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Abstract— This study proposes a multidimensional metric
for evaluating deep learning models in face image classification,
addressing long-standing limitations of accuracy-centered
evaluation. While modern architectures such as convolutional
neural networks and Vision Transformers demonstrate strong
predictive performance, conventional metrics fail to capture
deeper structural behaviors, including fairness,
representational quality, interpretability, and computational
viability. To address this gap, the proposed framework
integrates six components: validation F1 score, linear-probe
embedding separability, fairness via skin-tone gap reduction,
compute efficiency, anatomical interpretability, and embedding
stability, yielding a holistic assessment of model performance.
Applied across six benchmark architectures and four Baumann
Skin Type tasks, the metric reveals consistent superiority of
transformer-based models, which exhibit stronger fairness,
stability, and interpretability compared to CNNs. Findings
demonstrate that responsible facial model evaluation requires
multidimensional criteria that move beyond accuracy to ensure
equitable, transparent, and deployment-ready systems. This
work contributes toward trustworthy and fairness-aware facial
AL
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I. INTRODUCTION

The rapid expansion of facial image classification has
been driven by breakthroughs in deep learning, particularly
convolutional neural networks (CNNs) and transformer-
based architectures. Landmark models such as VGGFace,
FaceNet, ArcFace, and Vision Transformers have
demonstrated  unprecedented performance in face
recognition, expression analysis, attribute prediction, and
identity verification tasks. As datasets such as CelebA and
FairFace expanded in size and diversity, research in face
image classification continued to accelerate, which deepens
model sophistication and societal reach.

Despite these advancements, model evaluation in facial
image classification remains overwhelmingly centered on
accuracy-based metrics, particularly accuracy [1] and the F1
score [2]. While these metrics quantify predictive
correctness, they fail to capture deeper, structural properties
of model behavior. Studies revealed that commercial facial
analysis systems, despite reporting high overall accuracy,
exhibited error rates up to 34.7 times higher for darker-
skinned women compared to lighter-skinned men, which
highlights the inadequacy of global accuracy as a measure of
equitable model performance [3]. Similarly, a study
demonstrated that accuracy often masks disparate impacts,
where models maintain high aggregate performance while
performing disproportionately poorly on marginalized
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demographic groups [4]. Complementary studies reinforce
these findings, which shows that facial recognition models
remain sensitive to demographic variables such as age, race,
and sex [5], [6], [7]; while other studies argue that fairness-
aware evaluation requires metrics beyond conventional
classification performance, including subgroup error analysis
and representational quality measures [8], [9]. Collectively,
these studies demonstrate that sole reliance on accuracy
obscures essential concerns including dataset imbalance,
representational bias, and disparate performance across
demographic groups. Such blind spots pose risks when
evaluating benchmark models, as they reward models
optimized for majority groups and encourage architectures
that reinforce bias rather than ensuring equitable
representation. In fairness-critical domains like facial
analysis, accuracy alone is an insufficient, and potentially
misleading, basis for model selection.

In response to these limitations, several alternative
evaluation strategies have emerged. Researchers have
explored balanced accuracy, ROC-AUC, precision—recall
trade-offs [10], embedding separability [11], and
demographic performance disaggregation [12] . Other works
evaluated computational metrics such as inference latency,
model size, or energy efficiency, especially in mobile
deployment contexts [13]. However, these approaches are
typically assessed in isolation, or used only in pairwise
comparative studies, which leaves a persistent gap: the
absence of a wunified, multi-dimensional evaluation
framework that holistically captures predictive performance,
feature representation quality, fairness, interpretability, and
computational efficiency. Current literature lacks an
integrated metric that systematically consolidates these
factors into a single evaluative structure for comparing deep
learning benchmark models in facial image classification.

To address this gap, the study introduces a comprehensive
evaluation metric tailored for modern facial classification
models. The framework integrates six dimensions to provide
aricher, more actionable view of model behavior. This multi-
metric approach promotes transparent, responsible model
selection by evaluating not only accuracy but also
representational  fairness and deployment readiness,
contributing to broader efforts in Al fairness and trustworthy
facial analysis.



