse information. 

Moreover, CNNs exhibited substantially lower fairness 

scores, demonstrating higher susceptibility to demographic 

performance gaps, consistent with literature documenting 

CNNs’ bias amplification tendencies. ViTs consistent higher 

interpretability scores indicate that ViTs rely on meaningful 

facial regions, which align more closely with expert 

reasoning and making them well-suited for fairness-critical 

clinical and cosmetic applications.  

 

IV. CONCLUSION AND RECOMMENDATION 

 
These findings affirm that evaluating facial classification 

systems must extend beyond accuracy to include structural, 
representational, and ethical dimensions. The proposed 
composite metric provides a more actionable way to identify 
balanced, fair, and reliable models aligned with broader AI 
fairness and responsible ML initiatives. Researchers and 
practitioners should therefore adopt metrics that does not 
relying on accuracy or F1 since it has risks of favoring models 
that perform well overall but fail on marginalized groups. 
Anatomical interpretability further revealed whether models 
used meaningful facial structures or spurious cues, which 
underscores the need for explanation-pattern analysis in 
institutional deployments. Persistent fairness disparities 
highlight the importance of balanced datasets across skin 
tones, age groups, and gender identities, motivating future 
work on broader demographic representation and explicit 
bias-mitigation techniques. 
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