II. METHODOLOGY

This study adopts a quantitative, experimental research
design to develop and validate a multidimensional evaluation
metric for deep learning-based face image classification
models. The methodology consists of three stages: model
selection, dataset preparation and preprocessing, and
evaluation metric development.

A. Model Selection

This study evaluates six deep learning architectures that
represent two dominant paradigms in modern face image
classification: (1) Convolutional Neural Network (CNN)
backbones, which encode strong spatial inductive biases [14],
and (2) Vision Transformer (ViT) models, which rely on patch
tokenization and global self-attention [15].

CNNs are widely used in facial image classification
because their architecture leverages spatial structure through
localized receptive fields, shared filters, and hierarchical
feature extraction. Early layers learn edges and textures, while
deeper layers capture higher-level facial geometry and
semantic patterns. With non-linear activations, pooling, and
expanding receptive fields, CNNs build strong multi-scale
facial representations. Weight sharing further provides
translation invariance, helping the network recognize features
despite small shifts or distortions.

Three architectures, ResNet, EfficientNet, and DenseNet
were selected because they represent complementary
strengths in depth, efficiency, and feature reuse. ResNet
introduced residual learning, which enables the training of
very deep neural networks by addressing vanishing gradients
[16], [17]. A residual block is expressed as:

y=FQ,W)+x

where F (x, W) is the residual mapping of the identity shortcut
connection (x) and weights (W). These residual connections
allow gradients to flow directly through the identity path,
which stabilizes optimization in deep networks.

EfficientNet introduces compound scaling, where depth d,
width and resolution are scaled uniformly to allow the model
to maintain balanced capacity across layers [18], [19].
EfficientNet is built around the Mobile Inverted Bottleneck
Convolution (MBConv) with Squeeze-and-Excitation (SE)
attention:

Y= Wproj ® O-(Vl/exp *x OSE (x))

where the SE block computes:
s = a(Wo6(W;2)),z = GAP(x)

DenseNet introduces dense connectivity, where each layer
receives inputs from all previous layers [20]. This
connectivity pattern encourages feature reuse and strengthens
gradient flow. The growth rate k controls the number of new
feature maps added per layer:

Cl = CO + k L4 l

A dense block applies:

x; = Hy([x0, X1, s X1 )

where H;is BN — ReLU — Conv. DenseNet’s concatenation
property ensures earlier textural cues (such as freckles, eye
corner details) remain accessible in deeper layers.

Meanwhile, Vision Transformers (ViTs) excel in facial
image classification by modeling long-range dependencies
and global context through self-attention. Instead of relying
on local convolutions, ViTs divide an image into fixed-size
patches and embed each as a token, treating the image as a
sequence. This approach captures fine-grained patch-level
detail while enabling global interactions across all facial
regions via multi-head self-attention.

In this study, three Vision Transformer patch embedding
strategies were implemented to evaluate how different
positional encoding mechanisms influence facial
representation learning. Standard patch embedding [21]
divides into non-overlapping patches x;, each flattened and
projected using a learnable matrix Wy:

z; = Wy e Flatten(x;) + P;

with P; denoting sinusoidal or learned positional encodings.
This method is computationally efficient and allows global
self-attention but lacks strong locality modeling, which may
limit performance on fine-grained facial features. To address
this limitation, sequential overlapping patch embedding [22]
introduces overlapping windows x;.;. with stride s < k,
improving spatial continuity across patches:

xi = Xii+k,

z; = Wge Flatten( a?i) + P
often combined with sequential positional biases P; = f (i) +
g(i — 1) to preserve ordering. This approach reduces patch-
boundary artifacts and enhances the modeling of local facial
structures such as eyes and mouth regions. Finally,
convolutional patch embedding [23] incorporates a
convolutional layer prior to projection to infuse CNN-like
inductive biases:

fi = Conv(xi), Z; = E(f,') + P,:
This method improves spatial coherence and is particularly
advantageous for faces, where subtle geometric patterns and
texture cues are critical.

B. Dataset Preparation and Preprocessing

The dataset was compiled from publicly available facial
image repositories identified through targeted searches:
“facial skin images dermatology dataset,” “skin texture face
photos”. Only datasets with explicit open-access licenses or
verifiable consent documentation were included. The final
collection integrates facial images from multiple reputable
sources, which include CelebA, FairFace, Caltech Faces,
Labeled Faces in the Wild and IMDB-WIKI were
incorporated to capture variations in pose, illumination, age,
and real-world conditions. To further expand diversity,



images were compiled from open-source Roboflow Universe
datasets (2021-2025), and images from various Kaggle
repositories focusing on skin type, tone, and dermatological
conditions. All datasets were screened to ensure compliance
with licensing, consent statements, and ethical use guidelines.

Inclusion criteria required sufficient resolution, frontal
orientation, and unobstructed cheek and nasal regions.
Images were excluded for heavy makeup, major occlusions,
severe blur, or non-human content. Automated filtering first
checked image type, sharpness, and facial visibility,
removing grayscale images without chromatic data and
samples too blurred for texture analysis. Facial landmarks
were detected using a 68-point model to verify boundaries,
symmetry, and region visibility. Images with excessive head
tilt, cut-off areas, or open-mouth expressions were discarded
to ensure consistent facial geometry. Faces were then
extracted, anonymized, cropped, and resized to 224x224
pixels on a uniform background. To further reduce
identifiable features, eye and mouth regions were masked
while preserving the cheek and nasal areas. Final labels for
Baumann Skin Types (oiliness, sensitivity, pigmentation and
aging) [24] were assigned independently by two aestheticians
and one dermatologist.

To ensure diversity and fairness, skin-tone distribution
was evaluated using the Monk Skin Tone (MST) Scale [25].
This can be done also with other representation techniques as
age group, sex, and others depending on the task. The dataset
contains 3,000 images, dominated by medium and darker
tones across most BST labels, particularly oily, pigmented,
non-pigmented, and wrinkled categories. Light tones are
minimally represented, while medium tones appear at
moderate levels. This imbalance, shown in Figure 1, may
affect downstream analyses and model performance.
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Fig. 1. Dataset distribution across BST labels and skin tone

C. Evaluation Metric Development

The metric is composed of six components that quantifies
a distinct structural behavior of deep learning models, which
allows holistic comparison beyond accuracy.

Component 1. The Fl-score is a harmonic mean of
precision and recall, making it more informative than
accuracy when evaluating models on imbalanced facial
datasets where minority classes, such as specific skin types or
skin tones, are underrepresented [26]. Unlike accuracy,
which can mask poor performance on small subgroups, the
Fl-score penalizes models that fail to detect minority
instances (low recall) or frequently misclassify them (low
precision). It is computed as:

Precision x Recall
F1=2

X
Precision + Recall

Because the harmonic mean amplifies the effect of low
values, the F1-score drops sharply when the model struggles
with either minority-class sensitivity or specificity.

Component 2. Linear-probe evaluation is widely used to
assess the intrinsic quality of learned representations
independent of fine-tuning [27]. The method evaluates
whether the backbone encodes linearly separable features. The
linear-probe accuracy is computed as:

N
1
LPyc = Nzl 1@ =)
i=

This evaluation directly measures the intrinsic quality of
learned representations, free from the influence of fine-tuning
or optimization tricks, and therefore offers a fair and
interpretable basis for comparing backbone models.

Component 3. Bias across skin tones is a documented
failure mode of facial classification systems. For this study,
fairness is measured using the Monk Skin Tone (MST) scale
[28]. The fairness gap is computed as:

Gapysr = max A, — min4,
Fairness score is computed as (higher = fairer):
Fairness =1 — Gap,, ..

This metric directly captures how consistently a model
performs across skin tones; large gaps indicate
representational or decision-boundary biases that can lead to
unequal error rates and harmful downstream impacts [29].

Component 4. To support lightweight deployment, it is
essential to evaluate the computational efficiency of a model,
particularly its inference latency, since even highly accurate
systems become impractical if they respond too slowly [30].
Inference latency per batch is measured, where t; denotes the
time required to process a batch. The mean latency is
computed as:

B

S

i=1

F=

S| -

To make latency comparable across models and deployment
settings, the score is normalized within a defined operational

range [tminr tmax]:

Siar =1—

L= tmin
max — tmin
Values are then clipped to the interval [0,1], where higher
scores indicate faster, more deployment-ready models. This
normalization ensures that latency does not overwhelm other
evaluation metrics and allows for fair comparison of systems
with different computational profiles.

Component 5. Interpretability is essential for fairness-
critical facial applications because it reveals whether a model



relies on meaningful facial cues or on spurious correlations
that may propagate bias [31]. In this study, the anatomical
plausibility was evaluated of explanation maps generated
using LIME, which produces local perturbation-based
attributions highlighting image regions most influential to the
model’s prediction. Let H(x, y) denote the normalized LIME
saliency map, and let R;(x,y) represent binary masks
corresponding to anatomically relevant regions of the face,
specifically the forehead, nose, and cheeks. The proportion of
attribution assigned to region j is computed as:

_ ZyH R (xy)
J Ex,yH(x: Y)

An overall anatomical interpretability score is then
obtained by weighting these regional proportions according to
their diagnostic relevance:

SXAI = 0-3Pfurehead + 0-4‘Pnose + 0-3Pcheeks

High-quality model explanations should concentrate
attribution within core facial structures, those most relevant
to human visual reasoning and clinical interpretation, rather
than on hair, background areas, or occlusions. A higher
Sxa; therefore reflects explanations that are more
anatomically plausible and trustworthy for fairness-sensitive
facial analysis tasks.

Component 6. Embedding stability assesses whether a
model’s facial embeddings maintain high intra-class
similarity and low inter-class similarity, a core principle in
metric learning and Siamese networks [32]. Using cosine
similarity, the expected similarity for samples from the same
class was computed:

within = E[sim@@, ) |yi = y;],
and for samples from different classes,
HUpetween = E[Sim(i:j)b’i * Yj]:

A stability score is defined to quantify how well the

embeddings separate identities or categories:
1

1+ (#between - ”within)

Sstap =

Higher values indicate more stable and discriminative
embeddings, where same-class samples cluster tightly while
different-class samples remain well separated.

Each metric in the evaluation framework is first
normalized to the interval [0,1]to ensure comparability across
measures that naturally exist on different scales. The metrics
are combined through a weighted summation to produce a
single composite performance score:

Sfinal = 04OSF1 + OZOSLP + 0-155Fair + 0'1051at
+ 0.10S5x4;4+0.05S5;4p

The weighting scheme reflects the relative importance of
each component in fairness-critical facial analysis. F1-score
receives the largest weight (0.40) as it is the primary measure
of predictive performance, especially under class imbalance.

Linear-probe accuracy (0.20) follows, emphasizing the quality
of learned representations that support reliability and fair
downstream behavior. Fairness (0.15) is strongly weighted to
penalize demographic disparities without overshadowing core
accuracy metrics. Latency (0.10) and anatomical
interpretability (0.10) are equally valued, highlighting the
need for both efficient deployment and trustworthy,
anatomically grounded explanations. Embedding stability
(0.05) contributes modestly, capturing representational
consistency while remaining secondary to accuracy and
fairness.
III. RESULTS AND DISCUSSION

The multidimensional evaluation framework was
applied to six deep learning architectures: three CNN-based
models and three Vision Transformer with patch embedding
variants, across four Baumann Skin Type (BST) facial
classification tasks: oiliness, sensitivity, pigmentation, and

aging.

|

Fig. 2. Evaluation results for oiliness dimension

As shown in Figure 2, oiliness classification
revealed stark contrasts between CNN and ViT architectures.
All CNN models converged at an F1 score of 0.42, which
mirrors traditional failures associated with class imbalance
and insufficient representational generalization [33].
Although CNNs such as ResNet and DenseNet achieved
relatively strong linear-probe scores (0.87), indicating
potentially rich internal features, their inconsistent
embedding stability and moderate fairness values (0.45)
limited their overall performance [34]. The ViT family
demonstrated stronger results, with ViT-Standard producing
the highest composite score (0.7495). Its superior F1 score
(0.79), high fairness value (0.80), and strong embedding
stability (0.67) underscore the transformer’s ability to
integrate global facial cues, coherent, discriminative
representations. These findings reinforce the notion that
transformer architectures can better capture the subtle texture
gradients associated with oiliness compared to CNNs’
localized filters [35].

T

Fig. 3. Evaluation results for sensitivity dimension

As shown in Figure 3, sensitivity prediction is the
most challenging BST tasks, as it depends on nuanced
redness patterns, micro-irritation markers, and inflammation-



based cues [35]. CNNs demonstrated performance
limitations: all three models reached an F1 score of 0.31 with
stability near zero, indicating weak clustering of sensitivity-
related features in embedding space. Despite moderately
strong linear-probe accuracies (0.80-0.82), these models did
not translate representational quality into effective decision
boundaries, which suggests a disconnect between learned
features and the classifier’s ability to separate sensitive versus
resistant categories [36]. ViT-Standard achieved the best
performance across all metrics (total score 0.738), driven by
a strong Fl score (0.75), high fairness (0.93), and
substantially improved stability (0.49). These gains likely
arise from ViTs’ global attention, which enables more
coherent modeling of distributed facial irritation cues [37].
The poor performance of ViT-ConvPE, largely due to severe
embedding instability (=7.19), which illustrates the
importance of carefully selected positional encodings in
transformer architectures [38].

"

Fig. 4. Evaluation results for pigmentation dimension

As shown in Figure 6, pigmentation classification yielded
the highest performance across models, likely due to distinct
chromatic and melanin patterns [39]. CNNs showed strong
linear-probe separability (up to 0.95) but consistently low
fairness scores (0.29), which indicates uneven performance
across skin tones [40]. Their embedding stability ranged
from moderate (0.58) to high (0.87), suggesting good identity
clustering but limited task-specific fairness. ViT-SOPE
achieved the highest composite score (0.7735), with strong
F1 (0.86), high linear separability (0.92), and the best
embedding stability (0.84). Its overlapping patch mechanism
appears well suited for modeling melanin gradients and facial
discoloration [41].

|

Fig. 5. Evaluation results for aging dimension

As shown in Figure 5, aging prediction
demonstrated the widest disparity between CNN and ViT
performance. CNNs produced uniformly low F1 scores (0.16)
despite strong linear-probe accuracies (0.82—0.85), which
suggests that they encoded meaningful features but failed to
translate these into effective classification decisions. This
aligns with literature noting that aging cues are spatially
diffuse and require global contextual modeling [42]. ViT-
Standard achieved the highest overall score (0.6845) with an
F1 of 0.67. Interestingly, ViT-SOPE also performed well

(0.6045), whereas ViT-ConvPE  (0.4225) lagged,
highlighting that positional encoding choices materially
influence transformer performance [43].

Across all four tasks, Vision Transformers consistently
outperformed CNN architectures in every major dimension
of the evaluation metric: F1 score, fairness, interpretability,
embedding stability, and total composite performance. CNNs
occasionally achieved strong linear-probe scores, but their
decision layers consistently underperformed, which indicates
insufficient transfer of representational quality into
classification accuracy [44]. This suggests that CNNs may
encode meaningful features but struggle with tasks requiring
spatially global or contextually diffuse information.
Moreover, CNNs exhibited substantially lower fairness
scores, demonstrating higher susceptibility to demographic
performance gaps, consistent with literature documenting
CNNs’ bias amplification tendencies. ViTs consistent higher
interpretability scores indicate that ViTs rely on meaningful
facial regions, which align more closely with expert
reasoning and making them well-suited for fairness-critical
clinical and cosmetic applications.

IV. CONCLUSION AND RECOMMENDATION

These findings affirm that evaluating facial classification
systems must extend beyond accuracy to include structural,
representational, and ethical dimensions. The proposed
composite metric provides a more actionable way to identify
balanced, fair, and reliable models aligned with broader Al
fairness and responsible ML initiatives. Researchers and
practitioners should therefore adopt metrics that does not
relying on accuracy or F1 since it has risks of favoring models
that perform well overall but fail on marginalized groups.
Anatomical interpretability further revealed whether models
used meaningful facial structures or spurious cues, which
underscores the need for explanation-pattern analysis in
institutional deployments. Persistent fairness disparities
highlight the importance of balanced datasets across skin
tones, age groups, and gender identities, motivating future
work on broader demographic representation and explicit
bias-mitigation techniques.
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